/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ #include #include #include #include #include #include #include #include using namespace std; using namespace solidity::yul::test::yul_fuzzer; using namespace solidity::yul::test; using namespace solidity::langutil; using namespace solidity::util; using namespace solidity; vector ProtoConverter::createVars(unsigned _startIdx, unsigned _endIdx) { yulAssert(_endIdx > _startIdx, "Proto fuzzer: Variable indices not in range"); string varsStr = suffixedVariableNameList("x_", _startIdx, _endIdx); m_output << varsStr; vector varsVec; boost::split( varsVec, varsStr, boost::algorithm::is_any_of(", "), boost::algorithm::token_compress_on ); yulAssert( varsVec.size() == (_endIdx - _startIdx), "Proto fuzzer: Variable count mismatch during function definition" ); m_counter += varsVec.size(); return varsVec; } string ProtoConverter::dummyExpression() { string expression{}; string location{}; unsigned pseudoRandomNum = m_inputSize / 13; if (varDeclAvailable()) location = varRef(pseudoRandomNum); switch (pseudoRandomNum % 4) { case 0: if (location.empty()) expression = "mload(0)"; else expression = Whiskers(R"(mload(mod(, 256)))")("loc", location).render(); break; case 1: if (location.empty()) expression = "sload(0)"; else expression = Whiskers(R"(sload(mod(, 256)))")("loc", location).render(); break; case 2: if (location.empty()) expression = "calldataload(0)"; else expression = Whiskers(R"(calldataload(mod(, 32)))")("loc", location).render(); break; case 3: expression = dictionaryToken(); break; } yulAssert(!expression.empty(), "Proto fuzzer: Invalid dummy expression"); return expression; } string ProtoConverter::dictionaryToken(HexPrefix _p) { std::string token; // If dictionary constant is requested while converting // for loop condition, then return zero so that we don't // generate infinite for loops. if (m_inForCond) token = "0"; else { unsigned indexVar = m_inputSize * m_inputSize + counter(); token = hexDictionary[indexVar % hexDictionary.size()]; yulAssert(token.size() <= 64, "Proto Fuzzer: Dictionary token too large"); } return _p == HexPrefix::Add ? "0x" + token : token; } string ProtoConverter::createHex(string const& _hexBytes) { string tmp{_hexBytes}; if (!tmp.empty()) { boost::range::remove_erase_if(tmp, [=](char c) -> bool { return !std::isxdigit(c); }); tmp = tmp.substr(0, 64); } // We need this awkward if case because hex literals cannot be empty. // Use a dictionary token. if (tmp.empty()) tmp = dictionaryToken(HexPrefix::DontAdd); // Hex literals must have even number of digits if (tmp.size() % 2) tmp.insert(0, "0"); yulAssert(tmp.size() <= 64, "Proto Fuzzer: Dictionary token too large"); return tmp; } string ProtoConverter::createAlphaNum(string const& _strBytes) { string tmp{_strBytes}; if (!tmp.empty()) { boost::range::remove_erase_if(tmp, [=](char c) -> bool { return !(std::isalpha(c) || std::isdigit(c)); }); tmp = tmp.substr(0, 32); } return tmp; } string ProtoConverter::visit(Literal const& _x) { switch (_x.literal_oneof_case()) { case Literal::kIntval: return to_string(_x.intval()); case Literal::kHexval: return "0x" + createHex(_x.hexval()); case Literal::kStrval: return "\"" + createAlphaNum(_x.strval()) + "\""; case Literal::kBoolval: return _x.boolval() ? "true" : "false"; case Literal::LITERAL_ONEOF_NOT_SET: return dictionaryToken(); } } void ProtoConverter::consolidateVarDeclsInFunctionDef() { m_currentFuncVars.clear(); yulAssert(!m_funcVars.empty(), "Proto fuzzer: Invalid operation"); auto const& scopes = m_funcVars.back(); for (auto const& s: scopes) for (auto const& var: s) m_currentFuncVars.push_back(&var); yulAssert(!m_funcForLoopInitVars.empty(), "Proto fuzzer: Invalid operation"); auto const& forinitscopes = m_funcForLoopInitVars.back(); for (auto const& s: forinitscopes) for (auto const& var: s) m_currentFuncVars.push_back(&var); } void ProtoConverter::consolidateGlobalVarDecls() { m_currentGlobalVars.clear(); // Place pointers to all global variables that are in scope // into a single vector for (auto const& scope: m_globalVars) for (auto const& var: scope) m_currentGlobalVars.push_back(&var); // Place pointers to all variables declared in for-init blocks // that are still live into the same vector for (auto const& init: m_globalForLoopInitVars) for (auto const& var: init) m_currentGlobalVars.push_back(&var); } bool ProtoConverter::varDeclAvailable() { if (m_inFunctionDef) { consolidateVarDeclsInFunctionDef(); return m_currentFuncVars.size() > 0; } else { consolidateGlobalVarDecls(); return m_currentGlobalVars.size() > 0; } } string ProtoConverter::varRef(unsigned _index) { if (m_inFunctionDef) { // Ensure that there is at least one variable declaration to reference in function scope. yulAssert(m_currentFuncVars.size() > 0, "Proto fuzzer: No variables to reference."); return *m_currentFuncVars[_index % m_currentFuncVars.size()]; } else { // Ensure that there is at least one variable declaration to reference in nested scopes. yulAssert(m_currentGlobalVars.size() > 0, "Proto fuzzer: No global variables to reference."); return *m_currentGlobalVars[_index % m_currentGlobalVars.size()]; } } void ProtoConverter::visit(VarRef const& _x) { m_output << varRef(_x.varnum()); } void ProtoConverter::visit(FunctionExpr const& _x) { vector> functionSet; for (auto const& f: m_functionSigMap) if (f.second.second == 1) functionSet.emplace_back(f.first, f.second.first); if (functionSet.size() > 0) { pair chosenFunction = functionSet[_x.index() % functionSet.size()]; convertFunctionCall(_x, chosenFunction.first, chosenFunction.second); } else { m_output << dummyExpression(); } } void ProtoConverter::visit(Expression const& _x) { switch (_x.expr_oneof_case()) { case Expression::kVarref: // If the expression requires a variable reference that we cannot provide // (because there are no variables in scope), we silently output a literal // expression from the optimizer dictionary. if (!varDeclAvailable()) m_output << dummyExpression(); else visit(_x.varref()); break; case Expression::kCons: // If literal expression describes for-loop condition // then force it to zero, so we don't generate infinite // for loops if (m_inForCond) m_output << "0"; else m_output << visit(_x.cons()); break; case Expression::kBinop: visit(_x.binop()); break; case Expression::kUnop: visit(_x.unop()); break; case Expression::kTop: visit(_x.top()); break; case Expression::kNop: visit(_x.nop()); break; case Expression::kFuncexpr: visit(_x.funcexpr()); break; case Expression::EXPR_ONEOF_NOT_SET: m_output << dummyExpression(); break; } } void ProtoConverter::visit(BinaryOp const& _x) { BinaryOp_BOp op = _x.op(); switch (op) { case BinaryOp::ADD: m_output << "add"; break; case BinaryOp::SUB: m_output << "sub"; break; case BinaryOp::MUL: m_output << "mul"; break; case BinaryOp::DIV: m_output << "div"; break; case BinaryOp::MOD: m_output << "mod"; break; case BinaryOp::XOR: m_output << "xor"; break; case BinaryOp::AND: m_output << "and"; break; case BinaryOp::OR: m_output << "or"; break; case BinaryOp::EQ: m_output << "eq"; break; case BinaryOp::LT: m_output << "lt"; break; case BinaryOp::GT: m_output << "gt"; break; case BinaryOp::SHR: m_output << "shr"; break; case BinaryOp::SHL: m_output << "shl"; break; case BinaryOp::SAR: m_output << "sar"; break; case BinaryOp::SDIV: m_output << "sdiv"; break; case BinaryOp::SMOD: m_output << "smod"; break; case BinaryOp::EXP: m_output << "exp"; break; case BinaryOp::SLT: m_output << "slt"; break; case BinaryOp::SGT: m_output << "sgt"; break; case BinaryOp::BYTE: m_output << "byte"; break; case BinaryOp::SI: m_output << "signextend"; break; case BinaryOp::KECCAK: m_output << "keccak256"; break; } m_output << "("; visit(_x.left()); m_output << ","; visit(_x.right()); m_output << ")"; } void ProtoConverter::scopeVariables(vector const& _varNames) { // If we are inside a for-init block, there are two places // where the visited vardecl may have been defined: // - directly inside the for-init block // - inside a block within the for-init block // In the latter case, we don't scope extend. The flag // m_forInitScopeExtEnabled (= true) indicates whether we are directly // inside a for-init block e.g., for { let x } or (= false) inside a // nested for-init block e.g., for { { let x } } bool forInitScopeExtendVariable = m_inForInitScope && m_forInitScopeExtEnabled; // There are four cases that are tackled here // Case 1. We are inside a function definition and the variable declaration's // scope needs to be extended. // Case 2. We are inside a function definition but scope extension is disabled // Case 3. We are inside global scope and scope extension is required // Case 4. We are inside global scope but scope extension is disabled if (m_inFunctionDef) { // Variables declared directly in for-init block // are tracked separately because their scope // extends beyond the block they are defined in // to the rest of the for-loop statement. // Case 1 if (forInitScopeExtendVariable) { yulAssert( !m_funcForLoopInitVars.empty() && !m_funcForLoopInitVars.back().empty(), "Proto fuzzer: Invalid operation" ); for (auto const& varName: _varNames) m_funcForLoopInitVars.back().back().push_back(varName); } // Case 2 else { yulAssert( !m_funcVars.empty() && !m_funcVars.back().empty(), "Proto fuzzer: Invalid operation" ); for (auto const& varName: _varNames) m_funcVars.back().back().push_back(varName); } } // If m_inFunctionDef is false, we are in global scope else { // Case 3 if (forInitScopeExtendVariable) { yulAssert(!m_globalForLoopInitVars.empty(), "Proto fuzzer: Invalid operation"); for (auto const& varName: _varNames) m_globalForLoopInitVars.back().push_back(varName); } // Case 4 else { yulAssert(!m_globalVars.empty(), "Proto fuzzer: Invalid operation"); for (auto const& varName: _varNames) m_globalVars.back().push_back(varName); } } } void ProtoConverter::visit(UnaryOp const& _x) { UnaryOp_UOp op = _x.op(); switch (op) { case UnaryOp::NOT: m_output << "not"; break; case UnaryOp::MLOAD: m_output << "mload(mod"; break; case UnaryOp::SLOAD: m_output << "sload(mod"; break; case UnaryOp::ISZERO: m_output << "iszero"; break; case UnaryOp::CALLDATALOAD: m_output << "calldataload(mod"; break; } m_output << "("; visit(_x.operand()); if (op == UnaryOp::MLOAD || op == UnaryOp::SLOAD || op == UnaryOp::CALLDATALOAD) m_output << ", 256)"; m_output << ")"; } void ProtoConverter::visit(TernaryOp const& _x) { switch (_x.op()) { case TernaryOp::ADDM: m_output << "addmod"; break; case TernaryOp::MULM: m_output << "mulmod"; break; } m_output << "("; visit(_x.arg1()); m_output << ", "; visit(_x.arg2()); m_output << ", "; visit(_x.arg3()); m_output << ")"; } void ProtoConverter::visit(NullaryOp const& _x) { switch (_x.op()) { case NullaryOp::CALLDATASIZE: m_output << "calldatasize()"; break; case NullaryOp::RETURNDATASIZE: m_output << "returndatasize()"; break; case NullaryOp::ADDRESS: m_output << "address()"; break; case NullaryOp::ORIGIN: m_output << "origin()"; break; case NullaryOp::CALLER: m_output << "caller()"; break; case NullaryOp::CALLVALUE: m_output << "callvalue()"; break; case NullaryOp::GASPRICE: m_output << "gasprice()"; break; case NullaryOp::COINBASE: m_output << "coinbase()"; break; case NullaryOp::NUMBER: m_output << "number()"; break; case NullaryOp::DIFFICULTY: m_output << "difficulty()"; break; case NullaryOp::GASLIMIT: m_output << "gaslimit()"; break; case NullaryOp::SELFBALANCE: m_output << "selfbalance()"; break; case NullaryOp::CHAINID: m_output << "chainid()"; break; } } void ProtoConverter::visit(AssignmentStatement const& _x) { visit(_x.ref_id()); m_output << " := "; visit(_x.expr()); m_output << "\n"; } template void ProtoConverter::visitFunctionInputParams(T const& _x, unsigned _numInputParams) { // We reverse the order of function input visits since it helps keep this switch case concise. switch (_numInputParams) { case 4: visit(_x.in_param4()); m_output << ", "; [[fallthrough]];; case 3: visit(_x.in_param3()); m_output << ", "; [[fallthrough]];; case 2: visit(_x.in_param2()); m_output << ", "; [[fallthrough]];; case 1: visit(_x.in_param1()); [[fallthrough]];; case 0: break; default: yulAssert(false, "Proto fuzzer: Function call with too many input parameters."); break; } } template void ProtoConverter::convertFunctionCall( T const& _x, std::string _name, unsigned _numInParams, bool _newline ) { m_output << _name << "("; visitFunctionInputParams(_x, _numInParams); m_output << ")"; if (_newline) m_output << "\n"; } void ProtoConverter::visit(FunctionCall const& _x) { bool functionAvailable = m_functionSigMap.size() > 0; unsigned numInParams, numOutParams; string funcName; if (functionAvailable) { yulAssert(m_functions.size() > 0, "Proto fuzzer: No function in scope"); funcName = m_functions[_x.func_index() % m_functions.size()]; auto ret = m_functionSigMap.at(funcName); numInParams = ret.first; numOutParams = ret.second; } else { return; } // If we are here, it means that we have at least one valid // function for making the function call switch (numOutParams) { case 0: convertFunctionCall(_x, funcName, numInParams, /*newline=*/true); break; case 1: // assignment if (varDeclAvailable()) { visit(_x.out_param1()); m_output << " := "; convertFunctionCall(_x, funcName, numInParams, /*newline=*/true); } break; case 2: [[fallthrough]]; case 3: [[fallthrough]]; case 4: { // Ensure that the chosen function returns at most 4 values yulAssert( numOutParams <= 4, "Proto fuzzer: Function call with too many output params encountered." ); { // If we do not have variables to assign to, bail out if (!varDeclAvailable()) return; // Convert LHS of multi assignment // We reverse the order of out param visits since the order does not matter. // This helps reduce the size of this switch statement. switch (numOutParams) { case 4: visit(_x.out_param4()); m_output << ", "; [[fallthrough]]; case 3: visit(_x.out_param3()); m_output << ", "; [[fallthrough]]; case 2: visit(_x.out_param2()); m_output << ", "; visit(_x.out_param1()); break; default: yulAssert(false, "Proto fuzzer: Function call with too many or too few input parameters."); break; } m_output << " := "; // Convert RHS of multi assignment convertFunctionCall(_x, funcName, numInParams, /*newline=*/true); } break; } } } void ProtoConverter::visit(IfStmt const& _x) { m_output << "if "; visit(_x.cond()); m_output << " "; visit(_x.block()); } void ProtoConverter::visit(StoreFunc const& _x) { switch (_x.st()) { case StoreFunc::MSTORE: m_output << "mstore(mod("; break; case StoreFunc::SSTORE: m_output << "sstore(mod("; break; case StoreFunc::MSTORE8: m_output << "mstore8(mod("; break; } visit(_x.loc()); m_output << ", 256), "; visit(_x.val()); m_output << ")\n"; } void ProtoConverter::visit(ForStmt const& _x) { if (++m_numForLoops > s_maxForLoops) return; bool wasInForBody = m_inForBodyScope; bool wasInForInit = m_inForInitScope; bool wasForInitScopeExtEnabled = m_forInitScopeExtEnabled; m_inForBodyScope = false; m_inForInitScope = true; m_forInitScopeExtEnabled = true; m_inForCond = false; m_output << "for "; visit(_x.for_init()); m_inForInitScope = false; m_forInitScopeExtEnabled = wasForInitScopeExtEnabled; m_inForCond = true; visit(_x.for_cond()); m_inForCond = false; visit(_x.for_post()); m_inForBodyScope = true; visit(_x.block()); m_inForBodyScope = wasInForBody; m_inForInitScope = wasInForInit; if (m_inFunctionDef) { yulAssert( !m_funcForLoopInitVars.empty() && !m_funcForLoopInitVars.back().empty(), "Proto fuzzer: Invalid data structure" ); // Remove variables in for-init m_funcForLoopInitVars.back().pop_back(); } else { yulAssert(!m_globalForLoopInitVars.empty(), "Proto fuzzer: Invalid data structure"); m_globalForLoopInitVars.pop_back(); } } void ProtoConverter::visit(BoundedForStmt const& _x) { if (++m_numForLoops > s_maxForLoops) return; // Boilerplate for loop that limits the number of iterations to a maximum of 4. std::string loopVarName("i_" + std::to_string(m_numNestedForLoops++)); m_output << "for { let " << loopVarName << " := 0 } " << "lt(" << loopVarName << ", 0x60) " << "{ " << loopVarName << " := add(" << loopVarName << ", 0x20) } "; // Store previous for body scope bool wasInForBody = m_inForBodyScope; bool wasInForInit = m_inForInitScope; m_inForBodyScope = true; m_inForInitScope = false; visit(_x.block()); // Restore previous for body scope and init m_inForBodyScope = wasInForBody; m_inForInitScope = wasInForInit; } void ProtoConverter::visit(CaseStmt const& _x) { string literal = visit(_x.case_lit()); // u256 value of literal u256 literalVal; // Convert string to u256 before looking for duplicate case literals if (_x.case_lit().has_strval()) { // Since string literals returned by the Literal visitor are enclosed within // double quotes (like this "\"\""), their size is at least two in the worst case // that is empty. Here we assert this invariant. yulAssert(literal.size() >= 2, "Proto fuzzer: String literal too short"); // This variable stores the part i.e., literal minus the first and last // double quote characters. This is used to compute the keccak256 hash of the // string literal. The hashing is done to check whether we are about to create // a case statement containing a case literal that has already been used in a // previous case statement. If the hash (u256 value) matches a previous hash, // then we simply don't create a new case statement. string noDoubleQuoteStr{""}; if (literal.size() > 2) { // Ensure that all characters in the string literal except the first // and the last (double quote characters) are alphanumeric. yulAssert( boost::algorithm::all_of(literal.begin() + 1, literal.end() - 2, [=](char c) -> bool { return std::isalpha(c) || std::isdigit(c); }), "Proto fuzzer: Invalid string literal encountered" ); // Make a copy because literal will need to be used later noDoubleQuoteStr = literal.substr(1, literal.size() - 2); } // Hash the result to check for duplicate case literal strings literalVal = u256(h256(noDoubleQuoteStr, h256::FromBinary, h256::AlignLeft)); // Make sure that an empty string literal evaluates to zero. This is to detect creation of // duplicate case literals like so // switch (x) // { // case "": { x := 0 } // case 0: { x:= 1 } // Case statement with duplicate literal is invalid // } // This snippet will not be parsed successfully. if (noDoubleQuoteStr.empty()) yulAssert(literalVal == 0, "Proto fuzzer: Empty string does not evaluate to zero"); } else if (_x.case_lit().has_boolval()) literalVal = _x.case_lit().boolval() ? u256(1) : u256(0); else literalVal = u256(literal); // Check if set insertion fails (case literal present) or succeeds (case literal // absent). bool isUnique = m_switchLiteralSetPerScope.top().insert(literalVal).second; // It is fine to bail out if we encounter a duplicate case literal because // we can be assured that the switch statement is well-formed i.e., contains // at least one case statement or a default block. if (isUnique) { m_output << "case " << literal << " "; visit(_x.block()); } } void ProtoConverter::visit(SwitchStmt const& _x) { if (_x.case_stmt_size() > 0 || _x.has_block()) { std::set s; m_switchLiteralSetPerScope.push(s); m_output << "switch "; visit(_x.switch_expr()); m_output << "\n"; for (auto const& caseStmt: _x.case_stmt()) visit(caseStmt); m_switchLiteralSetPerScope.pop(); if (_x.has_block()) { m_output << "default "; visit(_x.block()); } } } void ProtoConverter::visit(Statement const& _x) { switch (_x.stmt_oneof_case()) { case Statement::kAssignment: // Create an assignment statement only if there is at least one variable // declaration that is in scope. if (varDeclAvailable()) visit(_x.assignment()); break; case Statement::kIfstmt: if (_x.ifstmt().block().statements_size() > 0) visit(_x.ifstmt()); break; case Statement::kStorageFunc: visit(_x.storage_func()); break; case Statement::kBlockstmt: if (_x.blockstmt().statements_size() > 0) visit(_x.blockstmt()); break; case Statement::kForstmt: if (_x.forstmt().block().statements_size() > 0) visit(_x.forstmt()); break; case Statement::kBoundedforstmt: if (_x.boundedforstmt().block().statements_size() > 0) visit(_x.boundedforstmt()); break; case Statement::kSwitchstmt: visit(_x.switchstmt()); break; case Statement::kBreakstmt: if (m_inForBodyScope) m_output << "break\n"; break; case Statement::kContstmt: if (m_inForBodyScope) m_output << "continue\n"; break; case Statement::kFunctioncall: visit(_x.functioncall()); break; case Statement::kFuncdef: if (_x.funcdef().block().statements_size() > 0) if (!m_inForInitScope) visit(_x.funcdef()); break; case Statement::kPop: visit(_x.pop()); break; case Statement::kLeave: if (m_inFunctionDef) visit(_x.leave()); break; case Statement::STMT_ONEOF_NOT_SET: break; } } void ProtoConverter::openBlockScope() { m_scopeFuncs.push_back({}); // Create new block scope inside current function scope if (m_inFunctionDef) { yulAssert( !m_funcVars.empty(), "Proto fuzzer: Invalid data structure" ); m_funcVars.back().push_back(vector{}); if (m_inForInitScope && m_forInitScopeExtEnabled) { yulAssert( !m_funcForLoopInitVars.empty(), "Proto fuzzer: Invalid data structure" ); m_funcForLoopInitVars.back().push_back(vector{}); } } else { m_globalVars.push_back({}); if (m_inForInitScope && m_forInitScopeExtEnabled) m_globalForLoopInitVars.push_back(vector{}); } } void ProtoConverter::openFunctionScope(vector const& _funcParams) { m_funcVars.push_back(vector>({_funcParams})); m_funcForLoopInitVars.push_back(vector>({})); } void ProtoConverter::updateFunctionMaps(string const& _var) { unsigned erased = m_functionSigMap.erase(_var); for (auto const& i: m_functionDefMap) if (i.second == _var) { erased += m_functionDefMap.erase(i.first); break; } yulAssert(erased == 2, "Proto fuzzer: Function maps not updated"); } void ProtoConverter::closeBlockScope() { // Remove functions declared in the block that is going // out of scope from the global function map. for (auto const& f: m_scopeFuncs.back()) { unsigned numFuncsRemoved = m_functions.size(); m_functions.erase(remove(m_functions.begin(), m_functions.end(), f), m_functions.end()); numFuncsRemoved -= m_functions.size(); yulAssert( numFuncsRemoved == 1, "Proto fuzzer: Nothing or too much went out of scope" ); updateFunctionMaps(f); } // Pop back the vector of scoped functions. if (!m_scopeFuncs.empty()) m_scopeFuncs.pop_back(); // If block belongs to function body, then remove // local variables in function body that are going out of scope. if (m_inFunctionDef) { yulAssert(!m_funcVars.empty(), "Proto fuzzer: Invalid data structure"); if (!m_funcVars.back().empty()) m_funcVars.back().pop_back(); } // Remove variables declared in vanilla block from current // global scope. else { yulAssert(!m_globalVars.empty(), "Proto fuzzer: Invalid data structure"); m_globalVars.pop_back(); } } void ProtoConverter::closeFunctionScope() { yulAssert(!m_funcVars.empty(), "Proto fuzzer: Invalid data structure"); m_funcVars.pop_back(); yulAssert(!m_funcForLoopInitVars.empty(), "Proto fuzzer: Invalid data structure"); m_funcForLoopInitVars.pop_back(); } void ProtoConverter::addVarsToScope(vector const& _vars) { // If we are in function definition, add the new vars to current function scope if (m_inFunctionDef) { // If we are directly in for-init block, add the newly created vars to the // stack of for-init variables. if (m_inForInitScope && m_forInitScopeExtEnabled) { yulAssert( !m_funcForLoopInitVars.empty() && !m_funcForLoopInitVars.back().empty(), "Proto fuzzer: Invalid data structure" ); m_funcForLoopInitVars.back().back().insert( m_funcForLoopInitVars.back().back().end(), _vars.begin(), _vars.end() ); } else { yulAssert( !m_funcVars.empty() && !m_funcVars.back().empty(), "Proto fuzzer: Invalid data structure" ); m_funcVars.back().back().insert( m_funcVars.back().back().end(), _vars.begin(), _vars.end() ); } } // If we are in a vanilla block, add the new vars to current global scope else { if (m_inForInitScope && m_forInitScopeExtEnabled) { yulAssert( !m_globalForLoopInitVars.empty(), "Proto fuzzer: Invalid data structure" ); m_globalForLoopInitVars.back().insert( m_globalForLoopInitVars.back().end(), _vars.begin(), _vars.end() ); } else { yulAssert( !m_globalVars.empty(), "Proto fuzzer: Invalid data structure" ); m_globalVars.back().insert( m_globalVars.back().end(), _vars.begin(), _vars.end() ); } } } void ProtoConverter::storeGlobals() { if (m_globalVars.size() == 1) { unsigned i = 0; for (auto const& v: m_globalVars.back()) { string loc = to_string(i * 32); m_output << Whiskers(R"(mstore(, ))") ("loc", loc) ("var", v) ("endl", "\n") .render(); i++; } } } void ProtoConverter::visit(Block const& _x) { openBlockScope(); // Register function declarations in this scope unless this // scope belongs to for-init (in which function declarations // are forbidden). for (auto const& statement: _x.statements()) if (statement.has_funcdef() && statement.funcdef().block().statements_size() > 0 && !m_inForInitScope) registerFunction(&statement.funcdef()); if (_x.statements_size() > 0) { m_output << "{\n"; bool wasForInitScopeExtEnabled = m_forInitScopeExtEnabled; for (auto const& st: _x.statements()) { // If statement is block or introduces one and we are in for-init block // then temporarily disable scope extension if it is not already disabled. if ( (st.has_blockstmt() || st.has_switchstmt() || st.has_ifstmt()) && m_inForInitScope && m_forInitScopeExtEnabled ) m_forInitScopeExtEnabled = false; visit(st); m_forInitScopeExtEnabled = wasForInitScopeExtEnabled; } m_output << "}\n"; } else m_output << "{}\n"; closeBlockScope(); } void ProtoConverter::registerFunction(FunctionDef const* _x) { unsigned numInParams = _x->num_input_params() % s_modInputParams; unsigned numOutParams = _x->num_output_params() % s_modOutputParams; NumFunctionReturns numReturns; if (numOutParams == 0) numReturns = NumFunctionReturns::None; else if (numOutParams == 1) numReturns = NumFunctionReturns::Single; else numReturns = NumFunctionReturns::Multiple; // Generate function name string funcName = functionName(numReturns); // Register function auto ret = m_functionSigMap.emplace(make_pair(funcName, make_pair(numInParams, numOutParams))); yulAssert(ret.second, "Proto fuzzer: Function already exists."); m_functions.push_back(funcName); m_scopeFuncs.back().push_back(funcName); m_functionDefMap.emplace(make_pair(_x, funcName)); } void ProtoConverter::fillFunctionCallInput(unsigned _numInParams) { for (unsigned i = 0; i < _numInParams; i++) { // Throw a 4-sided dice to choose whether to populate function input // argument from a pseudo-randomly chosen slot in one of the following // locations: calldata, memory, storage, or Yul optimizer dictionary. unsigned diceValue = counter() % 4; // Pseudo-randomly choose one of the first ten 32-byte // aligned slots. string slot = to_string((counter() % 8) * 32); switch (diceValue) { case 0: m_output << "calldataload(" << slot << ")"; break; case 1: m_output << "mload(" << slot << ")"; break; case 2: m_output << "sload(" << slot << ")"; break; case 3: // Call to dummyExpression() automatically picks a token // at a pseudo-random location. m_output << dummyExpression(); break; } if (i < _numInParams - 1) m_output << ","; } } void ProtoConverter::saveFunctionCallOutput(vector const& _varsVec) { for (auto const& var: _varsVec) { // Flip a dice to choose whether to save output values // in storage or memory. bool coinFlip = counter() % 2 == 0; // Pseudo-randomly choose one of the first ten 32-byte // aligned slots. string slot = to_string((counter() % 10) * 32); if (coinFlip) m_output << "sstore(" << slot << ", " << var << ")\n"; else m_output << "mstore(" << slot << ", " << var << ")\n"; } } void ProtoConverter::createFunctionDefAndCall( FunctionDef const& _x, unsigned _numInParams, unsigned _numOutParams ) { yulAssert( ((_numInParams <= s_modInputParams - 1) && (_numOutParams <= s_modOutputParams - 1)), "Proto fuzzer: Too many function I/O parameters requested." ); // Obtain function name yulAssert(m_functionDefMap.count(&_x), "Proto fuzzer: Unregistered function"); string funcName = m_functionDefMap.at(&_x); vector varsVec = {}; m_output << "function " << funcName << "("; unsigned startIdx = counter(); if (_numInParams > 0) varsVec = createVars(startIdx, startIdx + _numInParams); m_output << ")"; vector outVarsVec = {}; // This creates -> x_n+1,...,x_r if (_numOutParams > 0) { m_output << " -> "; if (varsVec.empty()) { yulAssert(_numInParams == 0, "Proto fuzzer: Input parameters not processed correctly"); varsVec = createVars(startIdx, startIdx + _numOutParams); } else { outVarsVec = createVars(startIdx + _numInParams, startIdx + _numInParams + _numOutParams); varsVec.insert(varsVec.end(), outVarsVec.begin(), outVarsVec.end()); } } yulAssert(varsVec.size() == _numInParams + _numOutParams, "Proto fuzzer: Function parameters not processed correctly"); m_output << "\n"; // If function definition is in for-loop body, update bool wasInForBody = m_inForBodyScope; m_inForBodyScope = false; bool wasInFunctionDef = m_inFunctionDef; m_inFunctionDef = true; // Create new function scope and add function input and return // parameters to it. openFunctionScope(varsVec); // Visit function body visit(_x.block()); closeFunctionScope(); m_inForBodyScope = wasInForBody; m_inFunctionDef = wasInFunctionDef; yulAssert( !m_inForInitScope, "Proto fuzzer: Trying to create function call inside a for-init block" ); } void ProtoConverter::visit(FunctionDef const& _x) { unsigned numInParams = _x.num_input_params() % s_modInputParams; unsigned numOutParams = _x.num_output_params() % s_modOutputParams; createFunctionDefAndCall(_x, numInParams, numOutParams); } void ProtoConverter::visit(PopStmt const& _x) { m_output << "pop("; visit(_x.expr()); m_output << ")\n"; } void ProtoConverter::visit(LeaveStmt const&) { m_output << "leave\n"; } void ProtoConverter::visit(Program const& _x) { // Initialize input size m_inputSize = _x.ByteSizeLong(); m_output << "{\n"; visit(_x.block()); yulAssert(m_globalVars.size() <= 1, "Yul proto converter: Invalid global scope size"); storeGlobals(); m_output << "}\n"; } string ProtoConverter::programToString(Program const& _input) { visit(_input); return m_output.str(); } std::string ProtoConverter::functionTypeToString(NumFunctionReturns _type) { switch (_type) { case NumFunctionReturns::None: return "n"; case NumFunctionReturns::Single: return "s"; case NumFunctionReturns::Multiple: return "m"; } }