This commit is contained in:
chriseth 2022-04-03 20:22:17 +02:00
parent aebe9753ff
commit f9ab7cc635
5 changed files with 603 additions and 1331 deletions

View File

@ -136,7 +136,7 @@ void BooleanLPSolver::addAssertion(Expression const& _expr)
{
LinearExpression data = *left - *right;
data[0] *= -1;
Constraint c{move(data), _expr.name == "=", {}};
Constraint c{move(data), _expr.name == "="};
if (!tryAddDirectBounds(c))
state().fixedConstraints.emplace_back(move(c));
cout << "Added as fixed constraint" << endl;
@ -186,7 +186,7 @@ void BooleanLPSolver::addAssertion(Expression const& _expr)
{
LinearExpression data = *left - *right;
data[0] *= -1;
Constraint c{move(data), _expr.name == "=", {}};
Constraint c{move(data), _expr.name == "="};
if (!tryAddDirectBounds(c))
state().fixedConstraints.emplace_back(move(c));
}
@ -220,10 +220,24 @@ pair<CheckResult, vector<string>> BooleanLPSolver::check(vector<Expression> cons
std::vector<std::string> booleanVariables;
std::vector<Clause> clauses = state().clauses;
SolvingState lpState;
// TODO we start building up a new set of solver
// for each query, but we should also keep some
// kind of cache across queries.
std::vector<std::pair<size_t, LPSolver>> lpSolvers;
lpSolvers.emplace_back(0, LPSolver{});
LPSolver& lpSolver = lpSolvers.back().second;
for (auto&& [index, bound]: state().bounds)
resizeAndSet(lpState.bounds, index, bound);
lpState.constraints = state().fixedConstraints;
{
if (bound.lower)
lpSolver.addLowerBound(index, *bound.lower);
if (bound.upper)
lpSolver.addUpperBound(index, *bound.upper);
}
for (Constraint const& c: state().fixedConstraints)
lpSolver.addConstraint(c);
// TODO this way, it will result in a lot of gaps in both sets of variables.
// should we compress them and store a mapping?
// Is it even a problem if the indices overlap?
@ -231,23 +245,9 @@ pair<CheckResult, vector<string>> BooleanLPSolver::check(vector<Expression> cons
if (state().isBooleanVariable.at(index) || isConditionalConstraint(index))
resizeAndSet(booleanVariables, index, name);
else
resizeAndSet(lpState.variableNames, index, name);
lpSolver.setVariableName(index, name);
// TODO keep a cache as a member that is never reset.
// TODO We can also keep the split unconditionals across push/pop
// We only need to be careful to update the number of variables.
std::vector<std::pair<size_t, LPSolver>> lpSolvers;
// TODO We start afresh here. If we want this to reuse the existing results
// from previous invocations of the boolean solver, we still have to use
// a cache.
// The current optimization is only for CDCL.
lpSolvers.emplace_back(0, LPSolver{&m_lpCache});
if (
lpSolvers.back().second.setState(lpState) == LPResult::Infeasible ||
lpSolvers.back().second.check().first == LPResult::Infeasible
)
if (lpSolver.check().first == LPResult::Infeasible)
{
cout << "----->>>>> unsatisfiable" << endl;
return {CheckResult::UNSATISFIABLE, {}};
@ -263,8 +263,7 @@ pair<CheckResult, vector<string>> BooleanLPSolver::check(vector<Expression> cons
continue;
// "reason" is already stored for those constraints.
Constraint const& constraint = state().conditionalConstraints.at(constraintIndex);
solAssert(constraint.reasons.size() == 1 && *constraint.reasons.begin() == constraintIndex);
lpSolvers.back().second.addConstraint(constraint);
lpSolvers.back().second.addConstraint(constraint, constraintIndex);
}
auto&& [result, modelOrReason] = lpSolvers.back().second.check();
// We can only really use the result "infeasible". Everything else should be "sat".
@ -365,7 +364,7 @@ optional<Literal> BooleanLPSolver::parseLiteral(smtutil::Expression const& _expr
LinearExpression data = *left - *right;
data[0] *= -1;
return Literal{true, addConditionalConstraint(Constraint{move(data), _expr.name == "=", {}})};
return Literal{true, addConditionalConstraint(Constraint{move(data), _expr.name == "="})};
}
else if (_expr.name == ">=")
return parseLiteral(_expr.arguments.at(1) <= _expr.arguments.at(0));
@ -390,7 +389,6 @@ Literal BooleanLPSolver::negate(Literal const& _lit)
Constraint le = c;
le.equality = false;
le.data[0] -= 1;
le.reasons.clear();
Literal leL{true, addConditionalConstraint(le)};
// X >= b + 1
@ -399,7 +397,6 @@ Literal BooleanLPSolver::negate(Literal const& _lit)
ge.equality = false;
ge.data *= -1;
ge.data[0] -= 1;
ge.reasons.clear();
Literal geL{true, addConditionalConstraint(ge)};
@ -419,7 +416,6 @@ Literal BooleanLPSolver::negate(Literal const& _lit)
Constraint negated = c;
negated.data *= -1;
negated.data[0] -= 1;
negated.reasons.clear();
return Literal{true, addConditionalConstraint(negated)};
}
}
@ -561,8 +557,6 @@ size_t BooleanLPSolver::addConditionalConstraint(Constraint _constraint)
// - integers
declareVariable(name, false);
size_t index = state().variables.at(name);
solAssert(_constraint.reasons.empty());
_constraint.reasons.emplace(index);
state().conditionalConstraints[index] = move(_constraint);
return index;
}

View File

@ -40,8 +40,14 @@ struct State
std::map<size_t, Constraint> conditionalConstraints;
std::vector<Clause> clauses;
struct Bounds
{
std::optional<rational> lower;
std::optional<rational> upper;
};
// Unconditional bounds on variables
std::map<size_t, SolvingState::Bounds> bounds;
std::map<size_t, Bounds> bounds;
// Unconditional constraints
std::vector<Constraint> fixedConstraints;
};
@ -122,9 +128,6 @@ private:
/// Stack of state, to allow for push()/pop().
std::vector<State> m_state{{State{}}};
std::unordered_map<SolvingState, LPResult> m_lpCache;
};

File diff suppressed because it is too large Load Diff

View File

@ -42,8 +42,6 @@ struct Constraint
{
LinearExpression data;
bool equality = false;
/// Set of literals the conjunction of which implies this constraint.
std::set<size_t> reasons = {};
bool operator<(Constraint const& _other) const;
bool operator==(Constraint const& _other) const;
@ -171,156 +169,92 @@ enum class LPResult
Infeasible ///< System does not have any solution.
};
class SimplexWithBounds
{
public:
explicit SimplexWithBounds(SolvingState _state);
LPResult check();
size_t addVariable(std::string _name);
void addConstraint(Constraint _constraint);
std::string toString() const;
private:
/// Set value of non-basic variable.
void update(size_t _var, rational const& _value);
/// @returns the index of the first basic variable violating its bounds.
std::optional<size_t> firstConflictingBasicVariable() const;
std::optional<size_t> firstReplacementVar(size_t _basicVarToReplace, bool _increasing) const;
void pivot(size_t _old, size_t _new);
void pivotAndUpdate(size_t _oldBasicVar, rational const& _newValue, size_t _newBasicVar);
SolvingState m_state;
std::vector<rational> m_assignments;
/// Variable index to row it controls.
std::map<size_t, size_t> m_basicVariables;
};
/**
* Applies several strategies to simplify a given solving state.
* During these simplifications, it can sometimes already be determined if the
* state is feasible or not.
* Since some variables can be fixed to specific values, it returns a
* (partial) model.
*
* - Constraints with exactly one nonzero coefficient represent "a x <= b"
* and thus are turned into bounds.
* - Constraints with zero nonzero coefficients are constant relations.
* If such a relation is false, answer "infeasible", otherwise remove the constraint.
* - Empty columns can be removed.
* - Variables with matching bounds can be removed from the problem by substitution.
*
* Holds a reference to the solving state that is modified during operation.
*/
class SolvingStateSimplifier
{
public:
SolvingStateSimplifier(SolvingState& _state):
m_state(_state) {}
std::pair<LPResult, std::variant<std::map<size_t, rational>, ReasonSet>> simplify();
private:
/// Remove variables that have equal lower and upper bound.
/// @returns reason / set of conflicting clauses if infeasible.
std::optional<ReasonSet> removeFixedVariables();
/// Removes constraints of the form 0 <= b or 0 == b (no variables) and
/// turns constraints of the form a * x <= b (one variable) into bounds.
/// @returns reason / set of conflicting clauses if infeasible.
std::optional<ReasonSet> extractDirectConstraints();
/// Removes all-zeros columns.
void removeEmptyColumns();
/// Set to true by the strategies if they performed some changes.
bool m_changed = false;
SolvingState& m_state;
std::map<size_t, rational> m_fixedVariables;
};
/**
* Splits a given linear program into multiple linear programs with disjoint sets of variables.
* The initial program is feasible if and only if all sub-programs are feasible.
*/
class ProblemSplitter
{
public:
explicit ProblemSplitter(SolvingState const& _state);
/// @returns true if there are still sub-problems to split out.
operator bool() const { return m_column < m_state.variableNames.size(); }
/// @returns the next sub-problem.
std::pair<std::vector<bool>, std::vector<bool>> next();
private:
SolvingState const& m_state;
/// Next column to start the search for a connected component.
size_t m_column = 1;
/// The columns we have already split out.
std::vector<bool> m_seenColumns;
};
/**
* LP solver for rational problems.
* LP solver for rational problems, based on "A Fast Linear-Arithmetic Solver for DPLL(T)*"
* by Dutertre and Moura.
*
* Does not solve integer problems!
*
* Tries to split a given problem into sub-problems and utilizes a cache to quickly solve
* similar problems.
* Tries to split incoming bounds and constraints into unrelated sub-problems.
* Maintains lower/upper bounds for all variables.
* Adds one slack variable per constraint and stores all constraints as "= 0" equations.
* Splits variables into basic and non-basic. For each row there is exactly one
* basic variable that has a factor of -1.
* The equations are satisfied at all times and non-basic variables are always within their bounds.
* Non-basic variables might violate their bounds.
* It attempts to resolve these violations in turn, swapping a basic variables with a non-basic
* variables that can still move in the required direction.
*
* Can be used in a mode where it does not support returning models. In that case, the
* cache is more efficient.
* It is perfectly fine to add new bounds, variable or constraints after a call to "check".
* The solver can be copied at low cost and it uses a "copy on write" mechanism for the sub-problems.
*/
class LPSolver
{
public:
explicit LPSolver(bool _supportModels = true);
explicit LPSolver(std::unordered_map<SolvingState, LPResult>* _cache):
m_cache(_cache) {}
void addConstraint(Constraint const& _constraint, std::optional<size_t> _reason = std::nullopt);
void setVariableName(size_t _variable, std::string _name);
void addLowerBound(size_t _variable, rational _bound);
void addUpperBound(size_t _variable, rational _bound);
LPResult setState(SolvingState _state);
void addConstraint(Constraint _constraint);
std::pair<LPResult, std::variant<Model, ReasonSet>> check();
private:
void combineSubProblems(size_t _combineInto, size_t _combineFrom);
void addConstraintToSubProblem(size_t _subProblem, Constraint _constraint);
void updateSubProblems();
std::string toString() const;
/// Ground state for CDCL. This is shared by copies of the solver.
/// Only ``setState`` changes the state. Copies will only use
/// ``addConstraint`` which does not change m_state.
std::shared_ptr<SolvingState> m_state;
private:
struct Bounds
{
std::optional<rational> lower;
std::optional<rational> upper;
};
struct Variable
{
std::string name = {};
rational value = 0;
Bounds bounds = {};
};
struct SubProblem
{
// TODO now we could actually put the constraints here again.
std::vector<Constraint> removableConstraints;
bool dirty = true;
LPResult result = LPResult::Unknown;
std::vector<boost::rational<bigint>> model = {};
std::set<size_t> variables = {};
std::optional<SimplexWithBounds> simplex = std::nullopt;
/// Set to true on "check". Needs a copy for adding a constraint or bound if set to true.
bool sealed = false;
std::optional<LPResult> result = std::nullopt;
std::vector<LinearExpression> factors;
std::vector<Variable> variables;
/// Variable index to constraint it controls.
std::map<size_t, size_t> basicVariables;
/// Maps outer indices to inner indices.
std::map<size_t, size_t> varMapping = {};
std::set<size_t> reasons;
LPResult check();
std::string toString() const;
private:
/// Set value of non-basic variable.
void update(size_t _varIndex, rational const& _value);
/// @returns the index of the first basic variable violating its bounds.
std::optional<size_t> firstConflictingBasicVariable() const;
std::optional<size_t> firstReplacementVar(size_t _basicVarToReplace, bool _increasing) const;
void pivot(size_t _old, size_t _new);
void pivotAndUpdate(size_t _oldBasicVar, rational const& _newValue, size_t _newBasicVar);
};
std::pair<SolvingState, std::map<size_t, size_t>> stateFromSubProblem(size_t _index) const;
ReasonSet reasonSetForSubProblem(SubProblem const& _subProblem);
std::shared_ptr<std::map<size_t, rational>> m_fixedVariables;
SubProblem& unseal(size_t _problem);
/// Unseals the problem for the given variable or creates a new one.
SubProblem& unsealForVariable(size_t _outerIndex);
void combineSubProblems(size_t _combineInto, size_t _combineFrom);
void addConstraintToSubProblem(size_t _subProblem, Constraint const& _constraint, std::optional<size_t> _reason);
void addOuterVariableToSubProblem(size_t _subProblem, size_t _outerIndex);
size_t addNewVariableToSubProblem(size_t _subProblem);
std::map<std::string, rational> model() const;
/// These use "copy on write".
std::vector<std::shared_ptr<SubProblem>> m_subProblems;
std::vector<size_t> m_subProblemsPerVariable;
std::vector<size_t> m_subProblemsPerConstraint;
/// TODO also store the first infeasible subproblem?
/// TODO still retain the cache?
std::unordered_map<SolvingState, LPResult>* m_cache = nullptr;
/// Maps outer indices to sub problems.
std::map<size_t, size_t> m_subProblemsPerVariable;
/// Counter to enable unique names for the slack variables.
size_t m_slackVariableCounter = 0;
};

View File

@ -38,7 +38,6 @@ class LPTestFramework
public:
LPTestFramework()
{
m_solvingState.variableNames.emplace_back("");
}
LinearExpression constant(rational _value)
@ -52,11 +51,11 @@ public:
}
/// Adds the constraint "_lhs <= _rhs".
void addLEConstraint(LinearExpression _lhs, LinearExpression _rhs, set<size_t> _reason = {})
void addLEConstraint(LinearExpression _lhs, LinearExpression _rhs, optional<size_t> _reason = {})
{
_lhs -= _rhs;
_lhs[0] = -_lhs[0];
m_solvingState.constraints.push_back({move(_lhs), false, move(_reason)});
m_solver.addConstraint({move(_lhs), false}, move(_reason));
}
void addLEConstraint(LinearExpression _lhs, rational _rhs)
@ -65,47 +64,43 @@ public:
}
/// Adds the constraint "_lhs = _rhs".
void addEQConstraint(LinearExpression _lhs, LinearExpression _rhs, set<size_t> _reason = {})
void addEQConstraint(LinearExpression _lhs, LinearExpression _rhs, optional<size_t> _reason = {})
{
_lhs -= _rhs;
_lhs[0] = -_lhs[0];
m_solvingState.constraints.push_back({move(_lhs), true, move(_reason)});
m_solver.addConstraint({move(_lhs), true}, move(_reason));
}
void addLowerBound(string _variable, rational _value, set<size_t> _reason = {})
void addLowerBound(string _variable, rational _value)
{
size_t index = variableIndex(_variable);
if (index >= m_solvingState.bounds.size())
m_solvingState.bounds.resize(index + 1);
m_solvingState.bounds.at(index).lower = _value;
m_solvingState.bounds.at(index).lowerReasons = move(_reason);
m_solver.addLowerBound(variableIndex(_variable), _value);
}
void addUpperBound(string _variable, rational _value, set<size_t> _reason = {})
void addUpperBound(string _variable, rational _value)
{
size_t index = variableIndex(_variable);
if (index >= m_solvingState.bounds.size())
m_solvingState.bounds.resize(index + 1);
m_solvingState.bounds.at(index).upper = _value;
m_solvingState.bounds.at(index).upperReasons = move(_reason);
m_solver.addUpperBound(variableIndex(_variable), _value);
}
void feasible(vector<pair<string, rational>> const& _solution)
{
m_solver.setState(m_solvingState);
auto [result, modelOrReasonSet] = m_solver.check();
BOOST_REQUIRE(result == LPResult::Feasible);
Model model = get<Model>(modelOrReasonSet);
for (auto const& [var, value]: _solution)
{
BOOST_CHECK_MESSAGE(
model.count(var),
"Variable " + var + " not found in model."
);
BOOST_CHECK_MESSAGE(
value == model.at(var),
var + " = "s + ::toString(model.at(var)) + " (expected " + ::toString(value) + ")"
);
}
}
void infeasible(set<size_t> _reason = {})
{
m_solver.setState(m_solvingState);
auto [result, modelOrReason] = m_solver.check();
BOOST_REQUIRE(result == LPResult::Infeasible);
ReasonSet suppliedReason = get<ReasonSet>(modelOrReason);
@ -115,44 +110,54 @@ public:
protected:
size_t variableIndex(string const& _name)
{
if (m_solvingState.variableNames.empty())
m_solvingState.variableNames.emplace_back("");
auto index = findOffset(m_solvingState.variableNames, _name);
if (!index)
if (!m_variableIndices.count(_name))
{
index = m_solvingState.variableNames.size();
m_solvingState.variableNames.emplace_back(_name);
size_t index = 1 + m_variableIndices.size();
m_solver.setVariableName(index, _name);
m_variableIndices[_name] = index;
}
return *index;
return m_variableIndices.at(_name);
}
LPSolver m_solver;
SolvingState m_solvingState;
map<string, size_t> m_variableIndices;
};
BOOST_FIXTURE_TEST_SUITE(LP, LPTestFramework, *boost::unit_test::label("nooptions"))
BOOST_AUTO_TEST_CASE(empty)
{
feasible({});
}
BOOST_AUTO_TEST_CASE(basic)
{
auto x = variable("x");
addLEConstraint(2 * x, 10);
feasible({{"x", 5}});
feasible({{"x", 0}});
}
BOOST_AUTO_TEST_CASE(not_linear_independent)
{
addLEConstraint(2 * variable("x"), 10);
addLEConstraint(4 * variable("x"), 20);
feasible({{"x", 0}});
}
BOOST_AUTO_TEST_CASE(not_linear_independent_eq)
{
addLEConstraint(2 * variable("x"), 10);
addEQConstraint(4 * variable("x"), constant(20));
feasible({{"x", 5}});
}
BOOST_AUTO_TEST_CASE(two_vars)
{
addLEConstraint(variable("y"), 3);
addLEConstraint(variable("x"), 10);
addLowerBound("x", 10);
addLEConstraint(variable("x") + variable("y"), 4);
feasible({{"x", 1}, {"y", 3}});
feasible({{"x", 10}, {"y", -6}});
}
BOOST_AUTO_TEST_CASE(one_le_the_other)
@ -167,8 +172,8 @@ BOOST_AUTO_TEST_CASE(factors)
auto y = variable("y");
addLEConstraint(2 * y, 3);
addLEConstraint(16 * x, 10);
addLEConstraint(x + y, 4);
feasible({{"x", rational(5) / 8}, {"y", rational(3) / 2}});
addLEConstraint(constant(2), x + y);
feasible({{"x", rational(5) / 8}, {"y", rational(11) / 8}});
}
BOOST_AUTO_TEST_CASE(cache)
@ -178,8 +183,8 @@ BOOST_AUTO_TEST_CASE(cache)
// that it results in the same value.
auto x = variable("x");
auto y = variable("y");
addLEConstraint(2 * y, 3);
addLEConstraint(2 * x, 3);
addLEConstraint(constant(3), 2 * y);
addLEConstraint(constant(3), 2 * x);
feasible({{"x", rational(3) / 2}, {"y", rational(3) / 2}});
feasible({{"x", rational(3) / 2}, {"y", rational(3) / 2}});
}
@ -187,19 +192,25 @@ BOOST_AUTO_TEST_CASE(cache)
BOOST_AUTO_TEST_CASE(bounds)
{
addUpperBound("x", 200);
feasible({{"x", 200}});
feasible({{"x", 0}});
addLEConstraint(variable("x"), 100);
feasible({{"x", 100}});
feasible({{"x", 0}});
addLEConstraint(constant(5), variable("x"));
feasible({{"x", 100}});
feasible({{"x", 5}});
addLowerBound("x", 20);
feasible({{"x", 100}});
feasible({{"x", 20}});
addLowerBound("x", 25);
feasible({{"x", 100}});
feasible({{"x", 25}});
addLowerBound("x", 21);
feasible({{"x", 25}});
addUpperBound("x", 26);
feasible({{"x", 25}});
addUpperBound("x", 28);
feasible({{"x", 25}});
addUpperBound("x", 20);
infeasible();
}
@ -210,19 +221,20 @@ BOOST_AUTO_TEST_CASE(bounds2)
addUpperBound("x", 250);
addLowerBound("y", 2);
addUpperBound("y", 3);
feasible({{"x", 250}, {"y", 3}});
feasible({{"x", 200}, {"y", 2}});
addLEConstraint(variable("y"), variable("x"));
feasible({{"x", 250}, {"y", 3}});
feasible({{"x", 200}, {"y", 2}});
addEQConstraint(variable("y") + constant(231), variable("x"));
feasible({{"x", 234}, {"y", 3}});
cout << m_solver.toString() << endl;
feasible({{"x", 233}, {"y", 2}});
/*
addEQConstraint(variable("y") + constant(10), variable("x") - variable("z"));
feasible({{"x", 234}, {"y", 3}});
feasible({{"x", 234}, {"y", 3}, {"z", 0}});
addEQConstraint(variable("z") + variable("x"), constant(2));
infeasible();
infeasible();*/
}
BOOST_AUTO_TEST_CASE(lower_bound)
@ -230,7 +242,7 @@ BOOST_AUTO_TEST_CASE(lower_bound)
addLEConstraint(constant(1), variable("y"));
addLEConstraint(variable("x"), constant(10));
addLEConstraint(2 * variable("x") + variable("y"), 2);
feasible({{"x", 0}, {"y", 2}});
feasible({{"x", 0}, {"y", 1}});
}
BOOST_AUTO_TEST_CASE(check_infeasible)
@ -252,11 +264,13 @@ BOOST_AUTO_TEST_CASE(unbounded2)
auto y = variable("y");
addLEConstraint(constant(2), x + y);
addLEConstraint(x, 10);
feasible({{"x", 10}, {"y", 0}});
feasible({{"x", 2}, {"y", 0}});
}
BOOST_AUTO_TEST_CASE(unbounded3)
{
addLowerBound("y", 0);
addLowerBound("x", 0);
addLEConstraint(constant(0) - variable("x") - variable("y"), constant(10));
feasible({{"x", 0}, {"y", 0}});
@ -277,7 +291,7 @@ BOOST_AUTO_TEST_CASE(equal)
auto y = variable("y");
addEQConstraint(x, y + constant(10));
addLEConstraint(x, 20);
feasible({{"x", 20}, {"y", 10}});
feasible({{"x", 10}, {"y", 0}});
}
@ -285,6 +299,7 @@ BOOST_AUTO_TEST_CASE(equal_constant)
{
auto x = variable("x");
auto y = variable("y");
addLowerBound("x", 5);
addLEConstraint(x, y);
addEQConstraint(y, constant(5));
feasible({{"x", 5}, {"y", 5}});
@ -295,7 +310,26 @@ BOOST_AUTO_TEST_CASE(all_equality)
auto x = variable("x");
auto y = variable("y");
addEQConstraint(-6 * x - 6 * y, constant(8));
infeasible();
feasible({{"x", -rational(4) / 3}, {"y", 0}});
}
BOOST_AUTO_TEST_CASE(negative_values)
{
auto x = variable("x");
auto y = variable("y");
addEQConstraint(-2 * x, constant(8));
addLowerBound("y", -2);
addUpperBound("y", -1);
feasible({{"x", -4}, {"y", -1}});
}
BOOST_AUTO_TEST_CASE(basic_basic)
{
auto x = variable("x");
addLEConstraint(x, constant(5));
feasible({{"x", 0}});
addEQConstraint(x, constant(5));
feasible({{"x", 5}});
}
BOOST_AUTO_TEST_CASE(linear_dependent)
@ -303,40 +337,40 @@ BOOST_AUTO_TEST_CASE(linear_dependent)
auto x = variable("x");
auto y = variable("y");
auto z = variable("z");
addLEConstraint(x, 5);
addLEConstraint(2 * y, 10);
addLEConstraint(3 * z, 15);
addLEConstraint(x, -5);
addLEConstraint(2 * y, -10);
addLEConstraint(3 * z, -15);
// Here, they should be split into three independent problems.
feasible({{"x", 5}, {"y", 5}, {"z", 5}});
feasible({{"x", -5}, {"y", -5}, {"z", -5}});
addLEConstraint((x + y) + z, 100);
feasible({{"x", 5}, {"y", 5}, {"z", 5}});
feasible({{"x", -5}, {"y", -5}, {"z", -5}});
addLEConstraint((x + y) + z, 2);
feasible({{"x", 2}, {"y", 0}, {"z", 0}});
addLEConstraint((x + y) + z, -1);
feasible({{"x", -5}, {"y", -5}, {"z", -5}});
addLEConstraint(constant(2), (x + y) + z);
feasible({{"x", 2}, {"y", 0}, {"z", 0}});
addLEConstraint(constant(-20), (x + y) + z);
feasible({{"x", -5}, {"y", -5}, {"z", -5}});
addEQConstraint(constant(2), (x + y) + z);
feasible({{"x", 2}, {"y", 0}, {"z", 0}});
addEQConstraint(constant(-18), (x + y) + z);
feasible({{"x", -8}, {"y", -5}, {"z", -5}});
}
BOOST_AUTO_TEST_CASE(reasons_simple)
{
auto x = variable("x");
addLEConstraint(2 * x, constant(20), {0});
addLowerBound("x", 12, {1});
infeasible({0, 1});
addLowerBound("x", 12);
infeasible({0});
}
BOOST_AUTO_TEST_CASE(reasons_bounds)
{
auto x = variable("x");
addLowerBound("x", 12, {0});
addUpperBound("x", 11, {1});
addLEConstraint(x, constant(200), {2}); // unrelated
infeasible({0, 1});
addLowerBound("x", 12);
addUpperBound("x", 11);
addLEConstraint(variable("y"), constant(200), {2}); // unrelated
infeasible({});
}
BOOST_AUTO_TEST_CASE(reasons_forwarded)
@ -346,9 +380,9 @@ BOOST_AUTO_TEST_CASE(reasons_forwarded)
addEQConstraint(x, constant(2), {0});
addEQConstraint(x, y, {1});
feasible({});
addLEConstraint(x, constant(200), {5}); // unrelated
addLEConstraint(x, constant(200), {5});
addLEConstraint(y, constant(1), {2});
infeasible({0, 1, 2});
infeasible({0, 1, 2, 5});
}
BOOST_AUTO_TEST_CASE(reasons_forwarded2)
@ -359,9 +393,9 @@ BOOST_AUTO_TEST_CASE(reasons_forwarded2)
addEQConstraint(x, y, {1});
feasible({});
addEQConstraint(y, constant(3), {2});
addLEConstraint(x, constant(200), {6}); // unrelated
addLEConstraint(y, constant(202), {6}); // unrelated
infeasible({0, 1, 2});
addLEConstraint(x, constant(200), {6});
addLEConstraint(y, constant(202), {7});
infeasible({0, 1, 2, 6, 7});
}
BOOST_AUTO_TEST_CASE(reasons_split)
@ -377,6 +411,22 @@ BOOST_AUTO_TEST_CASE(reasons_split)
infeasible({0, 2});
}
BOOST_AUTO_TEST_CASE(reasons_joined)
{
auto x = variable("x");
auto y = variable("y");
auto z = variable("z");
addLEConstraint(x + y, constant(2), {0});
feasible({});
addLEConstraint(constant(20), x + y, {2});
infeasible({0, 2});
addLEConstraint(z, constant(200), {3});
infeasible({0, 2});
addLEConstraint(x, z);
infeasible({0, 2, 3});
}
BOOST_AUTO_TEST_CASE(fuzzer2)
{
/*
@ -399,6 +449,15 @@ BOOST_AUTO_TEST_CASE(fuzzer2)
auto x6 = variable("x6");
auto x7 = variable("x7");
auto x8 = variable("x8");
addLowerBound("x0", 0);
addLowerBound("x1", 0);
addLowerBound("x2", 0);
addLowerBound("x3", 0);
addLowerBound("x4", 0);
addLowerBound("x5", 0);
addLowerBound("x6", 0);
addLowerBound("x7", 0);
addLowerBound("x8", 0);
addEQConstraint(90 * x4 + 9 * x5, constant(-1));
addLEConstraint(-76 * x2 + 74 * x5, constant(0));
addLEConstraint(31 * x3 - 71 * x8, constant(0));