Merge pull request #9800 from ethereum/yul-phaser-make-tests-less-brittle

Yul phaser make tests less brittle
This commit is contained in:
chriseth 2020-09-14 16:57:35 +02:00 committed by GitHub
commit f264f5474d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 117 additions and 49 deletions

View File

@ -73,8 +73,8 @@ BOOST_AUTO_TEST_CASE(makeRandom_should_return_different_chromosome_each_time)
BOOST_AUTO_TEST_CASE(makeRandom_should_use_every_possible_step_with_the_same_probability)
{
SimulationRNG::reset(1);
constexpr int samplesPerStep = 100;
constexpr double relativeTolerance = 0.01;
constexpr int samplesPerStep = 500;
constexpr double relativeTolerance = 0.02;
map<string, size_t> stepIndices = enumerateOptmisationSteps();
auto chromosome = Chromosome::makeRandom(stepIndices.size() * samplesPerStep);
@ -120,6 +120,15 @@ BOOST_AUTO_TEST_CASE(constructor_should_allow_duplicate_steps)
BOOST_TEST(Chromosome("ttfuf").genes() == "ttfuf");
}
BOOST_AUTO_TEST_CASE(constructor_should_allow_genes_that_do_not_correspond_to_any_step)
{
assert(OptimiserSuite::stepAbbreviationToNameMap().count('.') == 0);
assert(OptimiserSuite::stepAbbreviationToNameMap().count('b') == 0);
BOOST_TEST(Chromosome(".").genes() == ".");
BOOST_TEST(Chromosome("a..abatbb").genes() == "a..abatbb");
}
BOOST_AUTO_TEST_CASE(output_operator_should_create_concise_and_unambiguous_string_representation)
{
vector<string> allSteps;
@ -140,8 +149,8 @@ BOOST_AUTO_TEST_CASE(optimisationSteps_should_translate_chromosomes_genes_to_opt
BOOST_AUTO_TEST_CASE(randomOptimisationStep_should_return_each_step_with_same_probability)
{
SimulationRNG::reset(1);
constexpr int samplesPerStep = 100;
constexpr double relativeTolerance = 0.01;
constexpr int samplesPerStep = 500;
constexpr double relativeTolerance = 0.02;
map<string, size_t> stepIndices = enumerateOptmisationSteps();
vector<size_t> samples;

View File

@ -22,6 +22,7 @@
#include <tools/yulPhaser/SimulationRNG.h>
#include <libsolutil/CommonIO.h>
#include <libyul/optimiser/Suite.h>
#include <boost/test/unit_test.hpp>
#include <boost/algorithm/string/predicate.hpp>
@ -31,6 +32,7 @@
using namespace std;
using namespace solidity::util;
using namespace solidity::yul;
namespace solidity::phaser::test
{
@ -41,19 +43,32 @@ BOOST_AUTO_TEST_SUITE(GeneRandomisationTest)
BOOST_AUTO_TEST_CASE(geneRandomisation_should_iterate_over_genes_and_replace_them_with_random_ones_with_given_probability)
{
Chromosome chromosome("fcCUnDvejs");
function<Mutation> mutation01 = geneRandomisation(0.1);
function<Mutation> mutation05 = geneRandomisation(0.5);
function<Mutation> mutation10 = geneRandomisation(1.0);
size_t constexpr inputLength = 1000;
double constexpr tolerance = 0.05;
// Use genes that do not represent valid step abbreviations to be able to easily spot added steps.
assert(OptimiserSuite::stepAbbreviationToNameMap().count('.') == 0);
Chromosome input = Chromosome(string(inputLength, '.'));
SimulationRNG::reset(1);
BOOST_TEST(countDifferences(mutation01(chromosome), chromosome), 2);
BOOST_TEST(countDifferences(mutation05(chromosome), chromosome), 5);
BOOST_TEST(countDifferences(mutation10(chromosome), chromosome), 7);
SimulationRNG::reset(2);
BOOST_TEST(countDifferences(mutation01(chromosome), chromosome), 1);
BOOST_TEST(countDifferences(mutation05(chromosome), chromosome), 3);
BOOST_TEST(countDifferences(mutation10(chromosome), chromosome), 9);
for (size_t randomisationChancePercent = 20; randomisationChancePercent <= 100; randomisationChancePercent += 20)
{
double const randomisationChance = (randomisationChancePercent / 100.0);
Chromosome output = geneRandomisation(randomisationChance)(input);
string outputGenes = output.genes();
BOOST_REQUIRE(output.length() == input.length());
double const expectedValue = randomisationChance;
double const variance = randomisationChance * (1 - randomisationChance);
double const randomisedGeneCount = input.length() - static_cast<size_t>(count(outputGenes.begin(), outputGenes.end(), '.'));
double const squaredError =
(inputLength - randomisedGeneCount) * expectedValue * expectedValue +
randomisedGeneCount * (1 - expectedValue) * (1 - expectedValue);
BOOST_TEST(abs(randomisedGeneCount / inputLength - expectedValue) < tolerance);
BOOST_TEST(abs(squaredError / inputLength - variance) < tolerance);
}
}
BOOST_AUTO_TEST_CASE(geneRandomisation_should_return_identical_chromosome_if_probability_is_zero)
@ -66,17 +81,33 @@ BOOST_AUTO_TEST_CASE(geneRandomisation_should_return_identical_chromosome_if_pro
BOOST_AUTO_TEST_CASE(geneDeletion_should_iterate_over_genes_and_delete_them_with_given_probability)
{
Chromosome chromosome("fcCUnDvejs");
function<Mutation> mutation01 = geneDeletion(0.1);
function<Mutation> mutation05 = geneDeletion(0.5);
size_t constexpr inputLength = 1000;
double constexpr tolerance = 0.05;
// Use genes that do not represent valid step abbreviations to be able to easily spot added steps.
assert(OptimiserSuite::stepAbbreviationToNameMap().count('.') == 0);
Chromosome input = Chromosome(string(inputLength, '.'));
SimulationRNG::reset(1);
// fcCUnDvejs
BOOST_TEST(mutation01(chromosome) == Chromosome(stripWhitespace("fcCU Dvejs")));
BOOST_TEST(mutation05(chromosome) == Chromosome(stripWhitespace(" D ejs")));
SimulationRNG::reset(2);
BOOST_TEST(mutation01(chromosome) == Chromosome(stripWhitespace("fcUnDvejs")));
BOOST_TEST(mutation05(chromosome) == Chromosome(stripWhitespace(" Un s")));
for (size_t deletionChancePercent = 20; deletionChancePercent < 100; deletionChancePercent += 20)
{
double const deletionChance = (deletionChancePercent / 100.0);
Chromosome output = geneDeletion(deletionChance)(input);
string outputGenes = output.genes();
BOOST_REQUIRE(output.length() <= input.length());
BOOST_REQUIRE(static_cast<size_t>(count(outputGenes.begin(), outputGenes.end(), '.')) == output.length());
double const expectedValue = deletionChance;
double const variance = deletionChance * (1 - deletionChance);
double const deletedGeneCount = input.length() - output.length();
double const squaredError =
(inputLength - deletedGeneCount) * expectedValue * expectedValue +
deletedGeneCount * (1 - expectedValue) * (1 - expectedValue);
BOOST_TEST(abs(deletedGeneCount / inputLength - expectedValue) < tolerance);
BOOST_TEST(abs(squaredError / inputLength - variance) < tolerance);
}
}
BOOST_AUTO_TEST_CASE(geneDeletion_should_return_identical_chromosome_if_probability_is_zero)
@ -97,17 +128,37 @@ BOOST_AUTO_TEST_CASE(geneDeletion_should_delete_all_genes_if_probability_is_one)
BOOST_AUTO_TEST_CASE(geneAddition_should_iterate_over_gene_positions_and_insert_new_genes_with_given_probability)
{
Chromosome chromosome("fcCUnDvejs");
function<Mutation> mutation01 = geneAddition(0.1);
function<Mutation> mutation05 = geneAddition(0.5);
size_t constexpr inputLength = 1000;
double constexpr tolerance = 0.05;
size_t constexpr maxAdditions = inputLength + 1;
// Use genes that do not represent valid step abbreviations to be able to easily spot added steps.
assert(OptimiserSuite::stepAbbreviationToNameMap().count('.') == 0);
Chromosome input = Chromosome(string(inputLength, '.'));
SimulationRNG::reset(1);
// f c C U n D v e j s
BOOST_TEST(mutation01(chromosome) == Chromosome(stripWhitespace(" f c C UC n D v e jx s"))); // 20% more
BOOST_TEST(mutation05(chromosome) == Chromosome(stripWhitespace("s f cu C U nj D v eO j sf"))); // 50% more
SimulationRNG::reset(2);
BOOST_TEST(mutation01(chromosome) == Chromosome(stripWhitespace(" f cp C U n D v e j s"))); // 10% more
BOOST_TEST(mutation05(chromosome) == Chromosome(stripWhitespace("M f ce Ce U n D v e jo s"))); // 40% more
for (size_t additionChancePercent = 20; additionChancePercent < 100; additionChancePercent += 20)
{
double const additionChance = (additionChancePercent / 100.0);
Chromosome output = geneAddition(additionChance)(input);
BOOST_REQUIRE(output.length() >= input.length());
BOOST_REQUIRE(output.length() <= inputLength + maxAdditions);
string_view outputGenes = output.genes();
size_t preservedGeneCount = static_cast<size_t>(count(outputGenes.begin(), outputGenes.end(), '.'));
BOOST_REQUIRE(preservedGeneCount == input.length());
double const expectedValue = additionChance;
double const variance = additionChance * (1 - additionChance);
double const addedGeneCount = (output.length() - preservedGeneCount);
double const squaredError =
(maxAdditions - addedGeneCount) * expectedValue * expectedValue +
addedGeneCount * (1 - expectedValue) * (1 - expectedValue);
BOOST_TEST(abs(addedGeneCount / maxAdditions - expectedValue) < tolerance);
BOOST_TEST(abs(squaredError / maxAdditions - variance) < tolerance);
}
}
BOOST_AUTO_TEST_CASE(geneAddition_should_be_able_to_insert_before_first_position)

View File

@ -67,6 +67,11 @@ string const& Chromosome::randomOptimisationStep()
return stepNames[SimulationRNG::uniformInt(0, stepNames.size() - 1)];
}
char Chromosome::randomGene()
{
return OptimiserSuite::stepNameToAbbreviationMap().at(randomOptimisationStep());
}
string Chromosome::stepsToGenes(vector<string> const& _optimisationSteps)
{
string genes;

View File

@ -44,6 +44,8 @@ public:
explicit Chromosome(std::vector<std::string> _optimisationSteps):
m_genes(stepsToGenes(_optimisationSteps)) {}
explicit Chromosome(std::string _genes):
// NOTE: We don't validate the genes - they're only checked at the point of conversion to
// actual optimisation steps names. This is very convenient in mutation tests.
m_genes(std::move(_genes)) {}
static Chromosome makeRandom(size_t _length);
@ -58,6 +60,7 @@ public:
bool operator!=(Chromosome const& _other) const { return !(*this == _other); }
static std::string const& randomOptimisationStep();
static char randomGene();
static std::string stepsToGenes(std::vector<std::string> const& _optimisationSteps);
static std::vector<std::string> genesToSteps(std::string const& _genes);

View File

@ -36,15 +36,15 @@ function<Mutation> phaser::geneRandomisation(double _chance)
{
return [=](Chromosome const& _chromosome)
{
vector<string> optimisationSteps;
for (auto const& step: _chromosome.optimisationSteps())
optimisationSteps.push_back(
string genes;
for (char gene: _chromosome.genes())
genes.push_back(
SimulationRNG::bernoulliTrial(_chance) ?
Chromosome::randomOptimisationStep() :
step
Chromosome::randomGene() :
gene
);
return Chromosome(move(optimisationSteps));
return Chromosome(move(genes));
};
}
@ -52,12 +52,12 @@ function<Mutation> phaser::geneDeletion(double _chance)
{
return [=](Chromosome const& _chromosome)
{
vector<string> optimisationSteps;
for (auto const& step: _chromosome.optimisationSteps())
string genes;
for (char gene: _chromosome.genes())
if (!SimulationRNG::bernoulliTrial(_chance))
optimisationSteps.push_back(step);
genes.push_back(gene);
return Chromosome(move(optimisationSteps));
return Chromosome(move(genes));
};
}
@ -65,19 +65,19 @@ function<Mutation> phaser::geneAddition(double _chance)
{
return [=](Chromosome const& _chromosome)
{
vector<string> optimisationSteps;
string genes;
if (SimulationRNG::bernoulliTrial(_chance))
optimisationSteps.push_back(Chromosome::randomOptimisationStep());
genes.push_back(Chromosome::randomGene());
for (auto const& step: _chromosome.optimisationSteps())
for (char gene: _chromosome.genes())
{
optimisationSteps.push_back(step);
genes.push_back(gene);
if (SimulationRNG::bernoulliTrial(_chance))
optimisationSteps.push_back(Chromosome::randomOptimisationStep());
genes.push_back(Chromosome::randomGene());
}
return Chromosome(move(optimisationSteps));
return Chromosome(move(genes));
};
}