mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
Merge pull request #580 from Denton-L/docs-whitespace
Corrections to Documentation Spacing
This commit is contained in:
commit
ec061b09a3
@ -179,6 +179,7 @@ function finishes.
|
||||
AreWeDoneYet,
|
||||
Finished
|
||||
}
|
||||
|
||||
// This is the current stage.
|
||||
Stages public stage = Stages.AcceptingBlindedBids;
|
||||
|
||||
@ -188,9 +189,11 @@ function finishes.
|
||||
if (stage != _stage) throw;
|
||||
_
|
||||
}
|
||||
|
||||
function nextStage() internal {
|
||||
stage = Stages(uint(stage) + 1);
|
||||
}
|
||||
|
||||
// Perform timed transitions. Be sure to mention
|
||||
// this modifier first, otherwise the guards
|
||||
// will not take the new stage into account.
|
||||
@ -211,6 +214,7 @@ function finishes.
|
||||
{
|
||||
// We will not implement that here
|
||||
}
|
||||
|
||||
function reveal()
|
||||
timedTransitions
|
||||
atStage(Stages.RevealBids)
|
||||
@ -227,6 +231,7 @@ function finishes.
|
||||
_
|
||||
nextStage();
|
||||
}
|
||||
|
||||
function g()
|
||||
timedTransitions
|
||||
atStage(Stages.AnotherStage)
|
||||
@ -235,12 +240,14 @@ function finishes.
|
||||
// If you want to use `return` here,
|
||||
// you have to call `nextStage()` manually.
|
||||
}
|
||||
|
||||
function h()
|
||||
timedTransitions
|
||||
atStage(Stages.AreWeDoneYet)
|
||||
transitionNext
|
||||
{
|
||||
}
|
||||
|
||||
function i()
|
||||
timedTransitions
|
||||
atStage(Stages.Finished)
|
||||
|
@ -25,27 +25,28 @@ API, this is done as follows::
|
||||
|
||||
// The json abi array generated by the compiler
|
||||
var abiArray = [
|
||||
{
|
||||
"inputs":[
|
||||
{"name":"x","type":"uint256"},
|
||||
{"name":"y","type":"uint256"}
|
||||
],
|
||||
"type":"constructor"
|
||||
},
|
||||
{
|
||||
"constant":true,
|
||||
"inputs":[],
|
||||
"name":"x",
|
||||
"outputs":[{"name":"","type":"bytes32"}],
|
||||
"type":"function"
|
||||
}
|
||||
{
|
||||
"inputs":[
|
||||
{"name":"x","type":"uint256"},
|
||||
{"name":"y","type":"uint256"}
|
||||
],
|
||||
"type":"constructor"
|
||||
},
|
||||
{
|
||||
"constant":true,
|
||||
"inputs":[],
|
||||
"name":"x",
|
||||
"outputs":[{"name":"","type":"bytes32"}],
|
||||
"type":"function"
|
||||
}
|
||||
];
|
||||
|
||||
var MyContract = web3.eth.contract(abiArray);
|
||||
// deploy new contract
|
||||
var contractInstance = MyContract.new(
|
||||
10, 11,
|
||||
{from: myAccount, gas: 1000000}
|
||||
10,
|
||||
11,
|
||||
{from: myAccount, gas: 1000000}
|
||||
);
|
||||
|
||||
.. index:: constructor;arguments
|
||||
@ -84,7 +85,8 @@ This means that cyclic creation dependencies are impossible.
|
||||
// Only the creator can alter the name --
|
||||
// the comparison is possible since contracts
|
||||
// are implicitly convertible to addresses.
|
||||
if (msg.sender == creator) name = newName;
|
||||
if (msg.sender == creator)
|
||||
name = newName;
|
||||
}
|
||||
|
||||
function transfer(address newOwner) {
|
||||
@ -221,8 +223,12 @@ The next example is a bit more complex:
|
||||
::
|
||||
|
||||
contract complex {
|
||||
struct Data { uint a; bytes3 b; mapping(uint => uint) map; }
|
||||
mapping(uint => mapping(bool => Data[])) public data;
|
||||
struct Data {
|
||||
uint a;
|
||||
bytes3 b;
|
||||
mapping (uint => uint) map;
|
||||
}
|
||||
mapping (uint => mapping(bool => Data[])) public data;
|
||||
}
|
||||
|
||||
It will generate a function of the following form::
|
||||
@ -260,7 +266,11 @@ inheritable properties of contracts and may be overridden by derived contracts.
|
||||
// This means that if the owner calls this function, the
|
||||
// function is executed and otherwise, an exception is
|
||||
// thrown.
|
||||
modifier onlyowner { if (msg.sender != owner) throw; _ }
|
||||
modifier onlyowner {
|
||||
if (msg.sender != owner)
|
||||
throw;
|
||||
_
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -277,17 +287,24 @@ inheritable properties of contracts and may be overridden by derived contracts.
|
||||
|
||||
contract priced {
|
||||
// Modifiers can receive arguments:
|
||||
modifier costs(uint price) { if (msg.value >= price) _ }
|
||||
modifier costs(uint price) {
|
||||
if (msg.value >= price) {
|
||||
_
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
contract Register is priced, owned {
|
||||
mapping (address => bool) registeredAddresses;
|
||||
uint price;
|
||||
|
||||
function Register(uint initialPrice) { price = initialPrice; }
|
||||
|
||||
function register() costs(price) {
|
||||
registeredAddresses[msg.sender] = true;
|
||||
}
|
||||
|
||||
function changePrice(uint _price) onlyowner {
|
||||
price = _price;
|
||||
}
|
||||
@ -359,13 +376,13 @@ possible.
|
||||
|
||||
|
||||
contract Caller {
|
||||
function callTest(address testAddress) {
|
||||
Test(testAddress).call(0xabcdef01); // hash does not exist
|
||||
// results in Test(testAddress).x becoming == 1.
|
||||
Rejector r = Rejector(0x123);
|
||||
r.send(2 ether);
|
||||
// results in r.balance == 0
|
||||
}
|
||||
function callTest(address testAddress) {
|
||||
Test(testAddress).call(0xabcdef01); // hash does not exist
|
||||
// results in Test(testAddress).x becoming == 1.
|
||||
Rejector r = Rejector(0x123);
|
||||
r.send(2 ether);
|
||||
// results in r.balance == 0
|
||||
}
|
||||
}
|
||||
|
||||
.. index:: ! event
|
||||
@ -820,56 +837,56 @@ custom types without the overhead of external function calls:
|
||||
|
||||
::
|
||||
|
||||
library bigint {
|
||||
struct bigint {
|
||||
uint[] limbs;
|
||||
}
|
||||
library bigint {
|
||||
struct bigint {
|
||||
uint[] limbs;
|
||||
}
|
||||
|
||||
function fromUint(uint x) internal returns (bigint r) {
|
||||
r.limbs = new uint[](1);
|
||||
r.limbs[0] = x;
|
||||
}
|
||||
function fromUint(uint x) internal returns (bigint r) {
|
||||
r.limbs = new uint[](1);
|
||||
r.limbs[0] = x;
|
||||
}
|
||||
|
||||
function add(bigint _a, bigint _b) internal returns (bigint r) {
|
||||
r.limbs = new uint[](max(_a.limbs.length, _b.limbs.length));
|
||||
uint carry = 0;
|
||||
for (uint i = 0; i < r.limbs.length; ++i) {
|
||||
uint a = limb(_a, i);
|
||||
uint b = limb(_b, i);
|
||||
r.limbs[i] = a + b + carry;
|
||||
if (a + b < a || (a + b == uint(-1) && carry > 0))
|
||||
carry = 1;
|
||||
else
|
||||
carry = 0;
|
||||
}
|
||||
if (carry > 0) {
|
||||
// too bad, we have to add a limb
|
||||
uint[] memory newLimbs = new uint[](r.limbs.length + 1);
|
||||
for (i = 0; i < r.limbs.length; ++i)
|
||||
newLimbs[i] = r.limbs[i];
|
||||
newLimbs[i] = carry;
|
||||
r.limbs = newLimbs;
|
||||
}
|
||||
}
|
||||
function add(bigint _a, bigint _b) internal returns (bigint r) {
|
||||
r.limbs = new uint[](max(_a.limbs.length, _b.limbs.length));
|
||||
uint carry = 0;
|
||||
for (uint i = 0; i < r.limbs.length; ++i) {
|
||||
uint a = limb(_a, i);
|
||||
uint b = limb(_b, i);
|
||||
r.limbs[i] = a + b + carry;
|
||||
if (a + b < a || (a + b == uint(-1) && carry > 0))
|
||||
carry = 1;
|
||||
else
|
||||
carry = 0;
|
||||
}
|
||||
if (carry > 0) {
|
||||
// too bad, we have to add a limb
|
||||
uint[] memory newLimbs = new uint[](r.limbs.length + 1);
|
||||
for (i = 0; i < r.limbs.length; ++i)
|
||||
newLimbs[i] = r.limbs[i];
|
||||
newLimbs[i] = carry;
|
||||
r.limbs = newLimbs;
|
||||
}
|
||||
}
|
||||
|
||||
function limb(bigint _a, uint _limb) internal returns (uint) {
|
||||
return _limb < _a.limbs.length ? _a.limbs[_limb] : 0;
|
||||
}
|
||||
function limb(bigint _a, uint _limb) internal returns (uint) {
|
||||
return _limb < _a.limbs.length ? _a.limbs[_limb] : 0;
|
||||
}
|
||||
|
||||
function max(uint a, uint b) private returns (uint) {
|
||||
return a > b ? a : b;
|
||||
}
|
||||
}
|
||||
function max(uint a, uint b) private returns (uint) {
|
||||
return a > b ? a : b;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
contract C {
|
||||
using bigint for bigint.bigint;
|
||||
function f() {
|
||||
var x = bigint.fromUint(7);
|
||||
var y = bigint.fromUint(uint(-1));
|
||||
var z = x.add(y);
|
||||
}
|
||||
}
|
||||
contract C {
|
||||
using bigint for bigint.bigint;
|
||||
function f() {
|
||||
var x = bigint.fromUint(7);
|
||||
var y = bigint.fromUint(uint(-1));
|
||||
var z = x.add(y);
|
||||
}
|
||||
}
|
||||
|
||||
As the compiler cannot know where the library will be
|
||||
deployed at, these addresses have to be filled into the
|
||||
|
@ -32,8 +32,8 @@ Functions of the current contract can be called directly ("internally"), also re
|
||||
this nonsensical example::
|
||||
|
||||
contract c {
|
||||
function g(uint a) returns (uint ret) { return f(); }
|
||||
function f() returns (uint ret) { return g(7) + f(); }
|
||||
function g(uint a) returns (uint ret) { return f(); }
|
||||
function f() returns (uint ret) { return g(7) + f(); }
|
||||
}
|
||||
|
||||
These function calls are translated into simple jumps inside the EVM. This has
|
||||
@ -53,12 +53,14 @@ When calling functions
|
||||
of other contracts, the amount of Wei sent with the call and the gas can be specified::
|
||||
|
||||
contract InfoFeed {
|
||||
function info() returns (uint ret) { return 42; }
|
||||
function info() returns (uint ret) { return 42; }
|
||||
}
|
||||
|
||||
|
||||
contract Consumer {
|
||||
InfoFeed feed;
|
||||
function setFeed(address addr) { feed = InfoFeed(addr); }
|
||||
function callFeed() { feed.info.value(10).gas(800)(); }
|
||||
InfoFeed feed;
|
||||
function setFeed(address addr) { feed = InfoFeed(addr); }
|
||||
function callFeed() { feed.info.value(10).gas(800)(); }
|
||||
}
|
||||
|
||||
Note that the expression `InfoFeed(addr)` performs an explicit type conversion stating
|
||||
@ -76,15 +78,17 @@ of unused parameters (especially return parameters) can be omitted.
|
||||
::
|
||||
|
||||
contract c {
|
||||
function f(uint key, uint value) { ... }
|
||||
function g() {
|
||||
// named arguments
|
||||
f({value: 2, key: 3});
|
||||
}
|
||||
// omitted parameters
|
||||
function func(uint k, uint) returns(uint) {
|
||||
return k;
|
||||
}
|
||||
function f(uint key, uint value) { ... }
|
||||
|
||||
function g() {
|
||||
// named arguments
|
||||
f({value: 2, key: 3});
|
||||
}
|
||||
|
||||
// omitted parameters
|
||||
function func(uint k, uint) returns(uint) {
|
||||
return k;
|
||||
}
|
||||
}
|
||||
|
||||
Order of Evaluation of Expressions
|
||||
@ -109,29 +113,31 @@ Destructuring Assignments and Returning Multiple Values
|
||||
Solidity internally allows tuple types, i.e. a list of objects of potentially different types whose size is a constant at compile-time. Those tuples can be used to return multiple values at the same time and also assign them to multiple variables (or LValues in general) at the same time::
|
||||
|
||||
contract C {
|
||||
uint[] data;
|
||||
function f() returns (uint, bool, uint) {
|
||||
return (7, true, 2);
|
||||
}
|
||||
function g() {
|
||||
// Declares and assigns the variables. Specifying the type explicitly is not possible.
|
||||
var (x, b, y) = f();
|
||||
// Assigns to a pre-existing variable.
|
||||
(x, y) = (2, 7);
|
||||
// Common trick to swap values -- does not work for non-value storage types.
|
||||
(x, y) = (y, x);
|
||||
// Components can be left out (also for variable declarations).
|
||||
// If the tuple ends in an empty component,
|
||||
// the rest of the values are discarded.
|
||||
(data.length,) = f(); // Sets the length to 7
|
||||
// The same can be done on the left side.
|
||||
(,data[3]) = f(); // Sets data[3] to 2
|
||||
// Components can only be left out at the left-hand-side of assignments, with
|
||||
// one exception:
|
||||
(x,) = (1,);
|
||||
// (1,) is the only way to specify a 1-component tuple, because (1) is
|
||||
// equivalent to 1.
|
||||
}
|
||||
uint[] data;
|
||||
|
||||
function f() returns (uint, bool, uint) {
|
||||
return (7, true, 2);
|
||||
}
|
||||
|
||||
function g() {
|
||||
// Declares and assigns the variables. Specifying the type explicitly is not possible.
|
||||
var (x, b, y) = f();
|
||||
// Assigns to a pre-existing variable.
|
||||
(x, y) = (2, 7);
|
||||
// Common trick to swap values -- does not work for non-value storage types.
|
||||
(x, y) = (y, x);
|
||||
// Components can be left out (also for variable declarations).
|
||||
// If the tuple ends in an empty component,
|
||||
// the rest of the values are discarded.
|
||||
(data.length,) = f(); // Sets the length to 7
|
||||
// The same can be done on the left side.
|
||||
(,data[3]) = f(); // Sets data[3] to 2
|
||||
// Components can only be left out at the left-hand-side of assignments, with
|
||||
// one exception:
|
||||
(x,) = (1,);
|
||||
// (1,) is the only way to specify a 1-component tuple, because (1) is
|
||||
// equivalent to 1.
|
||||
}
|
||||
}
|
||||
|
||||
Complications for Arrays and Structs
|
||||
@ -210,7 +216,7 @@ In the following example, we show how `throw` can be used to easily revert an Et
|
||||
|
||||
contract Sharer {
|
||||
function sendHalf(address addr) returns (uint balance) {
|
||||
if (!addr.send(msg.value/2))
|
||||
if (!addr.send(msg.value / 2))
|
||||
throw; // also reverts the transfer to Sharer
|
||||
return this.balance;
|
||||
}
|
||||
@ -244,8 +250,8 @@ arising when writing manual assembly by the following features:
|
||||
We now want to describe the inline assembly language in detail.
|
||||
|
||||
.. warning::
|
||||
Inline assembly is still a relatively new feature and might change if it does not prove useful,
|
||||
so please try to keep up to date.
|
||||
Inline assembly is still a relatively new feature and might change if it does not prove useful,
|
||||
so please try to keep up to date.
|
||||
|
||||
Example
|
||||
-------
|
||||
@ -256,23 +262,23 @@ idea is that assembly libraries will be used to enhance the language in such way
|
||||
|
||||
.. code::
|
||||
|
||||
library GetCode {
|
||||
function at(address _addr) returns (bytes o_code) {
|
||||
assembly {
|
||||
// retrieve the size of the code, this needs assembly
|
||||
let size := extcodesize(_addr)
|
||||
// allocate output byte array - this could also be done without assembly
|
||||
// by using o_code = new bytes(size)
|
||||
o_code := mload(0x40)
|
||||
// new "memory end" including padding
|
||||
mstore(0x40, add(o_code, and(add(add(size, 0x20), 0x1f), not(0x1f))))
|
||||
// store length in memory
|
||||
mstore(o_code, size)
|
||||
// actually retrieve the code, this needs assembly
|
||||
extcodecopy(_addr, add(o_code, 0x20), 0, size)
|
||||
}
|
||||
}
|
||||
}
|
||||
library GetCode {
|
||||
function at(address _addr) returns (bytes o_code) {
|
||||
assembly {
|
||||
// retrieve the size of the code, this needs assembly
|
||||
let size := extcodesize(_addr)
|
||||
// allocate output byte array - this could also be done without assembly
|
||||
// by using o_code = new bytes(size)
|
||||
o_code := mload(0x40)
|
||||
// new "memory end" including padding
|
||||
mstore(0x40, add(o_code, and(add(add(size, 0x20), 0x1f), not(0x1f))))
|
||||
// store length in memory
|
||||
mstore(o_code, size)
|
||||
// actually retrieve the code, this needs assembly
|
||||
extcodecopy(_addr, add(o_code, 0x20), 0, size)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Inline assemmbly could also be beneficial in cases where the optimizer fails to produce
|
||||
efficient code. Please be aware that assembly is much more difficult to write because
|
||||
@ -281,21 +287,25 @@ you really know what you are doing.
|
||||
|
||||
.. code::
|
||||
|
||||
library VectorSum {
|
||||
// This function is less efficient because the optimizer currently fails to
|
||||
// remove the bounds checks in array access.
|
||||
function sumSolidity(uint[] _data) returns (uint o_sum) {
|
||||
for (uint i = 0; i < _data.length; ++i)
|
||||
o_sum += _data[i];
|
||||
}
|
||||
// We know that we only access the array in bounds, so we can avoid the check.
|
||||
// 0x20 needs to be added to an array because the first slot contains the
|
||||
// array length.
|
||||
function sumAsm(uint[] _data) returns (uint o_sum) {
|
||||
for (uint i = 0; i < _data.length; ++i)
|
||||
assembly { o_sum := mload(add(add(_data, 0x20), i)) }
|
||||
}
|
||||
}
|
||||
library VectorSum {
|
||||
// This function is less efficient because the optimizer currently fails to
|
||||
// remove the bounds checks in array access.
|
||||
function sumSolidity(uint[] _data) returns (uint o_sum) {
|
||||
for (uint i = 0; i < _data.length; ++i)
|
||||
o_sum += _data[i];
|
||||
}
|
||||
|
||||
// We know that we only access the array in bounds, so we can avoid the check.
|
||||
// 0x20 needs to be added to an array because the first slot contains the
|
||||
// array length.
|
||||
function sumAsm(uint[] _data) returns (uint o_sum) {
|
||||
for (uint i = 0; i < _data.length; ++i) {
|
||||
assembly {
|
||||
o_sum := mload(add(add(_data, 0x20), i))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Syntax
|
||||
------
|
||||
@ -330,147 +340,147 @@ In the following, `mem[a...b)` signifies the bytes of memory starting at positio
|
||||
|
||||
The opcodes `pushi` and `jumpdest` cannot be used directly.
|
||||
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| stop + `-` | stop execution, identical to return(0,0) |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| add(x, y) | | x + y |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| sub(x, y) | | x - y |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| mul(x, y) | | x * y |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| div(x, y) | | x / y |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| sdiv(x, y) | | x / y, for signed numbers in two's complement |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| mod(x, y) | | x % y |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| smod(x, y) | | x % y, for signed numbers in two's complement |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| exp(x, y) | | x to the power of y |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| not(x) | | ~x, every bit of x is negated |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| lt(x, y) | | 1 if x < y, 0 otherwise |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| gt(x, y) | | 1 if x > y, 0 otherwise |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| slt(x, y) | |1 if x < y, 0 otherwise, for signed numbers in two's complement|
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| sgt(x, y) | |1 if x > y, 0 otherwise, for signed numbers in two's complement|
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| eq(x, y) | | 1 if x == y, 0 otherwise |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| iszero(x) | | 1 if x == 0, 0 otherwise |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| and(x, y) | | bitwise and of x and y |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| or(x, y) | | bitwise or of x and y |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| xor(x, y) | | bitwise xor of x and y |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| byte(n, x) | | nth byte of x, where the most significant byte is the 0th byte|
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| addmod(x, y, m) | | (x + y) % m with arbitrary precision arithmetics |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| mulmod(x, y, m) | | (x * y) % m with arbitrary precision arithmetics |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| signextend(i, x) | | sign extend from (i*8+7)th bit counting from least significant|
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| sha3(p, n) | | keccak(mem[p...(p+n))) |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| jump(label) | `-` | jump to label / code position |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| jumpi(label, cond) | `-` | jump to label if cond is nonzero |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| pc | | current position in code |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| pop | `*` | remove topmost stack slot |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| dup1 ... dup16 | | copy ith stack slot to the top (counting from top) |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| swap1 ... swap1 | `*` | swap topmost and ith stack slot below it |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| mload(p) | | mem[p..(p+32)) |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| mstore(p, v) | `-` | mem[p..(p+32)) := v |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| mstore8(p, v) | `-` | mem[p] := v & 0xff - only modifies a single byte |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| sload(p) | | storage[p] |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| sstore(p, v) | `-` | storage[p] := v |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| msize | | size of memory, i.e. largest accessed memory index |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| gas | | gas still available to execution |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| address | | address of the current contract / execution context |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| balance(a) | | wei balance at address a |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| caller | | call sender (excluding delegatecall) |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| callvalue | | wei sent together with the current call |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| calldataload(p) | | call data starting from position p (32 bytes) |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| calldatasize | | size of call data in bytes |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| calldatacopy(t, f, s) | `-` | copy s bytes from calldata at position f to mem at position t |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| codesize | | size of the code of the current contract / execution context |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| codecopy(t, f, s) | `-` | copy s bytes from code at position f to mem at position t |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| extcodesize(a) | | size of the code at address a |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
|extcodecopy(a, t, f, s)| `-` | like codecopy(t, f, s) but take code at address a |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| create(v, p, s) | | create new contract with code mem[p..(p+s)) and send v wei |
|
||||
| | | and return the new address |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| call(g, a, v, in, | | call contract at address a with input mem[in..(in+insize)] |
|
||||
| insize, out, outsize) | | providing g gas and v wei and output area |
|
||||
| | | mem[out..(out+outsize)] returting 1 on error (out of gas) |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| callcode(g, a, v, in, | | identical to call but only use the code from a and stay |
|
||||
| insize, out, outsize) | | in the context of the current contract otherwise |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| delegatecall(g, a, in,| | identical to callcode but also keep `caller` and `callvalue` |
|
||||
| insize, out, outsize) | | |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| return(p, s) | `*` | end execution, return data mem[p..(p+s)) |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| selfdestruct(a) | `*` | end execution, destroy current contract and send funds to a |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| log0(p, s) | `-` | log without topics and data mem[p..(p+s)) |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| log1(p, s, t1) | `-` | log with topic t1 and data mem[p..(p+s)) |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| log2(p, s, t1, t2) | `-` | log with topics t1, t2 and data mem[p..(p+s)) |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| log3(p, s, t1, t2, t3)| `-` | log with topics t1, t2, t3 and data mem[p..(p+s)) |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| log4(p, s, t1, t2, t3,| `-` | log with topics t1, t2, t3, t4 and data mem[p..(p+s)) |
|
||||
| t4) | | |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| origin | | transaction sender |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| gasprice | | gas price of the transaction |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| blockhash(b) | |hash of block nr b - only for last 256 blocks excluding current|
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| coinbase | | current mining beneficiary |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| timestamp | | timestamp of the current block in seconds since the epoch |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| number | | current block number |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| difficulty | | difficulty of the current block |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
| gaslimit | | block gas limit of the current block |
|
||||
+-----------------------+------+---------------------------------------------------------------+
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| stop + `-` | stop execution, identical to return(0,0) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| add(x, y) | | x + y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| sub(x, y) | | x - y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| mul(x, y) | | x * y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| div(x, y) | | x / y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| sdiv(x, y) | | x / y, for signed numbers in two's complement |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| mod(x, y) | | x % y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| smod(x, y) | | x % y, for signed numbers in two's complement |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| exp(x, y) | | x to the power of y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| not(x) | | ~x, every bit of x is negated |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| lt(x, y) | | 1 if x < y, 0 otherwise |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| gt(x, y) | | 1 if x > y, 0 otherwise |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| slt(x, y) | | 1 if x < y, 0 otherwise, for signed numbers in two's complement |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| sgt(x, y) | | 1 if x > y, 0 otherwise, for signed numbers in two's complement |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| eq(x, y) | | 1 if x == y, 0 otherwise |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| iszero(x) | | 1 if x == 0, 0 otherwise |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| and(x, y) | | bitwise and of x and y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| or(x, y) | | bitwise or of x and y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| xor(x, y) | | bitwise xor of x and y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| byte(n, x) | | nth byte of x, where the most significant byte is the 0th byte |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| addmod(x, y, m) | | (x + y) % m with arbitrary precision arithmetics |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| mulmod(x, y, m) | | (x * y) % m with arbitrary precision arithmetics |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| signextend(i, x) | | sign extend from (i*8+7)th bit counting from least significant |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| sha3(p, n) | | keccak(mem[p...(p+n))) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| jump(label) | `-` | jump to label / code position |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| jumpi(label, cond) | `-` | jump to label if cond is nonzero |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| pc | | current position in code |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| pop | `*` | remove topmost stack slot |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| dup1 ... dup16 | | copy ith stack slot to the top (counting from top) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| swap1 ... swap1 | `*` | swap topmost and ith stack slot below it |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| mload(p) | | mem[p..(p+32)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| mstore(p, v) | `-` | mem[p..(p+32)) := v |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| mstore8(p, v) | `-` | mem[p] := v & 0xff - only modifies a single byte |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| sload(p) | | storage[p] |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| sstore(p, v) | `-` | storage[p] := v |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| msize | | size of memory, i.e. largest accessed memory index |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| gas | | gas still available to execution |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| address | | address of the current contract / execution context |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| balance(a) | | wei balance at address a |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| caller | | call sender (excluding delegatecall) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| callvalue | | wei sent together with the current call |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| calldataload(p) | | call data starting from position p (32 bytes) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| calldatasize | | size of call data in bytes |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| calldatacopy(t, f, s) | `-` | copy s bytes from calldata at position f to mem at position t |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| codesize | | size of the code of the current contract / execution context |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| codecopy(t, f, s) | `-` | copy s bytes from code at position f to mem at position t |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| extcodesize(a) | | size of the code at address a |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| extcodecopy(a, t, f, s) | `-` | like codecopy(t, f, s) but take code at address a |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| create(v, p, s) | | create new contract with code mem[p..(p+s)) and send v wei |
|
||||
| | | and return the new address |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| call(g, a, v, in, | | call contract at address a with input mem[in..(in+insize)] |
|
||||
| insize, out, outsize) | | providing g gas and v wei and output area |
|
||||
| | | mem[out..(out+outsize)] returting 1 on error (out of gas) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| callcode(g, a, v, in, | | identical to call but only use the code from a and stay |
|
||||
| insize, out, outsize) | | in the context of the current contract otherwise |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| delegatecall(g, a, in, | | identical to callcode but also keep `caller` and `callvalue` |
|
||||
| insize, out, outsize) | | |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| return(p, s) | `*` | end execution, return data mem[p..(p+s)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| selfdestruct(a) | `*` | end execution, destroy current contract and send funds to a |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| log0(p, s) | `-` | log without topics and data mem[p..(p+s)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| log1(p, s, t1) | `-` | log with topic t1 and data mem[p..(p+s)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| log2(p, s, t1, t2) | `-` | log with topics t1, t2 and data mem[p..(p+s)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| log3(p, s, t1, t2, t3) | `-` | log with topics t1, t2, t3 and data mem[p..(p+s)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| log4(p, s, t1, t2, t3, | `-` | log with topics t1, t2, t3, t4 and data mem[p..(p+s)) |
|
||||
| t4) | | |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| origin | | transaction sender |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| gasprice | | gas price of the transaction |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| blockhash(b) | | hash of block nr b - only for last 256 blocks excluding current |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| coinbase | | current mining beneficiary |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| timestamp | | timestamp of the current block in seconds since the epoch |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| number | | current block number |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| difficulty | | difficulty of the current block |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| gaslimit | | block gas limit of the current block |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
|
||||
Literals
|
||||
--------
|
||||
@ -482,7 +492,7 @@ Strings are stored left-aligned and cannot be longer than 32 bytes.
|
||||
|
||||
.. code::
|
||||
|
||||
assembly { 2 3 add "abc" and }
|
||||
assembly { 2 3 add "abc" and }
|
||||
|
||||
Functional Style
|
||||
-----------------
|
||||
@ -492,7 +502,7 @@ adding `3` to the contents in memory at position `0x80` would be
|
||||
|
||||
.. code::
|
||||
|
||||
3 0x80 mload add 0x80 mstore
|
||||
3 0x80 mload add 0x80 mstore
|
||||
|
||||
As it is often hard to see what the actual arguments for certain opcodes are,
|
||||
Solidity inline assembly also provides a "functional style" notation where the same code
|
||||
@ -500,7 +510,7 @@ would be written as follows
|
||||
|
||||
.. code::
|
||||
|
||||
mstore(0x80, add(mload(0x80), 3))
|
||||
mstore(0x80, add(mload(0x80), 3))
|
||||
|
||||
Functional style and instructional style can be mixed, but any opcode inside a
|
||||
functional style expression has to return exactly one stack slot (most of the opcodes do).
|
||||
@ -531,18 +541,18 @@ It is planned that the stack height changes can be specified in inline assembly.
|
||||
|
||||
.. code::
|
||||
|
||||
contract c {
|
||||
uint b;
|
||||
function f(uint x) returns (uint r) {
|
||||
assembly {
|
||||
b pop // remove the offset, we know it is zero
|
||||
sload
|
||||
x
|
||||
mul
|
||||
=: r // assign to return variable r
|
||||
}
|
||||
}
|
||||
}
|
||||
contract c {
|
||||
uint b;
|
||||
function f(uint x) returns (uint r) {
|
||||
assembly {
|
||||
b pop // remove the offset, we know it is zero
|
||||
sload
|
||||
x
|
||||
mul
|
||||
=: r // assign to return variable r
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Labels
|
||||
------
|
||||
@ -553,19 +563,19 @@ jumps easier. The following code computes an element in the Fibonacci series.
|
||||
|
||||
.. code::
|
||||
|
||||
{
|
||||
let n := calldataload(4)
|
||||
let a := 1
|
||||
let b := a
|
||||
loop:
|
||||
jumpi(loopend, eq(n, 0))
|
||||
a add swap1
|
||||
n := sub(n, 1)
|
||||
jump(loop)
|
||||
loopend:
|
||||
mstore(0, a)
|
||||
return(0, 0x20)
|
||||
}
|
||||
{
|
||||
let n := calldataload(4)
|
||||
let a := 1
|
||||
let b := a
|
||||
loop:
|
||||
jumpi(loopend, eq(n, 0))
|
||||
a add swap1
|
||||
n := sub(n, 1)
|
||||
jump(loop)
|
||||
loopend:
|
||||
mstore(0, a)
|
||||
return(0, 0x20)
|
||||
}
|
||||
|
||||
Please note that automatically accessing stack variables can only work if the
|
||||
assembler knows the current stack height. This fails to work if the jump source
|
||||
@ -578,19 +588,19 @@ will have a wrong impression about the stack height at label `two`:
|
||||
|
||||
.. code::
|
||||
|
||||
{
|
||||
jump(two)
|
||||
one:
|
||||
// Here the stack height is 1 (because we pushed 7),
|
||||
// but the assembler thinks it is 0 because it reads
|
||||
// from top to bottom.
|
||||
// Accessing stack variables here will lead to errors.
|
||||
jump(three)
|
||||
two:
|
||||
7 // push something onto the stack
|
||||
jump(one)
|
||||
three:
|
||||
}
|
||||
{
|
||||
jump(two)
|
||||
one:
|
||||
// Here the stack height is 1 (because we pushed 7),
|
||||
// but the assembler thinks it is 0 because it reads
|
||||
// from top to bottom.
|
||||
// Accessing stack variables here will lead to errors.
|
||||
jump(three)
|
||||
two:
|
||||
7 // push something onto the stack
|
||||
jump(one)
|
||||
three:
|
||||
}
|
||||
|
||||
|
||||
Declaring Assembly-Local Variables
|
||||
@ -605,19 +615,19 @@ be just `0`, but it can also be a complex functional-style expression.
|
||||
|
||||
.. code::
|
||||
|
||||
contract c {
|
||||
function f(uint x) returns (uint b) {
|
||||
assembly {
|
||||
let v := add(x, 1)
|
||||
mstore(0x80, v)
|
||||
{
|
||||
let y := add(sload(v), 1)
|
||||
b := y
|
||||
} // y is "deallocated" here
|
||||
b := add(b, v)
|
||||
} // v is "deallocated" here
|
||||
}
|
||||
}
|
||||
contract c {
|
||||
function f(uint x) returns (uint b) {
|
||||
assembly {
|
||||
let v := add(x, 1)
|
||||
mstore(0x80, v)
|
||||
{
|
||||
let y := add(sload(v), 1)
|
||||
b := y
|
||||
} // y is "deallocated" here
|
||||
b := add(b, v)
|
||||
} // v is "deallocated" here
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Assignments
|
||||
@ -635,12 +645,12 @@ For both ways, the colon points to the name of the variable.
|
||||
|
||||
.. code::
|
||||
|
||||
assembly {
|
||||
let v := 0 // functional-style assignment as part of variable declaration
|
||||
let g := add(v, 2)
|
||||
sload(10)
|
||||
=: v // instruction style assignment, puts the result of sload(10) into v
|
||||
}
|
||||
assembly {
|
||||
let v := 0 // functional-style assignment as part of variable declaration
|
||||
let g := add(v, 2)
|
||||
sload(10)
|
||||
=: v // instruction style assignment, puts the result of sload(10) into v
|
||||
}
|
||||
|
||||
|
||||
Things to Avoid
|
||||
@ -676,6 +686,6 @@ arrays are pointers to memory arrays. The length of a dynamic array is stored at
|
||||
first slot of the array and then only the array elements follow.
|
||||
|
||||
.. warning::
|
||||
Statically-sized memory arrays do not have a length field, but it will be added soon
|
||||
to allow better convertibility between statically- and dynamically-sized arrays, so
|
||||
please do not rely on that.
|
||||
Statically-sized memory arrays do not have a length field, but it will be added soon
|
||||
to allow better convertibility between statically- and dynamically-sized arrays, so
|
||||
please do not rely on that.
|
||||
|
@ -692,11 +692,11 @@ What happens to a struct's mapping when copying over a struct?
|
||||
|
||||
This is a very interesting question. Suppose that we have a contract field set up like such::
|
||||
|
||||
struct user{
|
||||
struct user {
|
||||
mapping(string => address) usedContracts;
|
||||
}
|
||||
|
||||
function somefunction{
|
||||
function somefunction {
|
||||
user user1;
|
||||
user1.usedContracts["Hello"] = "World";
|
||||
user user2 = user1;
|
||||
@ -713,7 +713,10 @@ In the case of a `contract A` calling a new instance of `contract B`, parenthese
|
||||
`new B` because `B.value` would refer to a member of `B` called `value`.
|
||||
You will need to make sure that you have both contracts aware of each other's presence.
|
||||
In this example::
|
||||
|
||||
contract B {}
|
||||
|
||||
|
||||
contract A {
|
||||
address child;
|
||||
|
||||
@ -757,21 +760,21 @@ Sure. Take care that if you cross the memory / storage boundary,
|
||||
independent copies will be created::
|
||||
|
||||
contract C {
|
||||
uint[20] x;
|
||||
uint[20] x;
|
||||
|
||||
function f() {
|
||||
g(x);
|
||||
h(x);
|
||||
}
|
||||
function f() {
|
||||
g(x);
|
||||
h(x);
|
||||
}
|
||||
|
||||
function g(uint[20] y) {
|
||||
y[2] = 3;
|
||||
}
|
||||
function g(uint[20] y) {
|
||||
y[2] = 3;
|
||||
}
|
||||
|
||||
function h(uint[20] storage y) {
|
||||
y[3] = 4;
|
||||
}
|
||||
}
|
||||
function h(uint[20] storage y) {
|
||||
y[3] = 4;
|
||||
}
|
||||
}
|
||||
|
||||
The call to `g(x)` will not have an effect on `x` because it needs
|
||||
to create an independent copy of the storage value in memory
|
||||
|
@ -20,9 +20,11 @@ Storage
|
||||
|
||||
contract SimpleStorage {
|
||||
uint storedData;
|
||||
|
||||
function set(uint x) {
|
||||
storedData = x;
|
||||
}
|
||||
|
||||
function get() constant returns (uint retVal) {
|
||||
return storedData;
|
||||
}
|
||||
@ -88,10 +90,12 @@ registering with username and password - all you need is an Ethereum keypair.
|
||||
function Coin() {
|
||||
minter = msg.sender;
|
||||
}
|
||||
|
||||
function mint(address receiver, uint amount) {
|
||||
if (msg.sender != minter) return;
|
||||
balances[receiver] += amount;
|
||||
}
|
||||
|
||||
function send(address receiver, uint amount) {
|
||||
if (balances[msg.sender] < amount) return;
|
||||
balances[msg.sender] -= amount;
|
||||
|
@ -51,9 +51,11 @@ There are some types in Solidity's type system that have no counterpart in the s
|
||||
if (useB) f = b;
|
||||
return f(x);
|
||||
}
|
||||
|
||||
function a(uint x) returns (uint z) {
|
||||
return x * x;
|
||||
}
|
||||
|
||||
function b(uint x) returns (uint z) {
|
||||
return 2 * x;
|
||||
}
|
||||
|
@ -292,7 +292,7 @@ activate themselves.
|
||||
}
|
||||
|
||||
Blind Auction
|
||||
================
|
||||
=============
|
||||
|
||||
The previous open auction is extended to a blind auction
|
||||
in the following. The advantage of a blind auction is
|
||||
|
@ -21,8 +21,8 @@ State variables are values which are permanently stored in contract storage.
|
||||
::
|
||||
|
||||
contract SimpleStorage {
|
||||
uint storedData; // State variable
|
||||
// ...
|
||||
uint storedData; // State variable
|
||||
// ...
|
||||
}
|
||||
|
||||
See the :ref:`types` section for valid state variable types and
|
||||
@ -39,9 +39,9 @@ Functions are the executable units of code within a contract.
|
||||
::
|
||||
|
||||
contract SimpleAuction {
|
||||
function bid() { // Function
|
||||
// ...
|
||||
}
|
||||
function bid() { // Function
|
||||
// ...
|
||||
}
|
||||
}
|
||||
|
||||
:ref:`function-calls` can happen internally or externally
|
||||
@ -59,16 +59,16 @@ Function modifiers can be used to amend the semantics of functions in a declarat
|
||||
::
|
||||
|
||||
contract Purchase {
|
||||
address public seller;
|
||||
address public seller;
|
||||
|
||||
modifier onlySeller() { // Modifier
|
||||
if (msg.sender != seller) throw;
|
||||
_
|
||||
}
|
||||
modifier onlySeller() { // Modifier
|
||||
if (msg.sender != seller) throw;
|
||||
_
|
||||
}
|
||||
|
||||
function abort() onlySeller { // Modifier usage
|
||||
// ...
|
||||
}
|
||||
function abort() onlySeller { // Modifier usage
|
||||
// ...
|
||||
}
|
||||
}
|
||||
|
||||
.. _structure-events:
|
||||
@ -81,12 +81,12 @@ Events are convenience interfaces with the EVM logging facilities.
|
||||
::
|
||||
|
||||
contract SimpleAuction {
|
||||
event HighestBidIncreased(address bidder, uint amount); // Event
|
||||
event HighestBidIncreased(address bidder, uint amount); // Event
|
||||
|
||||
function bid() {
|
||||
// ...
|
||||
HighestBidIncreased(msg.sender, msg.value); // Triggering event
|
||||
}
|
||||
function bid() {
|
||||
// ...
|
||||
HighestBidIncreased(msg.sender, msg.value); // Triggering event
|
||||
}
|
||||
}
|
||||
|
||||
See :ref:`events` in contracts section for information on how events are declared
|
||||
@ -103,12 +103,12 @@ Structs are custom defined types that can group several variables (see
|
||||
::
|
||||
|
||||
contract Ballot {
|
||||
struct Voter { // Struct
|
||||
uint weight;
|
||||
bool voted;
|
||||
address delegate;
|
||||
uint vote;
|
||||
}
|
||||
struct Voter { // Struct
|
||||
uint weight;
|
||||
bool voted;
|
||||
address delegate;
|
||||
uint vote;
|
||||
}
|
||||
}
|
||||
|
||||
.. _structure-enum-types:
|
||||
@ -122,5 +122,5 @@ Enums can be used to create custom types with a finite set of values (see
|
||||
::
|
||||
|
||||
contract Purchase {
|
||||
enum State { Created, Locked, Inactive } // Enum
|
||||
enum State { Created, Locked, Inactive } // Enum
|
||||
}
|
||||
|
258
docs/types.rst
258
docs/types.rst
@ -171,21 +171,21 @@ to and from all integer types but implicit conversion is not allowed.
|
||||
enum ActionChoices { GoLeft, GoRight, GoStraight, SitStill }
|
||||
ActionChoices choice;
|
||||
ActionChoices constant defaultChoice = ActionChoices.GoStraight;
|
||||
function setGoStraight()
|
||||
{
|
||||
|
||||
function setGoStraight() {
|
||||
choice = ActionChoices.GoStraight;
|
||||
}
|
||||
|
||||
// Since enum types are not part of the ABI, the signature of "getChoice"
|
||||
// will automatically be changed to "getChoice() returns (uint8)"
|
||||
// for all matters external to Solidity. The integer type used is just
|
||||
// large enough to hold all enum values, i.e. if you have more values,
|
||||
// `uint16` will be used and so on.
|
||||
function getChoice() returns (ActionChoices)
|
||||
{
|
||||
function getChoice() returns (ActionChoices) {
|
||||
return choice;
|
||||
}
|
||||
function getDefaultChoice() returns (uint)
|
||||
{
|
||||
|
||||
function getDefaultChoice() returns (uint) {
|
||||
return uint(defaultChoice);
|
||||
}
|
||||
}
|
||||
@ -226,26 +226,28 @@ memory-stored reference type does not create a copy.
|
||||
|
||||
::
|
||||
|
||||
contract c {
|
||||
uint[] x; // the data location of x is storage
|
||||
// the data location of memoryArray is memory
|
||||
function f(uint[] memoryArray) {
|
||||
x = memoryArray; // works, copies the whole array to storage
|
||||
var y = x; // works, assigns a pointer, data location of y is storage
|
||||
y[7]; // fine, returns the 8th element
|
||||
y.length = 2; // fine, modifies x through y
|
||||
delete x; // fine, clears the array, also modifies y
|
||||
// The following does not work; it would need to create a new temporary /
|
||||
// unnamed array in storage, but storage is "statically" allocated:
|
||||
// y = memoryArray;
|
||||
// This does not work either, since it would "reset" the pointer, but there
|
||||
// is no sensible location it could point to.
|
||||
// delete y;
|
||||
g(x); // calls g, handing over a reference to x
|
||||
h(x); // calls h and creates an independent, temporary copy in memory
|
||||
}
|
||||
function g(uint[] storage storageArray) internal {}
|
||||
function h(uint[] memoryArray) {}
|
||||
contract C {
|
||||
uint[] x; // the data location of x is storage
|
||||
|
||||
// the data location of memoryArray is memory
|
||||
function f(uint[] memoryArray) {
|
||||
x = memoryArray; // works, copies the whole array to storage
|
||||
var y = x; // works, assigns a pointer, data location of y is storage
|
||||
y[7]; // fine, returns the 8th element
|
||||
y.length = 2; // fine, modifies x through y
|
||||
delete x; // fine, clears the array, also modifies y
|
||||
// The following does not work; it would need to create a new temporary /
|
||||
// unnamed array in storage, but storage is "statically" allocated:
|
||||
// y = memoryArray;
|
||||
// This does not work either, since it would "reset" the pointer, but there
|
||||
// is no sensible location it could point to.
|
||||
// delete y;
|
||||
g(x); // calls g, handing over a reference to x
|
||||
h(x); // calls h and creates an independent, temporary copy in memory
|
||||
}
|
||||
|
||||
function g(uint[] storage storageArray) internal {}
|
||||
function h(uint[] memoryArray) {}
|
||||
}
|
||||
|
||||
Summary
|
||||
@ -303,12 +305,12 @@ the `.length` member.
|
||||
::
|
||||
|
||||
contract C {
|
||||
function f(uint len) {
|
||||
uint[] memory a = new uint[](7);
|
||||
bytes memory b = new bytes(len);
|
||||
// Here we have a.length == 7 and b.length == len
|
||||
a[6] = 8;
|
||||
}
|
||||
function f(uint len) {
|
||||
uint[] memory a = new uint[](7);
|
||||
bytes memory b = new bytes(len);
|
||||
// Here we have a.length == 7 and b.length == len
|
||||
a[6] = 8;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -339,51 +341,59 @@ Members
|
||||
::
|
||||
|
||||
contract ArrayContract {
|
||||
uint[2**20] m_aLotOfIntegers;
|
||||
// Note that the following is not a pair of arrays but an array of pairs.
|
||||
bool[2][] m_pairsOfFlags;
|
||||
// newPairs is stored in memory - the default for function arguments
|
||||
function setAllFlagPairs(bool[2][] newPairs) {
|
||||
// assignment to a storage array replaces the complete array
|
||||
m_pairsOfFlags = newPairs;
|
||||
}
|
||||
function setFlagPair(uint index, bool flagA, bool flagB) {
|
||||
// access to a non-existing index will throw an exception
|
||||
m_pairsOfFlags[index][0] = flagA;
|
||||
m_pairsOfFlags[index][1] = flagB;
|
||||
}
|
||||
function changeFlagArraySize(uint newSize) {
|
||||
// if the new size is smaller, removed array elements will be cleared
|
||||
m_pairsOfFlags.length = newSize;
|
||||
}
|
||||
function clear() {
|
||||
// these clear the arrays completely
|
||||
delete m_pairsOfFlags;
|
||||
delete m_aLotOfIntegers;
|
||||
// identical effect here
|
||||
m_pairsOfFlags.length = 0;
|
||||
}
|
||||
bytes m_byteData;
|
||||
function byteArrays(bytes data) {
|
||||
// byte arrays ("bytes") are different as they are stored without padding,
|
||||
// but can be treated identical to "uint8[]"
|
||||
m_byteData = data;
|
||||
m_byteData.length += 7;
|
||||
m_byteData[3] = 8;
|
||||
delete m_byteData[2];
|
||||
}
|
||||
function addFlag(bool[2] flag) returns (uint) {
|
||||
return m_pairsOfFlags.push(flag);
|
||||
}
|
||||
function createMemoryArray(uint size) returns (bytes) {
|
||||
// Dynamic memory arrays are created using `new`:
|
||||
uint[2][] memory arrayOfPairs = new uint[2][](size);
|
||||
// Create a dynamic byte array:
|
||||
bytes memory b = new bytes(200);
|
||||
for (uint i = 0; i < b.length; i++)
|
||||
b[i] = byte(i);
|
||||
return b;
|
||||
}
|
||||
uint[2**20] m_aLotOfIntegers;
|
||||
// Note that the following is not a pair of arrays but an array of pairs.
|
||||
bool[2][] m_pairsOfFlags;
|
||||
// newPairs is stored in memory - the default for function arguments
|
||||
|
||||
function setAllFlagPairs(bool[2][] newPairs) {
|
||||
// assignment to a storage array replaces the complete array
|
||||
m_pairsOfFlags = newPairs;
|
||||
}
|
||||
|
||||
function setFlagPair(uint index, bool flagA, bool flagB) {
|
||||
// access to a non-existing index will throw an exception
|
||||
m_pairsOfFlags[index][0] = flagA;
|
||||
m_pairsOfFlags[index][1] = flagB;
|
||||
}
|
||||
|
||||
function changeFlagArraySize(uint newSize) {
|
||||
// if the new size is smaller, removed array elements will be cleared
|
||||
m_pairsOfFlags.length = newSize;
|
||||
}
|
||||
|
||||
function clear() {
|
||||
// these clear the arrays completely
|
||||
delete m_pairsOfFlags;
|
||||
delete m_aLotOfIntegers;
|
||||
// identical effect here
|
||||
m_pairsOfFlags.length = 0;
|
||||
}
|
||||
|
||||
bytes m_byteData;
|
||||
|
||||
function byteArrays(bytes data) {
|
||||
// byte arrays ("bytes") are different as they are stored without padding,
|
||||
// but can be treated identical to "uint8[]"
|
||||
m_byteData = data;
|
||||
m_byteData.length += 7;
|
||||
m_byteData[3] = 8;
|
||||
delete m_byteData[2];
|
||||
}
|
||||
|
||||
function addFlag(bool[2] flag) returns (uint) {
|
||||
return m_pairsOfFlags.push(flag);
|
||||
}
|
||||
|
||||
function createMemoryArray(uint size) returns (bytes) {
|
||||
// Dynamic memory arrays are created using `new`:
|
||||
uint[2][] memory arrayOfPairs = new uint[2][](size);
|
||||
// Create a dynamic byte array:
|
||||
bytes memory b = new bytes(200);
|
||||
for (uint i = 0; i < b.length; i++)
|
||||
b[i] = byte(i);
|
||||
return b;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -400,41 +410,46 @@ shown in the following example:
|
||||
::
|
||||
|
||||
contract CrowdFunding {
|
||||
// Defines a new type with two fields.
|
||||
struct Funder {
|
||||
address addr;
|
||||
uint amount;
|
||||
}
|
||||
struct Campaign {
|
||||
address beneficiary;
|
||||
uint fundingGoal;
|
||||
uint numFunders;
|
||||
uint amount;
|
||||
mapping (uint => Funder) funders;
|
||||
}
|
||||
uint numCampaigns;
|
||||
mapping (uint => Campaign) campaigns;
|
||||
function newCampaign(address beneficiary, uint goal) returns (uint campaignID) {
|
||||
campaignID = numCampaigns++; // campaignID is return variable
|
||||
// Creates new struct and saves in storage. We leave out the mapping type.
|
||||
campaigns[campaignID] = Campaign(beneficiary, goal, 0, 0);
|
||||
}
|
||||
function contribute(uint campaignID) {
|
||||
Campaign c = campaigns[campaignID];
|
||||
// Defines a new type with two fields.
|
||||
struct Funder {
|
||||
address addr;
|
||||
uint amount;
|
||||
}
|
||||
|
||||
struct Campaign {
|
||||
address beneficiary;
|
||||
uint fundingGoal;
|
||||
uint numFunders;
|
||||
uint amount;
|
||||
mapping (uint => Funder) funders;
|
||||
}
|
||||
|
||||
uint numCampaigns;
|
||||
mapping (uint => Campaign) campaigns;
|
||||
|
||||
function newCampaign(address beneficiary, uint goal) returns (uint campaignID) {
|
||||
campaignID = numCampaigns++; // campaignID is return variable
|
||||
// Creates new struct and saves in storage. We leave out the mapping type.
|
||||
campaigns[campaignID] = Campaign(beneficiary, goal, 0, 0);
|
||||
}
|
||||
|
||||
function contribute(uint campaignID) {
|
||||
Campaign c = campaigns[campaignID];
|
||||
// Creates a new temporary memory struct, initialised with the given values
|
||||
// and copies it over to storage.
|
||||
// Note that you can also use Funder(msg.sender, msg.value) to initialise.
|
||||
c.funders[c.numFunders++] = Funder({addr: msg.sender, amount: msg.value});
|
||||
c.amount += msg.value;
|
||||
}
|
||||
function checkGoalReached(uint campaignID) returns (bool reached) {
|
||||
Campaign c = campaigns[campaignID];
|
||||
if (c.amount < c.fundingGoal)
|
||||
return false;
|
||||
c.beneficiary.send(c.amount);
|
||||
c.amount = 0;
|
||||
return true;
|
||||
}
|
||||
c.funders[c.numFunders++] = Funder({addr: msg.sender, amount: msg.value});
|
||||
c.amount += msg.value;
|
||||
}
|
||||
|
||||
function checkGoalReached(uint campaignID) returns (bool reached) {
|
||||
Campaign c = campaigns[campaignID];
|
||||
if (c.amount < c.fundingGoal)
|
||||
return false;
|
||||
c.beneficiary.send(c.amount);
|
||||
c.amount = 0;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
The contract does not provide the full functionality of a crowdfunding
|
||||
@ -495,18 +510,19 @@ It is important to note that `delete a` really behaves like an assignment to `a`
|
||||
::
|
||||
|
||||
contract DeleteExample {
|
||||
uint data;
|
||||
uint[] dataArray;
|
||||
function f() {
|
||||
uint x = data;
|
||||
delete x; // sets x to 0, does not affect data
|
||||
delete data; // sets data to 0, does not affect x which still holds a copy
|
||||
uint[] y = dataArray;
|
||||
delete dataArray; // this sets dataArray.length to zero, but as uint[] is a complex object, also
|
||||
// y is affected which is an alias to the storage object
|
||||
// On the other hand: "delete y" is not valid, as assignments to local variables
|
||||
// referencing storage objects can only be made from existing storage objects.
|
||||
}
|
||||
uint data;
|
||||
uint[] dataArray;
|
||||
|
||||
function f() {
|
||||
uint x = data;
|
||||
delete x; // sets x to 0, does not affect data
|
||||
delete data; // sets data to 0, does not affect x which still holds a copy
|
||||
uint[] y = dataArray;
|
||||
delete dataArray; // this sets dataArray.length to zero, but as uint[] is a complex object, also
|
||||
// y is affected which is an alias to the storage object
|
||||
// On the other hand: "delete y" is not valid, as assignments to local variables
|
||||
// referencing storage objects can only be made from existing storage objects.
|
||||
}
|
||||
}
|
||||
|
||||
.. index:: ! type;conversion, ! cast
|
||||
|
@ -35,7 +35,7 @@ These suffixes cannot be applied to variables. If you want to
|
||||
interpret some input variable in e.g. days, you can do it in the following way::
|
||||
|
||||
function f(uint start, uint daysAfter) {
|
||||
if (now >= start + daysAfter * 1 days) { ... }
|
||||
if (now >= start + daysAfter * 1 days) { ... }
|
||||
}
|
||||
|
||||
Special Variables and Functions
|
||||
|
Loading…
Reference in New Issue
Block a user