mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
Simplex with bounds.
This commit is contained in:
parent
0592b6d86a
commit
e2eeed6af1
@ -76,7 +76,11 @@ struct Tableau
|
||||
|
||||
string toString(rational const& _x)
|
||||
{
|
||||
if (_x.denominator() == 1)
|
||||
if (_x == bigint(1) << 256)
|
||||
return "2**256";
|
||||
else if (_x == (bigint(1) << 256) - 1)
|
||||
return "2**256-1";
|
||||
else if (_x.denominator() == 1)
|
||||
return ::toString(_x.numerator());
|
||||
else
|
||||
return ::toString(_x.numerator()) + "/" + ::toString(_x.denominator());
|
||||
@ -377,6 +381,225 @@ pair<LPResult, vector<rational>> simplex(vector<Constraint> _constraints, Linear
|
||||
return make_pair(result, solutionVector(tableau));
|
||||
}
|
||||
|
||||
/// Introduces a new variable for each now and returns
|
||||
/// a map from the indices of those variables
|
||||
/// to the constraint they correspond to.
|
||||
map<size_t, size_t> normalizeForSolvingWithBounds(SolvingState& _state)
|
||||
{
|
||||
size_t varsNeeded = _state.constraints.size();
|
||||
/*
|
||||
for (Constraint& c: _state.constraints)
|
||||
if (!c.equality || c.data[0])
|
||||
varsNeeded++;
|
||||
*/
|
||||
|
||||
map<size_t, size_t> basicVariables;
|
||||
size_t row = 0;
|
||||
for (Constraint& c: _state.constraints)
|
||||
{
|
||||
c.data.resize(_state.variableNames.size() + varsNeeded);
|
||||
/*
|
||||
if (c.equality && !c.data[0])
|
||||
continue;
|
||||
*/
|
||||
|
||||
// ax + by <= c
|
||||
// -> ax + by - s = 0, 0 <= s <= c
|
||||
// ax + by = c
|
||||
// -> ax + by - s = 0, c <= s <= c
|
||||
size_t newVarIndex = _state.variableNames.size();
|
||||
basicVariables[newVarIndex] = row++;
|
||||
solAssert(_state.variableNames.size() == _state.bounds.size());
|
||||
// TODO name needed unique?
|
||||
_state.variableNames.emplace_back("_s" + to_string(newVarIndex));
|
||||
_state.bounds.emplace_back(SolvingState::Bounds{
|
||||
{c.equality ? rational{c.data[0]} : rational{0}},
|
||||
{c.data[0]},
|
||||
{},
|
||||
{}
|
||||
});
|
||||
c.equality = true;
|
||||
solAssert(c.data.size() > newVarIndex);
|
||||
c.data[newVarIndex] = -1;
|
||||
c.data[0] = 0;
|
||||
}
|
||||
|
||||
return basicVariables;
|
||||
}
|
||||
|
||||
void withBoundsUpdate(
|
||||
SolvingState& _state,
|
||||
vector<rational>& _assignments,
|
||||
map<size_t, size_t> const& _basicVariables,
|
||||
size_t _i,
|
||||
rational const& _value
|
||||
)
|
||||
{
|
||||
rational delta = _value - _assignments[_i];
|
||||
_assignments[_i] = _value;
|
||||
for (size_t j = 0; j < _assignments.size(); j++)
|
||||
if (_basicVariables.count(j) && _state.constraints[_basicVariables.at(j)].data[_i])
|
||||
_assignments[j] += _state.constraints[_basicVariables.at(j)].data[_i] * delta;
|
||||
}
|
||||
|
||||
optional<size_t> firstConflictingBasicVariable(
|
||||
SolvingState& _state,
|
||||
vector<rational>& _assignments,
|
||||
map<size_t, size_t> const& _basicVariables
|
||||
)
|
||||
{
|
||||
for (auto const& [i, bounds]: _state.bounds | ranges::views::enumerate)
|
||||
if (_basicVariables.count(i) && (
|
||||
(bounds.lower && _assignments[i] < *bounds.lower) ||
|
||||
(bounds.upper && _assignments[i] > *bounds.upper)
|
||||
))
|
||||
return i;
|
||||
return nullopt;
|
||||
}
|
||||
|
||||
optional<size_t> firstReplacementVar(
|
||||
SolvingState& _state,
|
||||
vector<rational>& _assignments,
|
||||
map<size_t, size_t> const& _basicVariables,
|
||||
size_t _basicVarToReplace,
|
||||
bool _increasing
|
||||
)
|
||||
{
|
||||
LinearExpression const& basicVarEquation = _state.constraints[_basicVariables.at(_basicVarToReplace)].data;
|
||||
for (auto const& [i, bounds]: _state.bounds | ranges::views::enumerate)
|
||||
{
|
||||
if (_basicVariables.count(i) || !basicVarEquation[i])
|
||||
continue;
|
||||
bool positive = basicVarEquation[i] > 0;
|
||||
if (!_increasing)
|
||||
positive = !positive;
|
||||
if (positive && (!_state.bounds[i].upper || _assignments[i] < _state.bounds[i].upper))
|
||||
return i;
|
||||
if (!positive && (!_state.bounds[i].lower || _assignments[i] > _state.bounds[i].lower))
|
||||
return i;
|
||||
}
|
||||
return nullopt;
|
||||
}
|
||||
|
||||
void pivot(SolvingState& _state, map<size_t, size_t>& _basicVariables, size_t _old, size_t _new)
|
||||
{
|
||||
// Transform pivotRow such that the coefficient for _new is -1
|
||||
// Then use that to set all other coefficients for _new to zero.
|
||||
size_t pivotRow = _basicVariables[_old];
|
||||
LinearExpression& pivotRowData = _state.constraints[_basicVariables[_old]].data;
|
||||
|
||||
rational pivot = pivotRowData[_new];
|
||||
solAssert(pivot != 0, "");
|
||||
if (pivot != -1)
|
||||
pivotRowData /= -pivot;
|
||||
solAssert(pivotRowData[_new] == rational(-1), "");
|
||||
|
||||
auto subtractMultipleOfPivotRow = [&](LinearExpression& _row) {
|
||||
if (_row[_new] == 0)
|
||||
return;
|
||||
else if (_row[_new] == rational{1})
|
||||
_row += pivotRowData;
|
||||
else if (_row[_new] == rational{-1})
|
||||
_row -= pivotRowData;
|
||||
else
|
||||
_row += _row[_new] * pivotRowData;
|
||||
};
|
||||
|
||||
for (size_t i = 0; i < _state.constraints.size(); ++i)
|
||||
if (i != pivotRow)
|
||||
subtractMultipleOfPivotRow(_state.constraints[i].data);
|
||||
|
||||
_basicVariables.erase(_old);
|
||||
_basicVariables[_new] = pivotRow;
|
||||
}
|
||||
|
||||
void pivotAndUpdate(
|
||||
SolvingState& _state,
|
||||
map<size_t, size_t>& _basicVariables,
|
||||
vector<rational>& _assignments,
|
||||
size_t _oldBasicVar,
|
||||
rational const& _newValue,
|
||||
size_t _newBasicVar
|
||||
)
|
||||
{
|
||||
rational theta = (_newValue - _assignments[_oldBasicVar]) / _state.constraints[_basicVariables[_oldBasicVar]].data[_newBasicVar];
|
||||
|
||||
_assignments[_oldBasicVar] = _newValue;
|
||||
_assignments[_newBasicVar] += theta;
|
||||
|
||||
for (auto const& [i, row]: _basicVariables)
|
||||
if (i != _oldBasicVar && _state.constraints[row].data[_newBasicVar])
|
||||
_assignments[i] += _state.constraints[row].data[_newBasicVar] * theta;
|
||||
|
||||
pivot(_state, _basicVariables, _oldBasicVar, _newBasicVar);
|
||||
cout << "After pivot and update: " << endl << _state.toString() << endl;
|
||||
}
|
||||
|
||||
|
||||
pair<LPResult, vector<rational>> simplexWithBounds(SolvingState _state)
|
||||
{
|
||||
cout << "===========================" << endl;
|
||||
cout << "===========================" << endl;
|
||||
cout << "simpl with bounds on\n" << _state.toString() << endl;
|
||||
map<size_t, size_t> basicVariables = normalizeForSolvingWithBounds(_state);
|
||||
cout << "After norm ------------------------\n" << _state.toString() << endl;
|
||||
|
||||
vector<rational> assignments(_state.variableNames.size());
|
||||
// We start with an all-zero assignment and then gradually add
|
||||
// the bounds we already have.
|
||||
|
||||
cout << "Adjusting bounds on non-basic variables\n";
|
||||
// Adjust the assignments so we satisfy the bounds of the non-basic variables.
|
||||
for (auto const& [i, bounds]: _state.bounds | ranges::views::enumerate)
|
||||
{
|
||||
if (basicVariables.count(i) || (!bounds.lower && !bounds.upper))
|
||||
continue;
|
||||
if (bounds.lower && bounds.upper)
|
||||
solAssert(*bounds.lower <= *bounds.upper);
|
||||
if (bounds.lower && assignments[i] < *bounds.lower)
|
||||
withBoundsUpdate(_state, assignments, basicVariables, i, *bounds.lower);
|
||||
else if (bounds.upper && assignments[i] > *bounds.upper)
|
||||
withBoundsUpdate(_state, assignments, basicVariables, i, *bounds.upper);
|
||||
cout << "Assignments after satisfying bound for " << _state.variableNames[i] << ":\n";
|
||||
for (auto const& [j, val]: assignments | ranges::views::enumerate)
|
||||
{
|
||||
cout << " - " << _state.variableNames[j];
|
||||
if (basicVariables.count(j)) cout << " (b)";
|
||||
cout << " = " << ::toString(val) << endl;
|
||||
}
|
||||
cout << "----------------\n" << _state.toString() << endl;
|
||||
}
|
||||
cout << "Bounds on non-basic vaiables set.\n";
|
||||
|
||||
// Now try to make the basic variables happy, pivoting if necessary.
|
||||
|
||||
// TODO bound number of iterations
|
||||
while (auto bvi = firstConflictingBasicVariable(_state, assignments, basicVariables))
|
||||
{
|
||||
cout << "Basic variable " << _state.variableNames[*bvi] << " is conflicting." << endl;
|
||||
if (_state.bounds[*bvi].lower && assignments[*bvi] < *_state.bounds[*bvi].lower)
|
||||
{
|
||||
if (auto replacementVar = firstReplacementVar(_state, assignments, basicVariables, *bvi, true))
|
||||
pivotAndUpdate(_state, basicVariables, assignments, *bvi, *_state.bounds.at(*bvi).lower, *replacementVar);
|
||||
else
|
||||
return make_pair(LPResult::Infeasible, vector<rational>{});
|
||||
}
|
||||
else if (_state.bounds[*bvi].upper && assignments[*bvi] > *_state.bounds[*bvi].upper)
|
||||
{
|
||||
if (auto replacementVar = firstReplacementVar(_state, assignments, basicVariables, *bvi, false))
|
||||
pivotAndUpdate(_state, basicVariables, assignments, *bvi, *_state.bounds.at(*bvi).upper, *replacementVar);
|
||||
else
|
||||
return make_pair(LPResult::Infeasible, vector<rational>{});
|
||||
}
|
||||
}
|
||||
|
||||
cout << ">>>>>>>>>>>>>>>>>>>>>>" << endl;
|
||||
cout << ">>>>>>>>>>>>>>>>>>>>>>" << endl;
|
||||
|
||||
return make_pair(LPResult::Feasible, move(assignments));
|
||||
}
|
||||
|
||||
|
||||
/// Turns all bounds into constraints.
|
||||
/// @returns false if the bounds make the state infeasible.
|
||||
optional<ReasonSet> boundsToConstraints(SolvingState& _state)
|
||||
@ -892,6 +1115,8 @@ pair<LPResult, variant<Model, ReasonSet>> LPSolver::check()
|
||||
|
||||
//cout << "Updating sub problem" << endl;
|
||||
SolvingState state = stateFromSubProblem(index);
|
||||
// TODO cache this in the subproblem so that we don't have to extract it
|
||||
// if we add a new assertion, but can just update it.
|
||||
normalizeRowLengths(state);
|
||||
|
||||
// The simplify run is important because it detects conflicts
|
||||
@ -907,7 +1132,39 @@ pair<LPResult, variant<Model, ReasonSet>> LPSolver::check()
|
||||
}
|
||||
//cout << state.toString() << endl;
|
||||
|
||||
if (auto conflict = boundsToConstraints(state))
|
||||
// This is the new algorithm that uses bounds directly.
|
||||
// TODO This new algorithm also allows us to lift the restriction
|
||||
// that variables need to be non-negative.
|
||||
bool useSimplexWithBounds = true;
|
||||
if (useSimplexWithBounds)
|
||||
{
|
||||
optional<LPResult> result;
|
||||
if (m_cache)
|
||||
{
|
||||
auto it = m_cache->find(state);
|
||||
if (it != m_cache->end())
|
||||
{
|
||||
//cout << "Cache hit" << endl;
|
||||
result = it->second;
|
||||
}
|
||||
}
|
||||
if (!result)
|
||||
{
|
||||
result = LPResult::Unknown;
|
||||
tie(*result, problem->model) = simplexWithBounds(state);
|
||||
// TODO we should even keep the updated tableau in the subproblem
|
||||
if (m_cache)
|
||||
{
|
||||
(*m_cache)[state] = *result;
|
||||
//cout << "Cache size " << m_cache->size() << endl;
|
||||
}
|
||||
}
|
||||
problem->dirty = false;
|
||||
problem->result = *result;
|
||||
if (problem->result == LPResult::Infeasible)
|
||||
return {LPResult::Infeasible, reasonSetForSubProblem(*problem)};
|
||||
}
|
||||
else if (auto conflict = boundsToConstraints(state))
|
||||
{
|
||||
problem->result = LPResult::Infeasible;
|
||||
problem->model = {};
|
||||
|
Loading…
Reference in New Issue
Block a user