[yul-phaser] Population: Remove no longer used methods for running algorithm steps

- They have been superseded by objects from GeneticAlgorithms.h
This commit is contained in:
Kamil Śliwak 2020-02-06 07:59:08 +01:00
parent 67fbafab8f
commit e1b8b64f05
3 changed files with 5 additions and 87 deletions

View File

@ -182,38 +182,6 @@ BOOST_FIXTURE_TEST_CASE(makeRandom_should_compute_fitness, PopulationFixture)
BOOST_TEST(population.individuals()[2].fitness == m_fitnessMetric->evaluate(population.individuals()[2].chromosome));
}
BOOST_FIXTURE_TEST_CASE(run_should_not_make_fitness_of_top_chromosomes_worse, PopulationFixture)
{
stringstream output;
vector<Chromosome> chromosomes = {
Chromosome(vector<string>{StructuralSimplifier::name}),
Chromosome(vector<string>{BlockFlattener::name}),
Chromosome(vector<string>{SSAReverser::name}),
Chromosome(vector<string>{UnusedPruner::name}),
Chromosome(vector<string>{StructuralSimplifier::name, BlockFlattener::name}),
};
Population population(m_fitnessMetric, chromosomes);
size_t initialTopFitness[2] = {
m_fitnessMetric->evaluate(chromosomes[0]),
m_fitnessMetric->evaluate(chromosomes[1]),
};
for (int i = 0; i < 6; ++i)
{
population.run(1, output);
BOOST_TEST(population.individuals().size() == 5);
size_t currentTopFitness[2] = {
population.individuals()[0].fitness,
population.individuals()[1].fitness,
};
BOOST_TEST(currentTopFitness[0] <= initialTopFitness[0]);
BOOST_TEST(currentTopFitness[1] <= initialTopFitness[1]);
BOOST_TEST(currentTopFitness[0] <= currentTopFitness[1]);
}
}
BOOST_FIXTURE_TEST_CASE(plus_operator_should_add_two_populations, PopulationFixture)
{
BOOST_CHECK_EQUAL(

View File

@ -84,18 +84,6 @@ Population Population::makeRandom(
);
}
void Population::run(optional<size_t> _numRounds, ostream& _outputStream)
{
for (size_t round = 0; !_numRounds.has_value() || round < _numRounds.value(); ++round)
{
doMutation();
doSelection();
_outputStream << "---------- ROUND " << round << " ----------" << endl;
_outputStream << *this;
}
}
Population Population::select(Selection const& _selection) const
{
vector<Individual> selectedIndividuals;
@ -131,35 +119,6 @@ ostream& phaser::operator<<(ostream& _stream, Population const& _population)
return _stream;
}
void Population::doMutation()
{
// TODO: Implement mutation and crossover
}
void Population::doSelection()
{
randomizeWorstChromosomes(*m_fitnessMetric, m_individuals, m_individuals.size() / 2);
m_individuals = sortedIndividuals(move(m_individuals));
}
void Population::randomizeWorstChromosomes(
FitnessMetric const& _fitnessMetric,
vector<Individual>& _individuals,
size_t _count
)
{
assert(_individuals.size() >= _count);
// ASSUMPTION: _individuals is sorted in ascending order
auto individual = _individuals.begin() + (_individuals.size() - _count);
for (; individual != _individuals.end(); ++individual)
{
auto chromosome = Chromosome::makeRandom(binomialChromosomeLength(MaxChromosomeLength));
size_t fitness = _fitnessMetric.evaluate(chromosome);
*individual = {move(chromosome), fitness};
}
}
vector<Individual> Population::chromosomesToIndividuals(
FitnessMetric const& _fitnessMetric,
vector<Chromosome> _chromosomes

View File

@ -69,19 +69,19 @@ struct Individual
bool isFitter(Individual const& a, Individual const& b);
/**
* Represents a changing set of individuals undergoing a genetic algorithm.
* Each round of the algorithm involves mutating existing individuals, evaluating their fitness
* and selecting the best ones for the next round.
* Represents a snapshot of a population undergoing a genetic algorithm. Consists of a set of
* chromosomes with associated fitness values.
*
* An individual is a sequence of optimiser steps represented by a @a Chromosome instance.
* Individuals are always ordered by their fitness (based on @_fitnessMetric and @a isFitter()).
* The fitness is computed using the metric as soon as an individual is inserted into the population.
*
* The population is immutable. Selections, mutations and crossover work by producing a new
* instance and copying the individuals.
*/
class Population
{
public:
static constexpr size_t MaxChromosomeLength = 30;
explicit Population(
std::shared_ptr<FitnessMetric const> _fitnessMetric,
std::vector<Chromosome> _chromosomes = {}
@ -103,7 +103,6 @@ public:
size_t _maxChromosomeLength
);
void run(std::optional<size_t> _numRounds, std::ostream& _outputStream);
Population select(Selection const& _selection) const;
friend Population (::operator+)(Population _a, Population _b);
@ -123,14 +122,6 @@ private:
m_fitnessMetric(std::move(_fitnessMetric)),
m_individuals{sortedIndividuals(std::move(_individuals))} {}
void doMutation();
void doSelection();
static void randomizeWorstChromosomes(
FitnessMetric const& _fitnessMetric,
std::vector<Individual>& _individuals,
size_t _count
);
static std::vector<Individual> chromosomesToIndividuals(
FitnessMetric const& _fitnessMetric,
std::vector<Chromosome> _chromosomes