Merge pull request #126 from chriseth/destructuringAssignment

Multi-variable declarations.
This commit is contained in:
chriseth 2015-10-13 22:32:27 +02:00
commit e11e10f817
15 changed files with 480 additions and 128 deletions

View File

@ -325,6 +325,13 @@ ReturnAnnotation& Return::annotation() const
return static_cast<ReturnAnnotation&>(*m_annotation);
}
VariableDeclarationStatementAnnotation& VariableDeclarationStatement::annotation() const
{
if (!m_annotation)
m_annotation = new VariableDeclarationStatementAnnotation();
return static_cast<VariableDeclarationStatementAnnotation&>(*m_annotation);
}
ExpressionAnnotation& Expression::annotation() const
{
if (!m_annotation)

View File

@ -558,7 +558,9 @@ protected:
private:
ASTPointer<TypeName> m_typeName; ///< can be empty ("var")
ASTPointer<Expression> m_value; ///< the assigned value, can be missing
/// Initially assigned value, can be missing. For local variables, this is stored inside
/// VariableDeclarationStatement and not here.
ASTPointer<Expression> m_value;
bool m_isStateVariable; ///< Whether or not this is a contract state variable
bool m_isIndexed; ///< Whether this is an indexed variable (used by events).
bool m_isConstant; ///< Whether the variable is a compile-time constant.
@ -963,20 +965,33 @@ public:
* Definition of a variable as a statement inside a function. It requires a type name (which can
* also be "var") but the actual assignment can be missing.
* Examples: var a = 2; uint256 a;
* As a second form, multiple variables can be declared, cannot have a type and must be assigned
* right away. If the first or last component is unnamed, it can "consume" an arbitrary number
* of components.
* Examples: var (a, b) = f(); var (a,,,c) = g(); var (a,) = d();
*/
class VariableDeclarationStatement: public Statement
{
public:
VariableDeclarationStatement(SourceLocation const& _location, ASTPointer<VariableDeclaration> _variable):
Statement(_location), m_variable(_variable) {}
VariableDeclarationStatement(
SourceLocation const& _location,
std::vector<ASTPointer<VariableDeclaration>> const& _variables,
ASTPointer<Expression> const& _initialValue
):
Statement(_location), m_variables(_variables), m_initialValue(_initialValue) {}
virtual void accept(ASTVisitor& _visitor) override;
virtual void accept(ASTConstVisitor& _visitor) const override;
VariableDeclaration const& declaration() const { return *m_variable; }
Expression const* expression() const { return m_variable->value().get(); }
VariableDeclarationStatementAnnotation& annotation() const override;
std::vector<ASTPointer<VariableDeclaration>> const& declarations() const { return m_variables; }
Expression const* initialValue() const { return m_initialValue.get(); }
private:
ASTPointer<VariableDeclaration> m_variable;
/// List of variables, some of which can be empty pointers (unnamed components).
std::vector<ASTPointer<VariableDeclaration>> m_variables;
/// The assigned expression / initial value.
ASTPointer<Expression> m_initialValue;
};
/**

View File

@ -84,6 +84,13 @@ struct UserDefinedTypeNameAnnotation: TypeNameAnnotation
Declaration const* referencedDeclaration = nullptr;
};
struct VariableDeclarationStatementAnnotation: ASTAnnotation
{
/// Information about which component of the value is assigned to which variable.
/// The pointer can be null to signify that the component is discarded.
std::vector<VariableDeclaration const*> assignments;
};
struct ExpressionAnnotation: ASTAnnotation
{
/// Inferred type of the expression.

View File

@ -516,14 +516,26 @@ void ExpressionStatement::accept(ASTConstVisitor& _visitor) const
void VariableDeclarationStatement::accept(ASTVisitor& _visitor)
{
if (_visitor.visit(*this))
m_variable->accept(_visitor);
{
for (ASTPointer<VariableDeclaration> const& var: m_variables)
if (var)
var->accept(_visitor);
if (m_initialValue)
m_initialValue->accept(_visitor);
}
_visitor.endVisit(*this);
}
void VariableDeclarationStatement::accept(ASTConstVisitor& _visitor) const
{
if (_visitor.visit(*this))
m_variable->accept(_visitor);
{
for (ASTPointer<VariableDeclaration> const& var: m_variables)
if (var)
var->accept(_visitor);
if (m_initialValue)
m_initialValue->accept(_visitor);
}
_visitor.endVisit(*this);
}

View File

@ -623,10 +623,29 @@ bool Compiler::visit(VariableDeclarationStatement const& _variableDeclarationSta
{
StackHeightChecker checker(m_context);
CompilerContext::LocationSetter locationSetter(m_context, _variableDeclarationStatement);
if (Expression const* expression = _variableDeclarationStatement.expression())
if (Expression const* expression = _variableDeclarationStatement.initialValue())
{
compileExpression(*expression, _variableDeclarationStatement.declaration().annotation().type);
CompilerUtils(m_context).moveToStackVariable(_variableDeclarationStatement.declaration());
CompilerUtils utils(m_context);
compileExpression(*expression);
TypePointers valueTypes;
if (auto tupleType = dynamic_cast<TupleType const*>(expression->annotation().type.get()))
valueTypes = tupleType->components();
else
valueTypes = TypePointers{expression->annotation().type};
auto const& assignments = _variableDeclarationStatement.annotation().assignments;
solAssert(assignments.size() == valueTypes.size(), "");
for (size_t i = 0; i < assignments.size(); ++i)
{
size_t j = assignments.size() - i - 1;
VariableDeclaration const* varDecl = assignments[j];
if (!varDecl)
utils.popStackElement(*valueTypes[j]);
else
{
utils.convertType(*valueTypes[j], *varDecl->annotation().type);
utils.moveToStackVariable(*varDecl);
}
}
}
checker.check();
return false;

View File

@ -427,11 +427,6 @@ bool ExpressionCompiler::visit(FunctionCall const& _functionCall)
unsigned returnParametersSize = CompilerUtils::sizeOnStack(function.returnParameterTypes());
// callee adds return parameters, but removes arguments and return label
m_context.adjustStackOffset(returnParametersSize - CompilerUtils::sizeOnStack(function.parameterTypes()) - 1);
// @todo for now, the return value of a function is its first return value, so remove
// all others
for (unsigned i = 1; i < function.returnParameterTypes().size(); ++i)
utils().popStackElement(*function.returnParameterTypes()[i]);
break;
}
case Location::External:
@ -1123,19 +1118,15 @@ void ExpressionCompiler::appendExternalFunctionCall(
bool returnSuccessCondition = funKind == FunctionKind::Bare || funKind == FunctionKind::BareCallCode;
bool isCallCode = funKind == FunctionKind::BareCallCode || funKind == FunctionKind::CallCode;
//@todo only return the first return value for now
Type const* firstReturnType =
_functionType.returnParameterTypes().empty() ?
nullptr :
_functionType.returnParameterTypes().front().get();
unsigned retSize = 0;
if (returnSuccessCondition)
retSize = 0; // return value actually is success condition
else if (firstReturnType)
{
retSize = firstReturnType->calldataEncodedSize();
solAssert(retSize > 0, "Unable to return dynamic type from external call.");
}
else
for (auto const& retType: _functionType.returnParameterTypes())
{
solAssert(retType->calldataEncodedSize() > 0, "Unable to return dynamic type from external call.");
retSize += retType->calldataEncodedSize();
}
// Evaluate arguments.
TypePointers argumentTypes;
@ -1255,16 +1246,20 @@ void ExpressionCompiler::appendExternalFunctionCall(
utils().loadFromMemoryDynamic(IntegerType(160), false, true, false);
utils().convertType(IntegerType(160), FixedBytesType(20));
}
else if (firstReturnType)
else if (!_functionType.returnParameterTypes().empty())
{
utils().fetchFreeMemoryPointer();
if (dynamic_cast<ReferenceType const*>(firstReturnType))
bool memoryNeeded = false;
for (auto const& retType: _functionType.returnParameterTypes())
{
utils().loadFromMemoryDynamic(*firstReturnType, false, true, true);
utils().storeFreeMemoryPointer();
utils().loadFromMemoryDynamic(*retType, false, true, true);
if (dynamic_cast<ReferenceType const*>(retType.get()))
memoryNeeded = true;
}
if (memoryNeeded)
utils().storeFreeMemoryPointer();
else
utils().loadFromMemoryDynamic(*firstReturnType, false, true, false);
m_context << eth::Instruction::POP;
}
}

View File

@ -350,7 +350,9 @@ void DeclarationRegistrationHelper::endVisit(VariableDeclarationStatement& _vari
// Register the local variables with the function
// This does not fit here perfectly, but it saves us another AST visit.
solAssert(m_currentFunction, "Variable declaration without function.");
m_currentFunction->addLocalVariable(_variableDeclarationStatement.declaration());
for (ASTPointer<VariableDeclaration> const& var: _variableDeclarationStatement.declarations())
if (var)
m_currentFunction->addLocalVariable(*var);
}
bool DeclarationRegistrationHelper::visit(VariableDeclaration& _declaration)

View File

@ -771,13 +771,61 @@ ASTPointer<VariableDeclarationStatement> Parser::parseVariableDeclarationStateme
ASTPointer<TypeName> const& _lookAheadArrayType
)
{
VarDeclParserOptions options;
options.allowVar = true;
options.allowInitialValue = true;
options.allowLocationSpecifier = true;
ASTPointer<VariableDeclaration> variable = parseVariableDeclaration(options, _lookAheadArrayType);
ASTNodeFactory nodeFactory(*this, variable);
return nodeFactory.createNode<VariableDeclarationStatement>(variable);
ASTNodeFactory nodeFactory(*this);
if (_lookAheadArrayType)
nodeFactory.setLocation(_lookAheadArrayType->location());
vector<ASTPointer<VariableDeclaration>> variables;
ASTPointer<Expression> value;
if (
!_lookAheadArrayType &&
m_scanner->currentToken() == Token::Var &&
m_scanner->peekNextToken() == Token::LParen
)
{
// Parse `var (a, b, ,, c) = ...` into a single VariableDeclarationStatement with multiple variables.
m_scanner->next();
m_scanner->next();
if (m_scanner->currentToken() != Token::RParen)
while (true)
{
ASTPointer<VariableDeclaration> var;
if (
m_scanner->currentToken() != Token::Comma &&
m_scanner->currentToken() != Token::RParen
)
{
ASTNodeFactory varDeclNodeFactory(*this);
ASTPointer<ASTString> name = expectIdentifierToken();
var = varDeclNodeFactory.createNode<VariableDeclaration>(
ASTPointer<TypeName>(),
name,
ASTPointer<Expression>(),
VariableDeclaration::Visibility::Default
);
}
variables.push_back(var);
if (m_scanner->currentToken() == Token::RParen)
break;
else
expectToken(Token::Comma);
}
nodeFactory.markEndPosition();
m_scanner->next();
}
else
{
VarDeclParserOptions options;
options.allowVar = true;
options.allowLocationSpecifier = true;
variables.push_back(parseVariableDeclaration(options, _lookAheadArrayType));
}
if (m_scanner->currentToken() == Token::Assign)
{
m_scanner->next();
value = parseExpression();
nodeFactory.setEndPositionFromNode(value);
}
return nodeFactory.createNode<VariableDeclarationStatement>(variables, value);
}
ASTPointer<ExpressionStatement> Parser::parseExpressionStatement(

View File

@ -424,16 +424,17 @@ bool TypeChecker::visit(VariableDeclaration const& _variable)
// Note that assignments before the first declaration are legal because of the special scoping
// rules inherited from JavaScript.
// This only infers the type from its type name.
// If an explicit type is required, it throws, otherwise it returns TypePointer();
// type is filled either by ReferencesResolver directly from the type name or by
// TypeChecker at the VariableDeclarationStatement level.
TypePointer varType = _variable.annotation().type;
solAssert(!!varType, "Failed to infer variable type.");
if (_variable.isConstant())
{
if (!dynamic_cast<ContractDefinition const*>(_variable.scope()))
typeError(_variable, "Illegal use of \"constant\" specifier.");
if (!_variable.value())
typeError(_variable, "Uninitialized \"constant\" variable.");
if (varType && !varType->isValueType())
if (!varType->isValueType())
{
bool constImplemented = false;
if (auto arrayType = dynamic_cast<ArrayType const*>(varType.get()))
@ -446,43 +447,8 @@ bool TypeChecker::visit(VariableDeclaration const& _variable)
);
}
}
if (varType)
{
if (_variable.value())
expectType(*_variable.value(), *varType);
else
{
if (auto ref = dynamic_cast<ReferenceType const *>(varType.get()))
if (ref->dataStoredIn(DataLocation::Storage) && _variable.isLocalVariable() && !_variable.isCallableParameter())
{
auto err = make_shared<Warning>();
*err <<
errinfo_sourceLocation(_variable.location()) <<
errinfo_comment("Uninitialized storage pointer. Did you mean '<type> memory " + _variable.name() + "'?");
m_errors.push_back(err);
}
}
}
else
{
// Infer type from value.
if (!_variable.value())
fatalTypeError(_variable, "Assignment necessary for type detection.");
_variable.value()->accept(*this);
TypePointer const& valueType = type(*_variable.value());
solAssert(!!valueType, "");
if (
valueType->category() == Type::Category::IntegerConstant &&
!dynamic_pointer_cast<IntegerConstantType const>(valueType)->integerType()
)
fatalTypeError(*_variable.value(), "Invalid integer constant " + valueType->toString() + ".");
else if (valueType->category() == Type::Category::Void)
fatalTypeError(_variable, "Variable cannot have void type.");
varType = valueType->mobileType();
}
solAssert(!!varType, "");
_variable.annotation().type = varType;
if (_variable.value())
expectType(*_variable.value(), *varType);
if (!_variable.isStateVariable())
{
if (varType->dataStoredIn(DataLocation::Memory) || varType->dataStoredIn(DataLocation::CallData))
@ -621,6 +587,126 @@ void TypeChecker::endVisit(Return const& _return)
}
}
bool TypeChecker::visit(VariableDeclarationStatement const& _statement)
{
if (!_statement.initialValue())
{
// No initial value is only permitted for single variables with specified type.
if (_statement.declarations().size() != 1 || !_statement.declarations().front())
fatalTypeError(_statement, "Assignment necessary for type detection.");
VariableDeclaration const& varDecl = *_statement.declarations().front();
if (!varDecl.annotation().type)
fatalTypeError(_statement, "Assignment necessary for type detection.");
if (auto ref = dynamic_cast<ReferenceType const*>(varDecl.annotation().type.get()))
{
if (ref->dataStoredIn(DataLocation::Storage))
{
auto err = make_shared<Warning>();
*err <<
errinfo_sourceLocation(varDecl.location()) <<
errinfo_comment("Uninitialized storage pointer. Did you mean '<type> memory " + varDecl.name() + "'?");
m_errors.push_back(err);
}
}
varDecl.accept(*this);
return false;
}
// Here we have an initial value and might have to derive some types before we can visit
// the variable declaration(s).
_statement.initialValue()->accept(*this);
TypePointers valueTypes;
if (auto tupleType = dynamic_cast<TupleType const*>(_statement.initialValue()->annotation().type.get()))
valueTypes = tupleType->components();
else
valueTypes = TypePointers{_statement.initialValue()->annotation().type};
// Determine which component is assigned to which variable.
// If numbers do not match, fill up if variables begin or end empty (not both).
vector<VariableDeclaration const*>& assignments = _statement.annotation().assignments;
assignments.resize(valueTypes.size(), nullptr);
vector<ASTPointer<VariableDeclaration>> const& variables = _statement.declarations();
if (variables.empty())
{
if (!valueTypes.empty())
fatalTypeError(
_statement,
"Too many components (" +
toString(valueTypes.size()) +
") in value for variable assignment (0) needed"
);
}
else if (valueTypes.size() != variables.size() && !variables.front() && !variables.back())
fatalTypeError(
_statement,
"Wildcard both at beginning and end of variable declaration list is only allowed "
"if the number of components is equal."
);
size_t minNumValues = variables.size();
if (!variables.empty() && (!variables.back() || !variables.front()))
--minNumValues;
if (valueTypes.size() < minNumValues)
fatalTypeError(
_statement,
"Not enough components (" +
toString(valueTypes.size()) +
") in value to assign all variables (" +
toString(minNumValues) + ")."
);
if (valueTypes.size() > variables.size() && variables.front() && variables.back())
fatalTypeError(
_statement,
"Too many components (" +
toString(valueTypes.size()) +
") in value for variable assignment (" +
toString(minNumValues) +
" needed)."
);
bool fillRight = !variables.empty() && (!variables.back() || variables.front());
for (size_t i = 0; i < min(variables.size(), valueTypes.size()); ++i)
if (fillRight)
assignments[i] = variables[i].get();
else
assignments[assignments.size() - i - 1] = variables[variables.size() - i - 1].get();
for (size_t i = 0; i < assignments.size(); ++i)
{
if (!assignments[i])
continue;
VariableDeclaration const& var = *assignments[i];
solAssert(!var.value(), "Value has to be tied to statement.");
TypePointer const& valueComponentType = valueTypes[i];
solAssert(!!valueComponentType, "");
if (!var.annotation().type)
{
// Infer type from value.
solAssert(!var.typeName(), "");
if (
valueComponentType->category() == Type::Category::IntegerConstant &&
!dynamic_pointer_cast<IntegerConstantType const>(valueComponentType)->integerType()
)
fatalTypeError(*_statement.initialValue(), "Invalid integer constant " + valueComponentType->toString() + ".");
var.annotation().type = valueComponentType->mobileType();
var.accept(*this);
}
else
{
var.accept(*this);
if (!valueComponentType->isImplicitlyConvertibleTo(*var.annotation().type))
typeError(
_statement,
"Type " +
valueComponentType->toString() +
" is not implicitly convertible to expected type " +
var.annotation().type->toString() +
"."
);
}
}
return false;
}
void TypeChecker::endVisit(ExpressionStatement const& _statement)
{
if (type(_statement.expression())->category() == Type::Category::IntegerConstant)
@ -785,23 +871,14 @@ bool TypeChecker::visit(FunctionCall const& _functionCall)
if (!functionType)
{
typeError(_functionCall, "Type is not callable");
_functionCall.annotation().type = make_shared<VoidType>();
_functionCall.annotation().type = make_shared<TupleType>();
return false;
}
else if (functionType->returnParameterTypes().size() == 1)
_functionCall.annotation().type = functionType->returnParameterTypes().front();
else
{
// @todo actually the return type should be an anonymous struct,
// but we change it to the type of the first return value until we have anonymous
// structs and tuples
if (functionType->returnParameterTypes().empty())
_functionCall.annotation().type = make_shared<VoidType>();
else
_functionCall.annotation().type = functionType->returnParameterTypes().front();
}
_functionCall.annotation().type = make_shared<TupleType>(functionType->returnParameterTypes());
//@todo would be nice to create a struct type from the arguments
// and then ask if that is implicitly convertible to the struct represented by the
// function parameters
TypePointers const& parameterTypes = functionType->parameterTypes();
if (!functionType->takesArbitraryParameters() && parameterTypes.size() != arguments.size())
{

View File

@ -87,6 +87,7 @@ private:
virtual bool visit(WhileStatement const& _whileStatement) override;
virtual bool visit(ForStatement const& _forStatement) override;
virtual void endVisit(Return const& _return) override;
virtual bool visit(VariableDeclarationStatement const& _variable) override;
virtual void endVisit(ExpressionStatement const& _statement) override;
virtual bool visit(Assignment const& _assignment) override;
virtual void endVisit(BinaryOperation const& _operation) override;

View File

@ -223,7 +223,7 @@ TypePointer IntegerType::unaryOperatorResult(Token::Value _operator) const
{
// "delete" is ok for all integer types
if (_operator == Token::Delete)
return make_shared<VoidType>();
return make_shared<TupleType>();
// no further unary operators for addresses
else if (isAddress())
return TypePointer();
@ -562,7 +562,7 @@ TypePointer FixedBytesType::unaryOperatorResult(Token::Value _operator) const
{
// "delete" and "~" is okay for FixedBytesType
if (_operator == Token::Delete)
return make_shared<VoidType>();
return make_shared<TupleType>();
else if (_operator == Token::BitNot)
return shared_from_this();
@ -617,7 +617,7 @@ u256 BoolType::literalValue(Literal const* _literal) const
TypePointer BoolType::unaryOperatorResult(Token::Value _operator) const
{
if (_operator == Token::Delete)
return make_shared<VoidType>();
return make_shared<TupleType>();
return (_operator == Token::Not) ? shared_from_this() : TypePointer();
}
@ -658,7 +658,7 @@ bool ContractType::isExplicitlyConvertibleTo(Type const& _convertTo) const
TypePointer ContractType::unaryOperatorResult(Token::Value _operator) const
{
return _operator == Token::Delete ? make_shared<VoidType>() : TypePointer();
return _operator == Token::Delete ? make_shared<TupleType>() : TypePointer();
}
TypePointer ReferenceType::unaryOperatorResult(Token::Value _operator) const
@ -672,9 +672,9 @@ TypePointer ReferenceType::unaryOperatorResult(Token::Value _operator) const
case DataLocation::CallData:
return TypePointer();
case DataLocation::Memory:
return make_shared<VoidType>();
return make_shared<TupleType>();
case DataLocation::Storage:
return m_isPointer ? TypePointer() : make_shared<VoidType>();
return m_isPointer ? TypePointer() : make_shared<TupleType>();
default:
solAssert(false, "");
}
@ -1175,7 +1175,7 @@ set<string> StructType::membersMissingInMemory() const
TypePointer EnumType::unaryOperatorResult(Token::Value _operator) const
{
return _operator == Token::Delete ? make_shared<VoidType>() : TypePointer();
return _operator == Token::Delete ? make_shared<TupleType>() : TypePointer();
}
bool EnumType::operator==(Type const& _other) const
@ -1222,6 +1222,41 @@ unsigned int EnumType::memberValue(ASTString const& _member) const
BOOST_THROW_EXCEPTION(m_enum.createTypeError("Requested unknown enum value ." + _member));
}
bool TupleType::operator==(Type const& _other) const
{
if (auto tupleType = dynamic_cast<TupleType const*>(&_other))
return components() == tupleType->components();
else
return false;
}
string TupleType::toString(bool _short) const
{
if (m_components.empty())
return "tuple()";
string str = "tuple(";
for (auto const& t: m_components)
str += t->toString(_short) + ", ";
str.resize(str.size() - 2);
return str + ")";
}
u256 TupleType::storageSize() const
{
BOOST_THROW_EXCEPTION(
InternalCompilerError() <<
errinfo_comment("Storage size of non-storable tuple type requested.")
);
}
unsigned TupleType::sizeOnStack() const
{
unsigned size = 0;
for (auto const& t: m_components)
size += t->sizeOnStack();
return size;
}
FunctionType::FunctionType(FunctionDefinition const& _function, bool _isInternal):
m_location(_isInternal ? Location::Internal : Location::External),
m_isConstant(_function.isDeclaredConst()),
@ -1647,13 +1682,6 @@ string MappingType::canonicalName(bool) const
return "mapping(" + keyType()->canonicalName(false) + " => " + valueType()->canonicalName(false) + ")";
}
u256 VoidType::storageSize() const
{
BOOST_THROW_EXCEPTION(
InternalCompilerError()
<< errinfo_comment("Storage size of non-storable void type requested."));
}
bool TypeType::operator==(Type const& _other) const
{
if (_other.category() != category())

View File

@ -132,8 +132,8 @@ public:
enum class Category
{
Integer, IntegerConstant, StringLiteral, Bool, Real, Array,
FixedBytes, Contract, Struct, Function, Enum,
Mapping, Void, TypeType, Modifier, Magic
FixedBytes, Contract, Struct, Function, Enum, Tuple,
Mapping, TypeType, Modifier, Magic
};
/// @{
@ -682,6 +682,28 @@ private:
mutable std::unique_ptr<MemberList> m_members;
};
/**
* Type that can hold a finite sequence of values of different types.
*/
class TupleType: public Type
{
public:
virtual Category category() const override { return Category::Tuple; }
explicit TupleType(std::vector<TypePointer> const& _types = std::vector<TypePointer>()): m_components(_types) {}
virtual bool operator==(Type const& _other) const override;
virtual TypePointer binaryOperatorResult(Token::Value, TypePointer const&) const override { return TypePointer(); }
virtual std::string toString(bool) const override;
virtual bool canBeStored() const override { return false; }
virtual u256 storageSize() const override;
virtual bool canLiveOutsideStorage() const override { return false; }
virtual unsigned sizeOnStack() const override;
std::vector<TypePointer> const& components() const { return m_components; }
private:
std::vector<TypePointer> const m_components;
};
/**
* The type of a function, identified by its (return) parameter types.
* @todo the return parameters should also have names, i.e. return parameters should be a struct
@ -874,24 +896,6 @@ private:
TypePointer m_valueType;
};
/**
* The void type, can only be implicitly used as the type that is returned by functions without
* return parameters.
*/
class VoidType: public Type
{
public:
virtual Category category() const override { return Category::Void; }
VoidType() {}
virtual TypePointer binaryOperatorResult(Token::Value, TypePointer const&) const override { return TypePointer(); }
virtual std::string toString(bool) const override { return "void"; }
virtual bool canBeStored() const override { return false; }
virtual u256 storageSize() const override;
virtual bool canLiveOutsideStorage() const override { return false; }
virtual unsigned sizeOnStack() const override { return 0; }
};
/**
* The type of a type reference. The type of "uint32" when used in "a = uint32(2)" is an example
* of a TypeType.

View File

@ -5613,6 +5613,30 @@ BOOST_AUTO_TEST_CASE(reject_ether_sent_to_library)
BOOST_CHECK_EQUAL(m_state.balance(libraryAddress), 0);
}
BOOST_AUTO_TEST_CASE(multi_variable_declaration)
{
char const* sourceCode = R"(
contract C {
function g() returns (uint a, uint b, uint c) {
a = 1; b = 2; c = 3;
}
function f() returns (bool) {
var (x, y, z) = g();
if (x != 1 || y != 2 || z != 3) return false;
var (, a,) = g();
if (a != 2) return false;
var (b,) = g();
if (b != 1) return false;
var (,c) = g();
if (c != 3) return false;
return true;
}
}
)";
compileAndRun(sourceCode);
BOOST_CHECK(callContractFunction("f()", encodeArgs()) == encodeArgs(true));
}
BOOST_AUTO_TEST_SUITE_END()
}

View File

@ -1285,7 +1285,7 @@ BOOST_AUTO_TEST_CASE(empty_name_return_parameter_with_named_one)
BOOST_AUTO_TEST_CASE(disallow_declaration_of_void_type)
{
char const* sourceCode = "contract c { function f() { var x = f(); } }";
char const* sourceCode = "contract c { function f() { var (x) = f(); } }";
SOLIDITY_CHECK_ERROR_TYPE(parseAndAnalyseReturnError(sourceCode), TypeError);
}
@ -2134,7 +2134,7 @@ BOOST_AUTO_TEST_CASE(dynamic_return_types_not_possible)
contract C {
function f(uint) returns (string);
function g() {
var x = this.f(2);
var (x,) = this.f(2);
}
}
)";
@ -2397,6 +2397,99 @@ BOOST_AUTO_TEST_CASE(cyclic_binary_dependency_via_inheritance)
SOLIDITY_CHECK_ERROR_TYPE(parseAndAnalyseReturnError(text), TypeError);
}
BOOST_AUTO_TEST_CASE(multi_variable_declaration_fail)
{
char const* text = R"(
contract C { function f() { var (x,y); } }
)";
SOLIDITY_CHECK_ERROR_TYPE(parseAndAnalyseReturnError(text), TypeError);
}
BOOST_AUTO_TEST_CASE(multi_variable_declaration_wildcards_fine)
{
char const* text = R"(
contract C {
function three() returns (uint, uint, uint);
function two() returns (uint, uint);
function none();
function f() {
var (a,) = three();
var (b,c,) = two();
var (,d) = three();
var (,e,g) = two();
var (,,) = three();
var () = none();
}
}
)";
BOOST_CHECK_NO_THROW(parseAndAnalyse(text));
}
BOOST_AUTO_TEST_CASE(multi_variable_declaration_wildcards_fail_1)
{
char const* text = R"(
contract C {
function one() returns (uint);
function f() { var (a, b, ) = one(); }
}
)";
SOLIDITY_CHECK_ERROR_TYPE(parseAndAnalyseReturnError(text), TypeError);
}
BOOST_AUTO_TEST_CASE(multi_variable_declaration_wildcards_fail_2)
{
char const* text = R"(
contract C {
function one() returns (uint);
function f() { var (a, , ) = one(); }
}
)";
SOLIDITY_CHECK_ERROR_TYPE(parseAndAnalyseReturnError(text), TypeError);
}
BOOST_AUTO_TEST_CASE(multi_variable_declaration_wildcards_fail_3)
{
char const* text = R"(
contract C {
function one() returns (uint);
function f() { var (, , a) = one(); }
}
)";
SOLIDITY_CHECK_ERROR_TYPE(parseAndAnalyseReturnError(text), TypeError);
}
BOOST_AUTO_TEST_CASE(multi_variable_declaration_wildcards_fail_4)
{
char const* text = R"(
contract C {
function one() returns (uint);
function f() { var (, a, b) = one(); }
}
)";
SOLIDITY_CHECK_ERROR_TYPE(parseAndAnalyseReturnError(text), TypeError);
}
BOOST_AUTO_TEST_CASE(multi_variable_declaration_wildcards_fail_5)
{
char const* text = R"(
contract C {
function one() returns (uint);
function f() { var (,) = one(); }
}
)";
SOLIDITY_CHECK_ERROR_TYPE(parseAndAnalyseReturnError(text), TypeError);
}
BOOST_AUTO_TEST_CASE(multi_variable_declaration_wildcards_fail_6)
{
char const* text = R"(
contract C {
function two() returns (uint, uint);
function f() { var (a, b, c) = two(); }
}
)";
SOLIDITY_CHECK_ERROR_TYPE(parseAndAnalyseReturnError(text), TypeError);
}
BOOST_AUTO_TEST_SUITE_END()
}

View File

@ -934,6 +934,26 @@ BOOST_AUTO_TEST_CASE(library_simple)
BOOST_CHECK_NO_THROW(parseText(text));
}
BOOST_AUTO_TEST_CASE(multi_variable_declaration)
{
char const* text = R"(
library Lib {
function f() {
var (a,b,c) = g();
var (d) = 2;
var (,e) = 3;
var (f,) = 4;
var (x,,) = g();
var (,y,) = g();
var () = g();
var (,,) = g();
}
function g() returns (uint, uint, uint) {}
}
)";
BOOST_CHECK_NO_THROW(parseText(text));
}
BOOST_AUTO_TEST_SUITE_END()
}