mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
Merge pull request #1625 from ethereum/asmdocs
Integrate missed changes.
This commit is contained in:
commit
c1a675da4f
@ -37,8 +37,9 @@ arising when writing manual assembly by the following features:
|
||||
We now want to describe the inline assembly language in detail.
|
||||
|
||||
.. warning::
|
||||
Inline assembly is still a relatively new feature and might change if it does not prove useful,
|
||||
so please try to keep up to date.
|
||||
Inline assembly is a way to access the Ethereum Virtual Machine
|
||||
at a low level. This discards several important safety
|
||||
features of Solidity.
|
||||
|
||||
Example
|
||||
-------
|
||||
@ -49,6 +50,8 @@ idea is that assembly libraries will be used to enhance the language in such way
|
||||
|
||||
.. code::
|
||||
|
||||
pragma solidity ^0.4.0;
|
||||
|
||||
library GetCode {
|
||||
function at(address _addr) returns (bytes o_code) {
|
||||
assembly {
|
||||
@ -69,11 +72,13 @@ idea is that assembly libraries will be used to enhance the language in such way
|
||||
|
||||
Inline assembly could also be beneficial in cases where the optimizer fails to produce
|
||||
efficient code. Please be aware that assembly is much more difficult to write because
|
||||
the compiler does not perform checks, so you should use it only if
|
||||
the compiler does not perform checks, so you should use it for complex things only if
|
||||
you really know what you are doing.
|
||||
|
||||
.. code::
|
||||
|
||||
pragma solidity ^0.4.0;
|
||||
|
||||
library VectorSum {
|
||||
// This function is less efficient because the optimizer currently fails to
|
||||
// remove the bounds checks in array access.
|
||||
@ -104,7 +109,7 @@ these curly braces, the following can be used (see the later sections for more d
|
||||
|
||||
- literals, i.e. ``0x123``, ``42`` or ``"abc"`` (strings up to 32 characters)
|
||||
- opcodes (in "instruction style"), e.g. ``mload sload dup1 sstore``, for a list see below
|
||||
- opcode in functional style, e.g. ``add(1, mlod(0))``
|
||||
- opcodes in functional style, e.g. ``add(1, mlod(0))``
|
||||
- labels, e.g. ``name:``
|
||||
- variable declarations, e.g. ``let x := 7`` or ``let x := add(y, 3)``
|
||||
- identifiers (labels or assembly-local variables and externals if used as inline assembly), e.g. ``jump(name)``, ``3 x add``
|
||||
@ -119,7 +124,7 @@ This document does not want to be a full description of the Ethereum virtual mac
|
||||
following list can be used as a reference of its opcodes.
|
||||
|
||||
If an opcode takes arguments (always from the top of the stack), they are given in parentheses.
|
||||
Note that the order of arguments can be seed to be reversed in non-functional style (explained below).
|
||||
Note that the order of arguments can be seen to be reversed in non-functional style (explained below).
|
||||
Opcodes marked with ``-`` do not push an item onto the stack, those marked with ``*`` are
|
||||
special and all others push exactly one item onte the stack.
|
||||
|
||||
@ -185,7 +190,7 @@ In the grammar, opcodes are represented as pre-defined identifiers.
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| pc | | current position in code |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| pop | `*` | remove topmost stack slot |
|
||||
| pop(x) | `-` | remove the element pushed by x |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| dup1 ... dup16 | | copy ith stack slot to the top (counting from top) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
@ -230,19 +235,22 @@ In the grammar, opcodes are represented as pre-defined identifiers.
|
||||
| create(v, p, s) | | create new contract with code mem[p..(p+s)) and send v wei |
|
||||
| | | and return the new address |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| call(g, a, v, in, | | call contract at address a with input mem[in..(in+insize)] |
|
||||
| call(g, a, v, in, | | call contract at address a with input mem[in..(in+insize)) |
|
||||
| insize, out, outsize) | | providing g gas and v wei and output area |
|
||||
| | | mem[out..(out+outsize)] returting 1 on error (out of gas) |
|
||||
| | | mem[out..(out+outsize)) returning 0 on error (eg. out of gas) |
|
||||
| | | and 1 on success |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| callcode(g, a, v, in, | | identical to call but only use the code from a and stay |
|
||||
| callcode(g, a, v, in, | | identical to `call` but only use the code from a and stay |
|
||||
| insize, out, outsize) | | in the context of the current contract otherwise |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| delegatecall(g, a, in, | | identical to callcode but also keep ``caller`` |
|
||||
| delegatecall(g, a, in, | | identical to `callcode` but also keep ``caller`` |
|
||||
| insize, out, outsize) | | and ``callvalue`` |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| return(p, s) | `*` | end execution, return data mem[p..(p+s)) |
|
||||
| return(p, s) | `-` | end execution, return data mem[p..(p+s)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| selfdestruct(a) | `*` | end execution, destroy current contract and send funds to a |
|
||||
| selfdestruct(a) | `-` | end execution, destroy current contract and send funds to a |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| invalid | `-` | end execution with invalid instruction |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| log0(p, s) | `-` | log without topics and data mem[p..(p+s)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
@ -331,6 +339,8 @@ It is planned that the stack height changes can be specified in inline assembly.
|
||||
|
||||
.. code::
|
||||
|
||||
pragma solidity ^0.4.0;
|
||||
|
||||
contract C {
|
||||
uint b;
|
||||
function f(uint x) returns (uint r) {
|
||||
@ -392,6 +402,10 @@ will have a wrong impression about the stack height at label ``two``:
|
||||
three:
|
||||
}
|
||||
|
||||
.. note::
|
||||
|
||||
``invalidJumpLabel`` is a pre-defined label. Jumping to this location will always
|
||||
result in an invalid jump, effectively aborting execution of the code.
|
||||
|
||||
Declaring Assembly-Local Variables
|
||||
----------------------------------
|
||||
@ -405,6 +419,8 @@ be just ``0``, but it can also be a complex functional-style expression.
|
||||
|
||||
.. code::
|
||||
|
||||
pragma solidity ^0.4.0;
|
||||
|
||||
contract C {
|
||||
function f(uint x) returns (uint b) {
|
||||
assembly {
|
||||
@ -542,7 +558,7 @@ Conventions in Solidity
|
||||
|
||||
In contrast to EVM assembly, Solidity knows types which are narrower than 256 bits,
|
||||
e.g. ``uint24``. In order to make them more efficient, most arithmetic operations just
|
||||
treat them as 256 bit numbers and the higher-order bits are only cleaned at the
|
||||
treat them as 256-bit numbers and the higher-order bits are only cleaned at the
|
||||
point where it is necessary, i.e. just shortly before they are written to memory
|
||||
or before comparisons are performed. This means that if you access such a variable
|
||||
from within inline assembly, you might have to manually clean the higher order bits
|
||||
|
@ -400,480 +400,4 @@ Internally, Solidity performs an "invalid jump" when a user-provided exception i
|
||||
(instruction ``0xfe``) if a runtime exception is encountered. In both cases, this causes
|
||||
the EVM to revert all changes made to the state. The reason for this is that there is no safe way to continue execution, because an expected effect
|
||||
did not occur. Because we want to retain the atomicity of transactions, the safest thing to do is to revert all changes and make the whole transaction
|
||||
(or at least call) without effect.
|
||||
|
||||
.. index:: ! assembly, ! asm, ! evmasm
|
||||
|
||||
Inline Assembly
|
||||
===============
|
||||
|
||||
For more fine-grained control especially in order to enhance the language by writing libraries,
|
||||
it is possible to interleave Solidity statements with inline assembly in a language close
|
||||
to the one of the virtual machine. Due to the fact that the EVM is a stack machine, it is
|
||||
often hard to address the correct stack slot and provide arguments to opcodes at the correct
|
||||
point on the stack. Solidity's inline assembly tries to facilitate that and other issues
|
||||
arising when writing manual assembly by the following features:
|
||||
|
||||
* functional-style opcodes: ``mul(1, add(2, 3))`` instead of ``push1 3 push1 2 add push1 1 mul``
|
||||
* assembly-local variables: ``let x := add(2, 3) let y := mload(0x40) x := add(x, y)``
|
||||
* access to external variables: ``function f(uint x) { assembly { x := sub(x, 1) } }``
|
||||
* labels: ``let x := 10 repeat: x := sub(x, 1) jumpi(repeat, eq(x, 0))``
|
||||
|
||||
We now want to describe the inline assembly language in detail.
|
||||
|
||||
.. warning::
|
||||
Inline assembly is a way to access the Ethereum Virtual Machine
|
||||
at a low level. This discards several important safety
|
||||
features of Solidity.
|
||||
|
||||
Example
|
||||
-------
|
||||
|
||||
The following example provides library code to access the code of another contract and
|
||||
load it into a ``bytes`` variable. This is not possible at all with "plain Solidity" and the
|
||||
idea is that assembly libraries will be used to enhance the language in such ways.
|
||||
|
||||
.. code::
|
||||
|
||||
pragma solidity ^0.4.0;
|
||||
|
||||
library GetCode {
|
||||
function at(address _addr) returns (bytes o_code) {
|
||||
assembly {
|
||||
// retrieve the size of the code, this needs assembly
|
||||
let size := extcodesize(_addr)
|
||||
// allocate output byte array - this could also be done without assembly
|
||||
// by using o_code = new bytes(size)
|
||||
o_code := mload(0x40)
|
||||
// new "memory end" including padding
|
||||
mstore(0x40, add(o_code, and(add(add(size, 0x20), 0x1f), not(0x1f))))
|
||||
// store length in memory
|
||||
mstore(o_code, size)
|
||||
// actually retrieve the code, this needs assembly
|
||||
extcodecopy(_addr, add(o_code, 0x20), 0, size)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Inline assembly could also be beneficial in cases where the optimizer fails to produce
|
||||
efficient code. Please be aware that assembly is much more difficult to write because
|
||||
the compiler does not perform checks, so you should use it for complex things only if
|
||||
you really know what you are doing.
|
||||
|
||||
.. code::
|
||||
|
||||
pragma solidity ^0.4.0;
|
||||
|
||||
library VectorSum {
|
||||
// This function is less efficient because the optimizer currently fails to
|
||||
// remove the bounds checks in array access.
|
||||
function sumSolidity(uint[] _data) returns (uint o_sum) {
|
||||
for (uint i = 0; i < _data.length; ++i)
|
||||
o_sum += _data[i];
|
||||
}
|
||||
|
||||
// We know that we only access the array in bounds, so we can avoid the check.
|
||||
// 0x20 needs to be added to an array because the first slot contains the
|
||||
// array length.
|
||||
function sumAsm(uint[] _data) returns (uint o_sum) {
|
||||
for (uint i = 0; i < _data.length; ++i) {
|
||||
assembly {
|
||||
o_sum := mload(add(add(_data, 0x20), i))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Syntax
|
||||
------
|
||||
|
||||
Inline assembly parses comments, literals and identifiers exactly as Solidity, so you can use the
|
||||
usual ``//`` and ``/* */`` comments. Inline assembly is initiated by ``assembly { ... }`` and inside
|
||||
these curly braces, the following can be used (see the later sections for more details)
|
||||
|
||||
- literals, e.g. ``0x123``, ``42`` or ``"abc"`` (strings up to 32 characters)
|
||||
- opcodes (in "instruction style"), e.g. ``mload sload dup1 sstore``, for a list see below
|
||||
- opcodes in functional style, e.g. ``add(1, mload(0))``
|
||||
- labels, e.g. ``name:``
|
||||
- variable declarations, e.g. ``let x := 7`` or ``let x := add(y, 3)``
|
||||
- identifiers (externals, labels or assembly-local variables), e.g. ``jump(name)``, ``3 x add``
|
||||
- assignments (in "instruction style"), e.g. ``3 =: x``
|
||||
- assignments in functional style, e.g. ``x := add(y, 3)``
|
||||
- blocks where local variables are scoped inside, e.g. ``{ let x := 3 { let y := add(x, 1) } }``
|
||||
|
||||
Opcodes
|
||||
-------
|
||||
|
||||
This document does not want to be a full description of the Ethereum virtual machine, but the
|
||||
following list can be used as a reference of its opcodes.
|
||||
|
||||
If an opcode takes arguments (always from the top of the stack), they are given in parentheses.
|
||||
Note that the order of arguments can be seen as being reversed compared to the instructional style (explained below).
|
||||
Opcodes marked with ``-`` do not push an item onto the stack, those marked with ``*`` are
|
||||
special and all others push exactly one item onte the stack.
|
||||
|
||||
In the following, ``mem[a...b)`` signifies the bytes of memory starting at position ``a`` up to
|
||||
(excluding) position ``b`` and ``storage[p]`` signifies the storage contents at position ``p``.
|
||||
|
||||
The opcodes ``pushi`` and ``jumpdest`` cannot be used directly.
|
||||
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| stop + `-` | stop execution, identical to return(0,0) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| add(x, y) | | x + y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| sub(x, y) | | x - y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| mul(x, y) | | x * y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| div(x, y) | | x / y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| sdiv(x, y) | | x / y, for signed numbers in two's complement |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| mod(x, y) | | x % y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| smod(x, y) | | x % y, for signed numbers in two's complement |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| exp(x, y) | | x to the power of y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| not(x) | | ~x, every bit of x is negated |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| lt(x, y) | | 1 if x < y, 0 otherwise |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| gt(x, y) | | 1 if x > y, 0 otherwise |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| slt(x, y) | | 1 if x < y, 0 otherwise, for signed numbers in two's complement |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| sgt(x, y) | | 1 if x > y, 0 otherwise, for signed numbers in two's complement |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| eq(x, y) | | 1 if x == y, 0 otherwise |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| iszero(x) | | 1 if x == 0, 0 otherwise |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| and(x, y) | | bitwise and of x and y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| or(x, y) | | bitwise or of x and y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| xor(x, y) | | bitwise xor of x and y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| byte(n, x) | | nth byte of x, where the most significant byte is the 0th byte |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| addmod(x, y, m) | | (x + y) % m with arbitrary precision arithmetics |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| mulmod(x, y, m) | | (x * y) % m with arbitrary precision arithmetics |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| signextend(i, x) | | sign extend from (i*8+7)th bit counting from least significant |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| sha3(p, n) | | keccak(mem[p...(p+n))) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| jump(label) | `-` | jump to label / code position |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| jumpi(label, cond) | `-` | jump to label if cond is nonzero |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| pc | | current position in code |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| pop(x) | `-` | remove the element pushed by x |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| dup1 ... dup16 | | copy ith stack slot to the top (counting from top) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| swap1 ... swap16 | `*` | swap topmost and ith stack slot below it |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| mload(p) | | mem[p..(p+32)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| mstore(p, v) | `-` | mem[p..(p+32)) := v |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| mstore8(p, v) | `-` | mem[p] := v & 0xff - only modifies a single byte |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| sload(p) | | storage[p] |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| sstore(p, v) | `-` | storage[p] := v |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| msize | | size of memory, i.e. largest accessed memory index |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| gas | | gas still available to execution |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| address | | address of the current contract / execution context |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| balance(a) | | wei balance at address a |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| caller | | call sender (excluding delegatecall) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| callvalue | | wei sent together with the current call |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| calldataload(p) | | calldata starting from position p (32 bytes) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| calldatasize | | size of calldata in bytes |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| calldatacopy(t, f, s) | `-` | copy s bytes from calldata at position f to mem at position t |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| codesize | | size of the code of the current contract / execution context |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| codecopy(t, f, s) | `-` | copy s bytes from code at position f to mem at position t |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| extcodesize(a) | | size of the code at address a |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| extcodecopy(a, t, f, s) | `-` | like codecopy(t, f, s) but take code at address a |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| create(v, p, s) | | create new contract with code mem[p..(p+s)) and send v wei |
|
||||
| | | and return the new address |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| call(g, a, v, in, | | call contract at address a with input mem[in..(in+insize)) |
|
||||
| insize, out, outsize) | | providing g gas and v wei and output area |
|
||||
| | | mem[out..(out+outsize)) returning 0 on error (eg. out of gas) |
|
||||
| | | and 1 on success |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| callcode(g, a, v, in, | | identical to `call` but only use the code from a and stay |
|
||||
| insize, out, outsize) | | in the context of the current contract otherwise |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| delegatecall(g, a, in, | | identical to `callcode` but also keep ``caller`` |
|
||||
| insize, out, outsize) | | and ``callvalue`` |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| return(p, s) | `-` | end execution, return data mem[p..(p+s)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| selfdestruct(a) | `-` | end execution, destroy current contract and send funds to a |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| invalid | `-` | end execution with invalid instruction |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| log0(p, s) | `-` | log without topics and data mem[p..(p+s)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| log1(p, s, t1) | `-` | log with topic t1 and data mem[p..(p+s)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| log2(p, s, t1, t2) | `-` | log with topics t1, t2 and data mem[p..(p+s)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| log3(p, s, t1, t2, t3) | `-` | log with topics t1, t2, t3 and data mem[p..(p+s)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| log4(p, s, t1, t2, t3, | `-` | log with topics t1, t2, t3, t4 and data mem[p..(p+s)) |
|
||||
| t4) | | |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| origin | | transaction sender |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| gasprice | | gas price of the transaction |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| blockhash(b) | | hash of block nr b - only for last 256 blocks excluding current |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| coinbase | | current mining beneficiary |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| timestamp | | timestamp of the current block in seconds since the epoch |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| number | | current block number |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| difficulty | | difficulty of the current block |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| gaslimit | | block gas limit of the current block |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
|
||||
Literals
|
||||
--------
|
||||
|
||||
You can use integer constants by typing them in decimal or hexadecimal notation and an
|
||||
appropriate ``PUSHi`` instruction will automatically be generated. The following creates code
|
||||
to add 2 and 3 resulting in 5 and then computes the bitwise and with the string "abc".
|
||||
Strings are stored left-aligned and cannot be longer than 32 bytes.
|
||||
|
||||
.. code::
|
||||
|
||||
assembly { 2 3 add "abc" and }
|
||||
|
||||
Functional Style
|
||||
-----------------
|
||||
|
||||
You can type opcode after opcode in the same way they will end up in bytecode. For example
|
||||
adding ``3`` to the contents in memory at position ``0x80`` would be
|
||||
|
||||
.. code::
|
||||
|
||||
3 0x80 mload add 0x80 mstore
|
||||
|
||||
As it is often hard to see what the actual arguments for certain opcodes are,
|
||||
Solidity inline assembly also provides a "functional style" notation where the same code
|
||||
would be written as follows
|
||||
|
||||
.. code::
|
||||
|
||||
mstore(0x80, add(mload(0x80), 3))
|
||||
|
||||
Functional style and instructional style can be mixed, but any opcode inside a
|
||||
functional style expression has to return exactly one stack slot (most of the opcodes do).
|
||||
|
||||
Note that the order of arguments is reversed in functional-style as opposed to the instruction-style
|
||||
way. If you use functional-style, the first argument will end up on the stack top.
|
||||
|
||||
|
||||
Access to External Variables and Functions
|
||||
------------------------------------------
|
||||
|
||||
Solidity variables and other identifiers can be accessed by simply using their name.
|
||||
For storage and memory variables, this will push the address and not the value onto the
|
||||
stack. Also note that non-struct and non-array storage variable addresses occupy two slots
|
||||
on the stack: One for the address and one for the byte offset inside the storage slot.
|
||||
In assignments (see below), we can even use local Solidity variables to assign to.
|
||||
|
||||
Functions external to inline assembly can also be accessed: The assembly will
|
||||
push their entry label (with virtual function resolution applied). The calling semantics
|
||||
in solidity are:
|
||||
|
||||
- the caller pushes return label, arg1, arg2, ..., argn
|
||||
- the call returns with ret1, ret2, ..., retn
|
||||
|
||||
This feature is still a bit cumbersome to use, because the stack offset essentially
|
||||
changes during the call, and thus references to local variables will be wrong.
|
||||
It is planned that the stack height changes can be specified in inline assembly.
|
||||
|
||||
.. code::
|
||||
|
||||
pragma solidity ^0.4.0;
|
||||
|
||||
contract C {
|
||||
uint b;
|
||||
function f(uint x) returns (uint r) {
|
||||
assembly {
|
||||
b pop // remove the offset, we know it is zero
|
||||
sload
|
||||
x
|
||||
mul
|
||||
=: r // assign to return variable r
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Labels
|
||||
------
|
||||
|
||||
Another problem in EVM assembly is that ``jump`` and ``jumpi`` use absolute addresses
|
||||
which can change easily. Solidity inline assembly provides labels to make the use of
|
||||
jumps easier. The following code computes an element in the Fibonacci series.
|
||||
|
||||
.. code::
|
||||
|
||||
{
|
||||
let n := calldataload(4)
|
||||
let a := 1
|
||||
let b := a
|
||||
loop:
|
||||
jumpi(loopend, eq(n, 0))
|
||||
a add swap1
|
||||
n := sub(n, 1)
|
||||
jump(loop)
|
||||
loopend:
|
||||
mstore(0, a)
|
||||
return(0, 0x20)
|
||||
}
|
||||
|
||||
Please note that automatically accessing stack variables can only work if the
|
||||
assembler knows the current stack height. This fails to work if the jump source
|
||||
and target have different stack heights. It is still fine to use such jumps,
|
||||
you should just not access any stack variables (even assembly variables) in that case.
|
||||
|
||||
Furthermore, the stack height analyser goes through the code opcode by opcode
|
||||
(and not according to control flow), so in the following case, the assembler
|
||||
will have a wrong impression about the stack height at label ``two``:
|
||||
|
||||
.. code::
|
||||
|
||||
{
|
||||
jump(two)
|
||||
one:
|
||||
// Here the stack height is 1 (because we pushed 7),
|
||||
// but the assembler thinks it is 0 because it reads
|
||||
// from top to bottom.
|
||||
// Accessing stack variables here will lead to errors.
|
||||
jump(three)
|
||||
two:
|
||||
7 // push something onto the stack
|
||||
jump(one)
|
||||
three:
|
||||
}
|
||||
|
||||
.. note::
|
||||
|
||||
``invalidJumpLabel`` is a pre-defined label. Jumping to this location will always
|
||||
result in an invalid jump, effectively aborting execution of the code.
|
||||
|
||||
Declaring Assembly-Local Variables
|
||||
----------------------------------
|
||||
|
||||
You can use the ``let`` keyword to declare variables that are only visible in
|
||||
inline assembly and actually only in the current ``{...}``-block. What happens
|
||||
is that the ``let`` instruction will create a new stack slot that is reserved
|
||||
for the variable and automatically removed again when the end of the block
|
||||
is reached. You need to provide an initial value for the variable which can
|
||||
be just ``0``, but it can also be a complex functional-style expression.
|
||||
|
||||
.. code::
|
||||
|
||||
pragma solidity ^0.4.0;
|
||||
|
||||
contract C {
|
||||
function f(uint x) returns (uint b) {
|
||||
assembly {
|
||||
let v := add(x, 1)
|
||||
mstore(0x80, v)
|
||||
{
|
||||
let y := add(sload(v), 1)
|
||||
b := y
|
||||
} // y is "deallocated" here
|
||||
b := add(b, v)
|
||||
} // v is "deallocated" here
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Assignments
|
||||
-----------
|
||||
|
||||
Assignments are possible to assembly-local variables and to function-local
|
||||
variables. Take care that when you assign to variables that point to
|
||||
memory or storage, you will only change the pointer and not the data.
|
||||
|
||||
There are two kinds of assignments: Functional-style and instruction-style.
|
||||
For functional-style assignments (``variable := value``), you need to provide a value in a
|
||||
functional-style expression that results in exactly one stack value
|
||||
and for instruction-style (``=: variable``), the value is just taken from the stack top.
|
||||
For both ways, the colon points to the name of the variable.
|
||||
|
||||
.. code::
|
||||
|
||||
assembly {
|
||||
let v := 0 // functional-style assignment as part of variable declaration
|
||||
let g := add(v, 2)
|
||||
sload(10)
|
||||
=: v // instruction style assignment, puts the result of sload(10) into v
|
||||
}
|
||||
|
||||
|
||||
Things to Avoid
|
||||
---------------
|
||||
|
||||
Inline assembly might have a quite high-level look, but it actually is extremely
|
||||
low-level. The only thing the assembler does for you is re-arranging
|
||||
functional-style opcodes, managing jump labels, counting stack height for
|
||||
variable access and removing stack slots for assembly-local variables when the end
|
||||
of their block is reached. Especially for those two last cases, it is important
|
||||
to know that the assembler only counts stack height from top to bottom, not
|
||||
necessarily following control flow. Furthermore, operations like swap will only
|
||||
swap the contents of the stack but not the location of variables.
|
||||
|
||||
Conventions in Solidity
|
||||
-----------------------
|
||||
|
||||
In contrast to EVM assembly, Solidity knows types which are narrower than 256 bits,
|
||||
e.g. ``uint24``. In order to make them more efficient, most arithmetic operations just
|
||||
treat them as 256-bit numbers and the higher-order bits are only cleaned at the
|
||||
point where it is necessary, i.e. just shortly before they are written to memory
|
||||
or before comparisons are performed. This means that if you access such a variable
|
||||
from within inline assembly, you might have to manually clean the higher order bits
|
||||
first.
|
||||
|
||||
Solidity manages memory in a very simple way: There is a "free memory pointer"
|
||||
at position ``0x40`` in memory. If you want to allocate memory, just use the memory
|
||||
from that point on and update the pointer accordingly.
|
||||
|
||||
Elements in memory arrays in Solidity always occupy multiples of 32 bytes (yes, this is
|
||||
even true for ``byte[]``, but not for ``bytes`` and ``string``). Multi-dimensional memory
|
||||
arrays are pointers to memory arrays. The length of a dynamic array is stored at the
|
||||
first slot of the array and then only the array elements follow.
|
||||
|
||||
.. warning::
|
||||
Statically-sized memory arrays do not have a length field, but it will be added soon
|
||||
to allow better convertibility between statically- and dynamically-sized arrays, so
|
||||
please do not rely on that.
|
||||
(or at least call) without effect.
|
Loading…
Reference in New Issue
Block a user