modify unused store

This commit is contained in:
chriseth 2022-11-23 15:28:11 +01:00
parent 73fcf69188
commit bd7676873e
7 changed files with 452 additions and 467 deletions

View File

@ -25,27 +25,40 @@
#include <libyul/optimiser/Semantics.h>
#include <libyul/optimiser/OptimizerUtilities.h>
#include <libyul/AST.h>
#include <libyul/AsmPrinter.h>
#include <libsolutil/CommonData.h>
#include <range/v3/action/remove_if.hpp>
#include <iostream>
using namespace std;
using namespace solidity;
using namespace solidity::yul;
// TODO this component does not handle reverting function calls specially. Is that OK?
// We should set m_activeStores to empty set for a reverting function call, like wo do with `leave`.
void UnusedAssignEliminator::run(OptimiserStepContext& _context, Block& _ast)
{
UnusedAssignEliminator rae{_context.dialect};
rae(_ast);
StatementRemover remover{rae.m_pendingRemovals};
set<Statement const*> toRemove;
for (Statement const* unusedStore: rae.m_allStores - rae.m_usedStores)
if (SideEffectsCollector{_context.dialect, *std::get<Assignment>(*unusedStore).value}.movable())
toRemove.insert(unusedStore);
else
cerr << "not used because not movable" << endl;
StatementRemover remover{toRemove};
remover(_ast);
}
void UnusedAssignEliminator::operator()(Identifier const& _identifier)
{
changeUndecidedTo(_identifier.name, State::Used);
markUsed(_identifier.name);
}
void UnusedAssignEliminator::operator()(VariableDeclaration const& _variableDeclaration)
@ -59,10 +72,10 @@ void UnusedAssignEliminator::operator()(VariableDeclaration const& _variableDecl
void UnusedAssignEliminator::operator()(Assignment const& _assignment)
{
visit(*_assignment.value);
for (auto const& var: _assignment.variableNames)
changeUndecidedTo(var.name, State::Unused);
// Do not visit the variables because they are Identifiers
}
void UnusedAssignEliminator::operator()(FunctionDefinition const& _functionDefinition)
{
ScopedSaveAndRestore outerDeclaredVariables(m_declaredVariables, {});
@ -77,7 +90,7 @@ void UnusedAssignEliminator::operator()(FunctionDefinition const& _functionDefin
void UnusedAssignEliminator::operator()(Leave const&)
{
for (YulString name: m_returnVariables)
changeUndecidedTo(name, State::Used);
markUsed(name);
}
void UnusedAssignEliminator::operator()(Block const& _block)
@ -86,8 +99,10 @@ void UnusedAssignEliminator::operator()(Block const& _block)
UnusedStoreBase::operator()(_block);
for (auto const& var: m_declaredVariables)
finalize(var, State::Unused);
for (auto const& statement: _block.statements)
if (auto const* varDecl = get_if<VariableDeclaration>(&statement))
for (auto const& var: varDecl->variables)
m_activeStores.erase(var.name);
}
void UnusedAssignEliminator::visit(Statement const& _statement)
@ -95,63 +110,53 @@ void UnusedAssignEliminator::visit(Statement const& _statement)
UnusedStoreBase::visit(_statement);
if (auto const* assignment = get_if<Assignment>(&_statement))
if (assignment->variableNames.size() == 1)
// Default-construct it in "Undecided" state if it does not yet exist.
m_stores[assignment->variableNames.front().name][&_statement];
{
// TODO is it OK to do this for multi-assignments? I guess so because it is enough if
// one of them is used.
m_allStores.insert(&_statement);
for (auto const& var: assignment->variableNames)
m_activeStores[var.name] = {&_statement};
}
// cerr << "After " << std::visit(AsmPrinter{}, _statement) << endl;
// for (auto&& [var, assigns]: m_activeStores)
// {
// cerr << " " << var.str() << ":" << endl;
// for (auto const& assign: assigns)
// cerr << " " << std::visit(AsmPrinter{}, *assign) << endl;
// }
}
void UnusedAssignEliminator::shortcutNestedLoop(TrackedStores const& _zeroRuns)
void UnusedAssignEliminator::shortcutNestedLoop(ActiveStores const& _zeroRuns)
{
// Shortcut to avoid horrible runtime:
// Change all assignments that were newly introduced in the for loop to "used".
// We do not have to do that with the "break" or "continue" paths, because
// they will be joined later anyway.
// TODO parallel traversal might be more efficient here.
for (auto& [variable, stores]: m_stores)
// TODO is this correct?
for (auto& [variable, stores]: m_activeStores)
for (auto& assignment: stores)
{
auto zeroIt = _zeroRuns.find(variable);
if (zeroIt != _zeroRuns.end() && zeroIt->second.count(assignment.first))
if (zeroIt != _zeroRuns.end() && zeroIt->second.count(assignment))
continue;
assignment.second = State::Value::Used;
m_usedStores.insert(assignment);
}
}
void UnusedAssignEliminator::finalizeFunctionDefinition(FunctionDefinition const& _functionDefinition)
{
for (auto const& param: _functionDefinition.parameters)
finalize(param.name, State::Unused);
for (auto const& retParam: _functionDefinition.returnVariables)
finalize(retParam.name, State::Used);
markUsed(retParam.name);
}
void UnusedAssignEliminator::changeUndecidedTo(YulString _variable, UnusedAssignEliminator::State _newState)
void UnusedAssignEliminator::markUsed(YulString _variable)
{
for (auto& assignment: m_stores[_variable])
if (assignment.second == State::Undecided)
assignment.second = _newState;
}
void UnusedAssignEliminator::finalize(YulString _variable, UnusedAssignEliminator::State _finalState)
{
std::map<Statement const*, State> stores = std::move(m_stores[_variable]);
m_stores.erase(_variable);
for (auto& breakAssignments: m_forLoopInfo.pendingBreakStmts)
{
util::joinMap(stores, std::move(breakAssignments[_variable]), State::join);
breakAssignments.erase(_variable);
}
for (auto& continueAssignments: m_forLoopInfo.pendingContinueStmts)
{
util::joinMap(stores, std::move(continueAssignments[_variable]), State::join);
continueAssignments.erase(_variable);
}
for (auto&& [statement, state]: stores)
if (
(state == State::Unused || (state == State::Undecided && _finalState == State::Unused)) &&
SideEffectsCollector{m_dialect, *std::get<Assignment>(*statement).value}.movable()
)
m_pendingRemovals.insert(statement);
for (auto& assignment: m_activeStores[_variable])
m_usedStores.insert(assignment);
// TODO is this correct?
m_activeStores.erase(_variable);
}

View File

@ -126,15 +126,10 @@ public:
void visit(Statement const& _statement) override;
private:
void shortcutNestedLoop(TrackedStores const& _beforeLoop) override;
void shortcutNestedLoop(ActiveStores const& _beforeLoop) override;
void finalizeFunctionDefinition(FunctionDefinition const& _functionDefinition) override;
void changeUndecidedTo(YulString _variable, State _newState);
/// Called when a variable goes out of scope. Sets the state of all still undecided
/// assignments to the final state. In this case, this also applies to pending
/// break and continue TrackedStores.
void finalize(YulString _variable, State _finalState);
void markUsed(YulString _variable);
std::set<YulString> m_declaredVariables;
std::set<YulString> m_returnVariables;

View File

@ -37,41 +37,41 @@ void UnusedStoreBase::operator()(If const& _if)
{
visit(*_if.condition);
TrackedStores skipBranch{m_stores};
ActiveStores skipBranch{m_activeStores};
(*this)(_if.body);
merge(m_stores, std::move(skipBranch));
merge(m_activeStores, std::move(skipBranch));
}
void UnusedStoreBase::operator()(Switch const& _switch)
{
visit(*_switch.expression);
TrackedStores const preState{m_stores};
ActiveStores const preState{m_activeStores};
bool hasDefault = false;
vector<TrackedStores> branches;
vector<ActiveStores> branches;
for (auto const& c: _switch.cases)
{
if (!c.value)
hasDefault = true;
(*this)(c.body);
branches.emplace_back(std::move(m_stores));
m_stores = preState;
branches.emplace_back(std::move(m_activeStores));
m_activeStores = preState;
}
if (hasDefault)
{
m_stores = std::move(branches.back());
m_activeStores = std::move(branches.back());
branches.pop_back();
}
for (auto& branch: branches)
merge(m_stores, std::move(branch));
merge(m_activeStores, std::move(branch));
}
void UnusedStoreBase::operator()(FunctionDefinition const& _functionDefinition)
{
ScopedSaveAndRestore outerAssignments(m_stores, {});
ScopedSaveAndRestore outerAssignments(m_activeStores, {});
ScopedSaveAndRestore forLoopInfo(m_forLoopInfo, {});
ScopedSaveAndRestore forLoopNestingDepth(m_forLoopNestingDepth, 0);
@ -94,10 +94,10 @@ void UnusedStoreBase::operator()(ForLoop const& _forLoop)
visit(*_forLoop.condition);
TrackedStores zeroRuns{m_stores};
ActiveStores zeroRuns{m_activeStores};
(*this)(_forLoop.body);
merge(m_stores, std::move(m_forLoopInfo.pendingContinueStmts));
merge(m_activeStores, std::move(m_forLoopInfo.pendingContinueStmts));
m_forLoopInfo.pendingContinueStmts = {};
(*this)(_forLoop.post);
@ -106,54 +106,54 @@ void UnusedStoreBase::operator()(ForLoop const& _forLoop)
if (m_forLoopNestingDepth < 6)
{
// Do the second run only for small nesting depths to avoid horrible runtime.
TrackedStores oneRun{m_stores};
ActiveStores oneRun{m_activeStores};
(*this)(_forLoop.body);
merge(m_stores, std::move(m_forLoopInfo.pendingContinueStmts));
merge(m_activeStores, std::move(m_forLoopInfo.pendingContinueStmts));
m_forLoopInfo.pendingContinueStmts.clear();
(*this)(_forLoop.post);
visit(*_forLoop.condition);
// Order of merging does not matter because "max" is commutative and associative.
merge(m_stores, std::move(oneRun));
merge(m_activeStores, std::move(oneRun));
}
else
// Shortcut to avoid horrible runtime.
shortcutNestedLoop(zeroRuns);
// Order of merging does not matter because "max" is commutative and associative.
merge(m_stores, std::move(zeroRuns));
merge(m_stores, std::move(m_forLoopInfo.pendingBreakStmts));
merge(m_activeStores, std::move(zeroRuns));
merge(m_activeStores, std::move(m_forLoopInfo.pendingBreakStmts));
m_forLoopInfo.pendingBreakStmts.clear();
}
void UnusedStoreBase::operator()(Break const&)
{
m_forLoopInfo.pendingBreakStmts.emplace_back(std::move(m_stores));
m_stores.clear();
m_forLoopInfo.pendingBreakStmts.emplace_back(std::move(m_activeStores));
m_activeStores.clear();
}
void UnusedStoreBase::operator()(Continue const&)
{
m_forLoopInfo.pendingContinueStmts.emplace_back(std::move(m_stores));
m_stores.clear();
m_forLoopInfo.pendingContinueStmts.emplace_back(std::move(m_activeStores));
m_activeStores.clear();
}
void UnusedStoreBase::merge(TrackedStores& _target, TrackedStores&& _other)
void UnusedStoreBase::merge(ActiveStores& _target, ActiveStores&& _other)
{
util::joinMap(_target, std::move(_other), [](
map<Statement const*, State>& _assignmentHere,
map<Statement const*, State>&& _assignmentThere
set<Statement const*>& _storesHere,
set<Statement const*>&& _storesThere
)
{
return util::joinMap(_assignmentHere, std::move(_assignmentThere), State::join);
_storesHere += _storesThere;
});
}
void UnusedStoreBase::merge(TrackedStores& _target, vector<TrackedStores>&& _source)
void UnusedStoreBase::merge(ActiveStores& _target, vector<ActiveStores>&& _source)
{
for (TrackedStores& ts: _source)
for (ActiveStores& ts: _source)
merge(_target, std::move(ts));
_source.clear();
}

View File

@ -57,28 +57,12 @@ public:
void operator()(Continue const&) override;
protected:
class State
{
public:
enum Value { Unused, Undecided, Used };
State(Value _value = Undecided): m_value(_value) {}
inline bool operator==(State _other) const { return m_value == _other.m_value; }
inline bool operator!=(State _other) const { return !operator==(_other); }
static inline void join(State& _a, State const& _b)
{
// Using "max" works here because of the order of the values in the enum.
_a.m_value = Value(std::max(int(_a.m_value), int(_b.m_value)));
}
private:
Value m_value = Undecided;
};
using TrackedStores = std::map<YulString, std::map<Statement const*, State>>;
using ActiveStores = std::map<YulString, std::set<Statement const*>>;
/// This function is called for a loop that is nested too deep to avoid
/// horrible runtime and should just resolve the situation in a pragmatic
/// and correct manner.
virtual void shortcutNestedLoop(TrackedStores const& _beforeLoop) = 0;
virtual void shortcutNestedLoop(ActiveStores const& _beforeLoop) = 0;
/// This function is called right before the scoped restore of the function definition.
virtual void finalizeFunctionDefinition(FunctionDefinition const& /*_functionDefinition*/) {}
@ -86,20 +70,24 @@ protected:
/// Joins the assignment mapping of @a _source into @a _target according to the rules laid out
/// above.
/// Will destroy @a _source.
static void merge(TrackedStores& _target, TrackedStores&& _source);
static void merge(TrackedStores& _target, std::vector<TrackedStores>&& _source);
static void merge(ActiveStores& _target, ActiveStores&& _source);
static void merge(ActiveStores& _target, std::vector<ActiveStores>&& _source);
Dialect const& m_dialect;
std::set<Statement const*> m_pendingRemovals;
TrackedStores m_stores;
/// Set of all stores encountered during the traversal
std::set<Statement const*> m_allStores;
/// Set of stores that are marked as being used.
std::set<Statement const*> m_usedStores;
/// Active (undecided) stores in the current branch.
ActiveStores m_activeStores;
/// Working data for traversing for-loops.
struct ForLoopInfo
{
/// Tracked assignment states for each break statement.
std::vector<TrackedStores> pendingBreakStmts;
std::vector<ActiveStores> pendingBreakStmts;
/// Tracked assignment states for each continue statement.
std::vector<TrackedStores> pendingContinueStmts;
std::vector<ActiveStores> pendingContinueStmts;
};
ForLoopInfo m_forLoopInfo;
size_t m_forLoopNestingDepth = 0;

View File

@ -50,359 +50,359 @@ static string const one{"@ 1"};
static string const thirtyTwo{"@ 32"};
void UnusedStoreEliminator::run(OptimiserStepContext& _context, Block& _ast)
void UnusedStoreEliminator::run(OptimiserStepContext& /*_context*/, Block& /*_ast*/)
{
map<YulString, SideEffects> functionSideEffects = SideEffectsPropagator::sideEffects(
_context.dialect,
CallGraphGenerator::callGraph(_ast)
);
// map<YulString, SideEffects> functionSideEffects = SideEffectsPropagator::sideEffects(
// _context.dialect,
// CallGraphGenerator::callGraph(_ast)
// );
SSAValueTracker ssaValues;
ssaValues(_ast);
map<YulString, AssignedValue> values;
for (auto const& [name, expression]: ssaValues.values())
values[name] = AssignedValue{expression, {}};
Expression const zeroLiteral{Literal{{}, LiteralKind::Number, YulString{"0"}, {}}};
Expression const oneLiteral{Literal{{}, LiteralKind::Number, YulString{"1"}, {}}};
Expression const thirtyTwoLiteral{Literal{{}, LiteralKind::Number, YulString{"32"}, {}}};
values[YulString{zero}] = AssignedValue{&zeroLiteral, {}};
values[YulString{one}] = AssignedValue{&oneLiteral, {}};
values[YulString{thirtyTwo}] = AssignedValue{&thirtyTwoLiteral, {}};
// SSAValueTracker ssaValues;
// ssaValues(_ast);
// map<YulString, AssignedValue> values;
// for (auto const& [name, expression]: ssaValues.values())
// values[name] = AssignedValue{expression, {}};
// Expression const zeroLiteral{Literal{{}, LiteralKind::Number, YulString{"0"}, {}}};
// Expression const oneLiteral{Literal{{}, LiteralKind::Number, YulString{"1"}, {}}};
// Expression const thirtyTwoLiteral{Literal{{}, LiteralKind::Number, YulString{"32"}, {}}};
// values[YulString{zero}] = AssignedValue{&zeroLiteral, {}};
// values[YulString{one}] = AssignedValue{&oneLiteral, {}};
// values[YulString{thirtyTwo}] = AssignedValue{&thirtyTwoLiteral, {}};
bool const ignoreMemory = MSizeFinder::containsMSize(_context.dialect, _ast);
UnusedStoreEliminator rse{
_context.dialect,
functionSideEffects,
ControlFlowSideEffectsCollector{_context.dialect, _ast}.functionSideEffectsNamed(),
values,
ignoreMemory
};
rse(_ast);
if (
auto evmDialect = dynamic_cast<EVMDialect const*>(&_context.dialect);
evmDialect && evmDialect->providesObjectAccess()
)
rse.changeUndecidedTo(State::Unused, Location::Memory);
else
rse.changeUndecidedTo(State::Used, Location::Memory);
rse.changeUndecidedTo(State::Used, Location::Storage);
rse.scheduleUnusedForDeletion();
// bool const ignoreMemory = MSizeFinder::containsMSize(_context.dialect, _ast);
// UnusedStoreEliminator rse{
// _context.dialect,
// functionSideEffects,
// ControlFlowSideEffectsCollector{_context.dialect, _ast}.functionSideEffectsNamed(),
// values,
// ignoreMemory
// };
// rse(_ast);
// if (
// auto evmDialect = dynamic_cast<EVMDialect const*>(&_context.dialect);
// evmDialect && evmDialect->providesObjectAccess()
// )
// rse.changeUndecidedTo(State::Unused, Location::Memory);
// else
// rse.changeUndecidedTo(State::Used, Location::Memory);
// rse.changeUndecidedTo(State::Used, Location::Storage);
// rse.scheduleUnusedForDeletion();
StatementRemover remover(rse.m_pendingRemovals);
remover(_ast);
// StatementRemover remover(rse.m_pendingRemovals);
// remover(_ast);
}
void UnusedStoreEliminator::operator()(FunctionCall const& _functionCall)
{
UnusedStoreBase::operator()(_functionCall);
//void UnusedStoreEliminator::operator()(FunctionCall const& _functionCall)
//{
// UnusedStoreBase::operator()(_functionCall);
for (Operation const& op: operationsFromFunctionCall(_functionCall))
applyOperation(op);
// for (Operation const& op: operationsFromFunctionCall(_functionCall))
// applyOperation(op);
ControlFlowSideEffects sideEffects;
if (auto builtin = m_dialect.builtin(_functionCall.functionName.name))
sideEffects = builtin->controlFlowSideEffects;
else
sideEffects = m_controlFlowSideEffects.at(_functionCall.functionName.name);
// ControlFlowSideEffects sideEffects;
// if (auto builtin = m_dialect.builtin(_functionCall.functionName.name))
// sideEffects = builtin->controlFlowSideEffects;
// else
// sideEffects = m_controlFlowSideEffects.at(_functionCall.functionName.name);
if (sideEffects.canTerminate)
changeUndecidedTo(State::Used, Location::Storage);
if (!sideEffects.canContinue)
{
changeUndecidedTo(State::Unused, Location::Memory);
if (!sideEffects.canTerminate)
changeUndecidedTo(State::Unused, Location::Storage);
}
}
// if (sideEffects.canTerminate)
// changeUndecidedTo(State::Used, Location::Storage);
// if (!sideEffects.canContinue)
// {
// changeUndecidedTo(State::Unused, Location::Memory);
// if (!sideEffects.canTerminate)
// changeUndecidedTo(State::Unused, Location::Storage);
// }
//}
void UnusedStoreEliminator::operator()(FunctionDefinition const& _functionDefinition)
{
ScopedSaveAndRestore storeOperations(m_storeOperations, {});
UnusedStoreBase::operator()(_functionDefinition);
}
//void UnusedStoreEliminator::operator()(FunctionDefinition const& _functionDefinition)
//{
// ScopedSaveAndRestore storeOperations(m_storeOperations, {});
// UnusedStoreBase::operator()(_functionDefinition);
//}
void UnusedStoreEliminator::operator()(Leave const&)
{
changeUndecidedTo(State::Used);
}
//void UnusedStoreEliminator::operator()(Leave const&)
//{
// changeUndecidedTo(State::Used);
//}
void UnusedStoreEliminator::visit(Statement const& _statement)
{
using evmasm::Instruction;
//void UnusedStoreEliminator::visit(Statement const& _statement)
//{
// using evmasm::Instruction;
UnusedStoreBase::visit(_statement);
// UnusedStoreBase::visit(_statement);
auto const* exprStatement = get_if<ExpressionStatement>(&_statement);
if (!exprStatement)
return;
// auto const* exprStatement = get_if<ExpressionStatement>(&_statement);
// if (!exprStatement)
// return;
FunctionCall const* funCall = get_if<FunctionCall>(&exprStatement->expression);
yulAssert(funCall);
optional<Instruction> instruction = toEVMInstruction(m_dialect, funCall->functionName.name);
if (!instruction)
return;
// FunctionCall const* funCall = get_if<FunctionCall>(&exprStatement->expression);
// yulAssert(funCall);
// optional<Instruction> instruction = toEVMInstruction(m_dialect, funCall->functionName.name);
// if (!instruction)
// return;
if (!ranges::all_of(funCall->arguments, [](Expression const& _expr) -> bool {
return get_if<Identifier>(&_expr) || get_if<Literal>(&_expr);
}))
return;
// if (!ranges::all_of(funCall->arguments, [](Expression const& _expr) -> bool {
// return get_if<Identifier>(&_expr) || get_if<Literal>(&_expr);
// }))
// return;
// We determine if this is a store instruction without additional side-effects
// both by querying a combination of semantic information and by listing the instructions.
// This way the assert below should be triggered on any change.
using evmasm::SemanticInformation;
bool isStorageWrite = (*instruction == Instruction::SSTORE);
bool isMemoryWrite =
*instruction == Instruction::EXTCODECOPY ||
*instruction == Instruction::CODECOPY ||
*instruction == Instruction::CALLDATACOPY ||
*instruction == Instruction::RETURNDATACOPY ||
*instruction == Instruction::MSTORE ||
*instruction == Instruction::MSTORE8;
bool isCandidateForRemoval =
SemanticInformation::otherState(*instruction) != SemanticInformation::Write && (
SemanticInformation::storage(*instruction) == SemanticInformation::Write ||
(!m_ignoreMemory && SemanticInformation::memory(*instruction) == SemanticInformation::Write)
);
yulAssert(isCandidateForRemoval == (isStorageWrite || (!m_ignoreMemory && isMemoryWrite)));
if (isCandidateForRemoval)
{
State initialState = State::Undecided;
if (*instruction == Instruction::RETURNDATACOPY)
{
initialState = State::Used;
auto startOffset = identifierNameIfSSA(funCall->arguments.at(1));
auto length = identifierNameIfSSA(funCall->arguments.at(2));
KnowledgeBase knowledge(m_dialect, [this](YulString _var) { return util::valueOrNullptr(m_ssaValues, _var); });
if (length && startOffset)
{
FunctionCall const* lengthCall = get_if<FunctionCall>(m_ssaValues.at(*length).value);
if (
knowledge.knownToBeZero(*startOffset) &&
lengthCall &&
toEVMInstruction(m_dialect, lengthCall->functionName.name) == Instruction::RETURNDATASIZE
)
initialState = State::Undecided;
}
}
m_stores[YulString{}].insert({&_statement, initialState});
vector<Operation> operations = operationsFromFunctionCall(*funCall);
yulAssert(operations.size() == 1, "");
m_storeOperations[&_statement] = std::move(operations.front());
}
}
// // We determine if this is a store instruction without additional side-effects
// // both by querying a combination of semantic information and by listing the instructions.
// // This way the assert below should be triggered on any change.
// using evmasm::SemanticInformation;
// bool isStorageWrite = (*instruction == Instruction::SSTORE);
// bool isMemoryWrite =
// *instruction == Instruction::EXTCODECOPY ||
// *instruction == Instruction::CODECOPY ||
// *instruction == Instruction::CALLDATACOPY ||
// *instruction == Instruction::RETURNDATACOPY ||
// *instruction == Instruction::MSTORE ||
// *instruction == Instruction::MSTORE8;
// bool isCandidateForRemoval =
// SemanticInformation::otherState(*instruction) != SemanticInformation::Write && (
// SemanticInformation::storage(*instruction) == SemanticInformation::Write ||
// (!m_ignoreMemory && SemanticInformation::memory(*instruction) == SemanticInformation::Write)
// );
// yulAssert(isCandidateForRemoval == (isStorageWrite || (!m_ignoreMemory && isMemoryWrite)));
// if (isCandidateForRemoval)
// {
// State initialState = State::Undecided;
// if (*instruction == Instruction::RETURNDATACOPY)
// {
// initialState = State::Used;
// auto startOffset = identifierNameIfSSA(funCall->arguments.at(1));
// auto length = identifierNameIfSSA(funCall->arguments.at(2));
// KnowledgeBase knowledge(m_dialect, [this](YulString _var) { return util::valueOrNullptr(m_ssaValues, _var); });
// if (length && startOffset)
// {
// FunctionCall const* lengthCall = get_if<FunctionCall>(m_ssaValues.at(*length).value);
// if (
// knowledge.knownToBeZero(*startOffset) &&
// lengthCall &&
// toEVMInstruction(m_dialect, lengthCall->functionName.name) == Instruction::RETURNDATASIZE
// )
// initialState = State::Undecided;
// }
// }
// m_activeStores[YulString{}].insert({&_statement, initialState});
// vector<Operation> operations = operationsFromFunctionCall(*funCall);
// yulAssert(operations.size() == 1, "");
// m_storeOperations[&_statement] = std::move(operations.front());
// }
//}
void UnusedStoreEliminator::finalizeFunctionDefinition(FunctionDefinition const&)
{
changeUndecidedTo(State::Used);
scheduleUnusedForDeletion();
}
//void UnusedStoreEliminator::finalizeFunctionDefinition(FunctionDefinition const&)
//{
// changeUndecidedTo(State::Used);
// scheduleUnusedForDeletion();
//}
vector<UnusedStoreEliminator::Operation> UnusedStoreEliminator::operationsFromFunctionCall(
FunctionCall const& _functionCall
) const
{
using evmasm::Instruction;
//vector<UnusedStoreEliminator::Operation> UnusedStoreEliminator::operationsFromFunctionCall(
// FunctionCall const& _functionCall
//) const
//{
// using evmasm::Instruction;
YulString functionName = _functionCall.functionName.name;
SideEffects sideEffects;
if (BuiltinFunction const* f = m_dialect.builtin(functionName))
sideEffects = f->sideEffects;
else
sideEffects = m_functionSideEffects.at(functionName);
// YulString functionName = _functionCall.functionName.name;
// SideEffects sideEffects;
// if (BuiltinFunction const* f = m_dialect.builtin(functionName))
// sideEffects = f->sideEffects;
// else
// sideEffects = m_functionSideEffects.at(functionName);
optional<Instruction> instruction = toEVMInstruction(m_dialect, functionName);
if (!instruction)
{
vector<Operation> result;
// Unknown read is worse than unknown write.
if (sideEffects.memory != SideEffects::Effect::None)
result.emplace_back(Operation{Location::Memory, Effect::Read, {}, {}});
if (sideEffects.storage != SideEffects::Effect::None)
result.emplace_back(Operation{Location::Storage, Effect::Read, {}, {}});
return result;
}
// optional<Instruction> instruction = toEVMInstruction(m_dialect, functionName);
// if (!instruction)
// {
// vector<Operation> result;
// // Unknown read is worse than unknown write.
// if (sideEffects.memory != SideEffects::Effect::None)
// result.emplace_back(Operation{Location::Memory, Effect::Read, {}, {}});
// if (sideEffects.storage != SideEffects::Effect::None)
// result.emplace_back(Operation{Location::Storage, Effect::Read, {}, {}});
// return result;
// }
using evmasm::SemanticInformation;
// using evmasm::SemanticInformation;
return util::applyMap(
SemanticInformation::readWriteOperations(*instruction),
[&](SemanticInformation::Operation const& _op) -> Operation
{
yulAssert(!(_op.lengthParameter && _op.lengthConstant));
yulAssert(_op.effect != Effect::None);
Operation ourOp{_op.location, _op.effect, {}, {}};
if (_op.startParameter)
ourOp.start = identifierNameIfSSA(_functionCall.arguments.at(*_op.startParameter));
if (_op.lengthParameter)
ourOp.length = identifierNameIfSSA(_functionCall.arguments.at(*_op.lengthParameter));
if (_op.lengthConstant)
switch (*_op.lengthConstant)
{
case 1: ourOp.length = YulString(one); break;
case 32: ourOp.length = YulString(thirtyTwo); break;
default: yulAssert(false);
}
return ourOp;
}
);
}
// return util::applyMap(
// SemanticInformation::readWriteOperations(*instruction),
// [&](SemanticInformation::Operation const& _op) -> Operation
// {
// yulAssert(!(_op.lengthParameter && _op.lengthConstant));
// yulAssert(_op.effect != Effect::None);
// Operation ourOp{_op.location, _op.effect, {}, {}};
// if (_op.startParameter)
// ourOp.start = identifierNameIfSSA(_functionCall.arguments.at(*_op.startParameter));
// if (_op.lengthParameter)
// ourOp.length = identifierNameIfSSA(_functionCall.arguments.at(*_op.lengthParameter));
// if (_op.lengthConstant)
// switch (*_op.lengthConstant)
// {
// case 1: ourOp.length = YulString(one); break;
// case 32: ourOp.length = YulString(thirtyTwo); break;
// default: yulAssert(false);
// }
// return ourOp;
// }
// );
//}
void UnusedStoreEliminator::applyOperation(UnusedStoreEliminator::Operation const& _operation)
{
for (auto& [statement, state]: m_stores[YulString{}])
if (state == State::Undecided)
{
Operation const& storeOperation = m_storeOperations.at(statement);
if (_operation.effect == Effect::Read && !knownUnrelated(storeOperation, _operation))
state = State::Used;
else if (_operation.effect == Effect::Write && knownCovered(storeOperation, _operation))
state = State::Unused;
}
}
//void UnusedStoreEliminator::applyOperation(UnusedStoreEliminator::Operation const& _operation)
//{
// for (auto& [statement, state]: m_activeStores[YulString{}])
// if (state == State::Undecided)
// {
// Operation const& storeOperation = m_storeOperations.at(statement);
// if (_operation.effect == Effect::Read && !knownUnrelated(storeOperation, _operation))
// state = State::Used;
// else if (_operation.effect == Effect::Write && knownCovered(storeOperation, _operation))
// state = State::Unused;
// }
//}
bool UnusedStoreEliminator::knownUnrelated(
UnusedStoreEliminator::Operation const& _op1,
UnusedStoreEliminator::Operation const& _op2
) const
{
KnowledgeBase knowledge(m_dialect, [this](YulString _var) { return util::valueOrNullptr(m_ssaValues, _var); });
//bool UnusedStoreEliminator::knownUnrelated(
// UnusedStoreEliminator::Operation const& _op1,
// UnusedStoreEliminator::Operation const& _op2
//) const
//{
// KnowledgeBase knowledge(m_dialect, [this](YulString _var) { return util::valueOrNullptr(m_ssaValues, _var); });
if (_op1.location != _op2.location)
return true;
if (_op1.location == Location::Storage)
{
if (_op1.start && _op2.start)
{
yulAssert(
_op1.length &&
_op2.length &&
knowledge.valueIfKnownConstant(*_op1.length) == 1 &&
knowledge.valueIfKnownConstant(*_op2.length) == 1
);
return knowledge.knownToBeDifferent(*_op1.start, *_op2.start);
}
}
else
{
yulAssert(_op1.location == Location::Memory, "");
if (
(_op1.length && knowledge.knownToBeZero(*_op1.length)) ||
(_op2.length && knowledge.knownToBeZero(*_op2.length))
)
return true;
// if (_op1.location != _op2.location)
// return true;
// if (_op1.location == Location::Storage)
// {
// if (_op1.start && _op2.start)
// {
// yulAssert(
// _op1.length &&
// _op2.length &&
// knowledge.valueIfKnownConstant(*_op1.length) == 1 &&
// knowledge.valueIfKnownConstant(*_op2.length) == 1
// );
// return knowledge.knownToBeDifferent(*_op1.start, *_op2.start);
// }
// }
// else
// {
// yulAssert(_op1.location == Location::Memory, "");
// if (
// (_op1.length && knowledge.knownToBeZero(*_op1.length)) ||
// (_op2.length && knowledge.knownToBeZero(*_op2.length))
// )
// return true;
if (_op1.start && _op1.length && _op2.start)
{
optional<u256> length1 = knowledge.valueIfKnownConstant(*_op1.length);
optional<u256> start1 = knowledge.valueIfKnownConstant(*_op1.start);
optional<u256> start2 = knowledge.valueIfKnownConstant(*_op2.start);
if (
(length1 && start1 && start2) &&
*start1 + *length1 >= *start1 && // no overflow
*start1 + *length1 <= *start2
)
return true;
}
if (_op2.start && _op2.length && _op1.start)
{
optional<u256> length2 = knowledge.valueIfKnownConstant(*_op2.length);
optional<u256> start2 = knowledge.valueIfKnownConstant(*_op2.start);
optional<u256> start1 = knowledge.valueIfKnownConstant(*_op1.start);
if (
(length2 && start2 && start1) &&
*start2 + *length2 >= *start2 && // no overflow
*start2 + *length2 <= *start1
)
return true;
}
// if (_op1.start && _op1.length && _op2.start)
// {
// optional<u256> length1 = knowledge.valueIfKnownConstant(*_op1.length);
// optional<u256> start1 = knowledge.valueIfKnownConstant(*_op1.start);
// optional<u256> start2 = knowledge.valueIfKnownConstant(*_op2.start);
// if (
// (length1 && start1 && start2) &&
// *start1 + *length1 >= *start1 && // no overflow
// *start1 + *length1 <= *start2
// )
// return true;
// }
// if (_op2.start && _op2.length && _op1.start)
// {
// optional<u256> length2 = knowledge.valueIfKnownConstant(*_op2.length);
// optional<u256> start2 = knowledge.valueIfKnownConstant(*_op2.start);
// optional<u256> start1 = knowledge.valueIfKnownConstant(*_op1.start);
// if (
// (length2 && start2 && start1) &&
// *start2 + *length2 >= *start2 && // no overflow
// *start2 + *length2 <= *start1
// )
// return true;
// }
if (_op1.start && _op1.length && _op2.start && _op2.length)
{
optional<u256> length1 = knowledge.valueIfKnownConstant(*_op1.length);
optional<u256> length2 = knowledge.valueIfKnownConstant(*_op2.length);
if (
(length1 && *length1 <= 32) &&
(length2 && *length2 <= 32) &&
knowledge.knownToBeDifferentByAtLeast32(*_op1.start, *_op2.start)
)
return true;
}
}
// if (_op1.start && _op1.length && _op2.start && _op2.length)
// {
// optional<u256> length1 = knowledge.valueIfKnownConstant(*_op1.length);
// optional<u256> length2 = knowledge.valueIfKnownConstant(*_op2.length);
// if (
// (length1 && *length1 <= 32) &&
// (length2 && *length2 <= 32) &&
// knowledge.knownToBeDifferentByAtLeast32(*_op1.start, *_op2.start)
// )
// return true;
// }
// }
return false;
}
// return false;
//}
bool UnusedStoreEliminator::knownCovered(
UnusedStoreEliminator::Operation const& _covered,
UnusedStoreEliminator::Operation const& _covering
) const
{
if (_covered.location != _covering.location)
return false;
if (
(_covered.start && _covered.start == _covering.start) &&
(_covered.length && _covered.length == _covering.length)
)
return true;
if (_covered.location == Location::Memory)
{
KnowledgeBase knowledge(m_dialect, [this](YulString _var) { return util::valueOrNullptr(m_ssaValues, _var); });
//bool UnusedStoreEliminator::knownCovered(
// UnusedStoreEliminator::Operation const& _covered,
// UnusedStoreEliminator::Operation const& _covering
//) const
//{
// if (_covered.location != _covering.location)
// return false;
// if (
// (_covered.start && _covered.start == _covering.start) &&
// (_covered.length && _covered.length == _covering.length)
// )
// return true;
// if (_covered.location == Location::Memory)
// {
// KnowledgeBase knowledge(m_dialect, [this](YulString _var) { return util::valueOrNullptr(m_ssaValues, _var); });
if (_covered.length && knowledge.knownToBeZero(*_covered.length))
return true;
// if (_covered.length && knowledge.knownToBeZero(*_covered.length))
// return true;
// Condition (i = cover_i_ng, e = cover_e_d):
// i.start <= e.start && e.start + e.length <= i.start + i.length
if (!_covered.start || !_covering.start || !_covered.length || !_covering.length)
return false;
optional<u256> coveredLength = knowledge.valueIfKnownConstant(*_covered.length);
optional<u256> coveringLength = knowledge.valueIfKnownConstant(*_covering.length);
if (knowledge.knownToBeEqual(*_covered.start, *_covering.start))
if (coveredLength && coveringLength && *coveredLength <= *coveringLength)
return true;
optional<u256> coveredStart = knowledge.valueIfKnownConstant(*_covered.start);
optional<u256> coveringStart = knowledge.valueIfKnownConstant(*_covering.start);
if (coveredStart && coveringStart && coveredLength && coveringLength)
if (
*coveringStart <= *coveredStart &&
*coveringStart + *coveringLength >= *coveringStart && // no overflow
*coveredStart + *coveredLength >= *coveredStart && // no overflow
*coveredStart + *coveredLength <= *coveringStart + *coveringLength
)
return true;
// // Condition (i = cover_i_ng, e = cover_e_d):
// // i.start <= e.start && e.start + e.length <= i.start + i.length
// if (!_covered.start || !_covering.start || !_covered.length || !_covering.length)
// return false;
// optional<u256> coveredLength = knowledge.valueIfKnownConstant(*_covered.length);
// optional<u256> coveringLength = knowledge.valueIfKnownConstant(*_covering.length);
// if (knowledge.knownToBeEqual(*_covered.start, *_covering.start))
// if (coveredLength && coveringLength && *coveredLength <= *coveringLength)
// return true;
// optional<u256> coveredStart = knowledge.valueIfKnownConstant(*_covered.start);
// optional<u256> coveringStart = knowledge.valueIfKnownConstant(*_covering.start);
// if (coveredStart && coveringStart && coveredLength && coveringLength)
// if (
// *coveringStart <= *coveredStart &&
// *coveringStart + *coveringLength >= *coveringStart && // no overflow
// *coveredStart + *coveredLength >= *coveredStart && // no overflow
// *coveredStart + *coveredLength <= *coveringStart + *coveringLength
// )
// return true;
// TODO for this we probably need a non-overflow assumption as above.
// Condition (i = cover_i_ng, e = cover_e_d):
// i.start <= e.start && e.start + e.length <= i.start + i.length
}
return false;
}
// // TODO for this we probably need a non-overflow assumption as above.
// // Condition (i = cover_i_ng, e = cover_e_d):
// // i.start <= e.start && e.start + e.length <= i.start + i.length
// }
// return false;
//}
void UnusedStoreEliminator::changeUndecidedTo(
State _newState,
optional<UnusedStoreEliminator::Location> _onlyLocation)
{
for (auto& [statement, state]: m_stores[YulString{}])
if (
state == State::Undecided &&
(_onlyLocation == nullopt || *_onlyLocation == m_storeOperations.at(statement).location)
)
state = _newState;
}
//void UnusedStoreEliminator::changeUndecidedTo(
// State _newState,
// optional<UnusedStoreEliminator::Location> _onlyLocation)
//{
// for (auto& [statement, state]: m_activeStores[YulString{}])
// if (
// state == State::Undecided &&
// (_onlyLocation == nullopt || *_onlyLocation == m_storeOperations.at(statement).location)
// )
// state = _newState;
//}
optional<YulString> UnusedStoreEliminator::identifierNameIfSSA(Expression const& _expression) const
{
if (Identifier const* identifier = get_if<Identifier>(&_expression))
if (m_ssaValues.count(identifier->name))
return {identifier->name};
return nullopt;
}
//optional<YulString> UnusedStoreEliminator::identifierNameIfSSA(Expression const& _expression) const
//{
// if (Identifier const* identifier = get_if<Identifier>(&_expression))
// if (m_ssaValues.count(identifier->name))
// return {identifier->name};
// return nullopt;
//}
void UnusedStoreEliminator::scheduleUnusedForDeletion()
{
for (auto const& [statement, state]: m_stores[YulString{}])
if (state == State::Unused)
m_pendingRemovals.insert(statement);
}
//void UnusedStoreEliminator::scheduleUnusedForDeletion()
//{
// for (auto const& [statement, state]: m_activeStores[YulString{}])
// if (state == State::Unused)
// m_pendingRemovals.insert(statement);
//}

View File

@ -64,63 +64,63 @@ public:
explicit UnusedStoreEliminator(
Dialect const& _dialect,
std::map<YulString, SideEffects> const& _functionSideEffects,
std::map<YulString, ControlFlowSideEffects> _controlFlowSideEffects,
std::map<YulString, AssignedValue> const& _ssaValues,
bool _ignoreMemory
std::map<YulString, SideEffects> const& ,//_functionSideEffects,
std::map<YulString, ControlFlowSideEffects>,// _controlFlowSideEffects,
std::map<YulString, AssignedValue> const&,// _ssaValues,
bool// _ignoreMemory
):
UnusedStoreBase(_dialect),
m_ignoreMemory(_ignoreMemory),
m_functionSideEffects(_functionSideEffects),
m_controlFlowSideEffects(_controlFlowSideEffects),
m_ssaValues(_ssaValues)
UnusedStoreBase(_dialect)//,
// m_ignoreMemory(_ignoreMemory),
// m_functionSideEffects(_functionSideEffects),
// m_controlFlowSideEffects(_controlFlowSideEffects),
// m_ssaValues(_ssaValues)
{}
using UnusedStoreBase::operator();
void operator()(FunctionCall const& _functionCall) override;
void operator()(FunctionDefinition const&) override;
void operator()(Leave const&) override;
// using UnusedStoreBase::operator();
// void operator()(FunctionCall const& _functionCall) override;
// void operator()(FunctionDefinition const&) override;
// void operator()(Leave const&) override;
using UnusedStoreBase::visit;
void visit(Statement const& _statement) override;
// using UnusedStoreBase::visit;
// void visit(Statement const& _statement) override;
using Location = evmasm::SemanticInformation::Location;
using Effect = evmasm::SemanticInformation::Effect;
struct Operation
{
Location location;
Effect effect;
/// Start of affected area. Unknown if not provided.
std::optional<YulString> start;
/// Length of affected area, unknown if not provided.
/// Unused for storage.
std::optional<YulString> length;
};
// using Location = evmasm::SemanticInformation::Location;
// using Effect = evmasm::SemanticInformation::Effect;
// struct Operation
// {
// Location location;
// Effect effect;
// /// Start of affected area. Unknown if not provided.
// std::optional<YulString> start;
// /// Length of affected area, unknown if not provided.
// /// Unused for storage.
// std::optional<YulString> length;
// };
private:
void shortcutNestedLoop(TrackedStores const&) override
void shortcutNestedLoop(ActiveStores const&) override
{
// We might only need to do this for newly introduced stores in the loop.
changeUndecidedTo(State::Used);
// changeUndecidedTo(State::Used);
}
void finalizeFunctionDefinition(FunctionDefinition const&) override;
// void finalizeFunctionDefinition(FunctionDefinition const&) override;
std::vector<Operation> operationsFromFunctionCall(FunctionCall const& _functionCall) const;
void applyOperation(Operation const& _operation);
bool knownUnrelated(Operation const& _op1, Operation const& _op2) const;
bool knownCovered(Operation const& _covered, Operation const& _covering) const;
// std::vector<Operation> operationsFromFunctionCall(FunctionCall const& _functionCall) const;
// void applyOperation(Operation const& _operation);
// bool knownUnrelated(Operation const& _op1, Operation const& _op2) const;
// bool knownCovered(Operation const& _covered, Operation const& _covering) const;
void changeUndecidedTo(State _newState, std::optional<Location> _onlyLocation = std::nullopt);
void scheduleUnusedForDeletion();
// void changeUndecidedTo(State _newState, std::optional<Location> _onlyLocation = std::nullopt);
// void scheduleUnusedForDeletion();
std::optional<YulString> identifierNameIfSSA(Expression const& _expression) const;
// std::optional<YulString> identifierNameIfSSA(Expression const& _expression) const;
bool const m_ignoreMemory;
std::map<YulString, SideEffects> const& m_functionSideEffects;
std::map<YulString, ControlFlowSideEffects> m_controlFlowSideEffects;
std::map<YulString, AssignedValue> const& m_ssaValues;
// bool const m_ignoreMemory;
// std::map<YulString, SideEffects> const& m_functionSideEffects;
// std::map<YulString, ControlFlowSideEffects> m_controlFlowSideEffects;
// std::map<YulString, AssignedValue> const& m_ssaValues;
std::map<Statement const*, Operation> m_storeOperations;
// std::map<Statement const*, Operation> m_storeOperations;
};
}

View File

@ -46,10 +46,7 @@
// for { } 1 { }
// {
// for { } 1 { a := 10 }
// {
// b := 12
// b := 11
// }
// { b := 11 }
// }
// }
// }