Implement signed multiplication for sol->yul code generation.

This commit is contained in:
Daniel Kirchner 2019-06-12 14:06:13 +02:00 committed by chriseth
parent e4c884ae13
commit a5b9f634ef
5 changed files with 84 additions and 23 deletions

View File

@ -409,31 +409,35 @@ string YulUtilFunctions::overflowCheckedIntAddFunction(IntegerType const& _type)
});
}
string YulUtilFunctions::overflowCheckedUIntMulFunction(size_t _bits)
string YulUtilFunctions::overflowCheckedIntMulFunction(IntegerType const& _type)
{
solAssert(0 < _bits && _bits <= 256 && _bits % 8 == 0, "");
string functionName = "checked_mul_uint_" + to_string(_bits);
string functionName = "checked_mul_" + _type.identifier();
return m_functionCollector->createFunction(functionName, [&]() {
return
// - The current overflow check *before* the multiplication could
// be replaced by the following check *after* the multiplication:
// if and(iszero(iszero(x)), iszero(eq(div(product, x), y))) { revert(0, 0) }
// - The case the x equals 0 could be treated separately and directly return zero.
// Multiplication by zero could be treated separately and directly return zero.
Whiskers(R"(
function <functionName>(x, y) -> product {
if and(iszero(iszero(x)), lt(div(<mask>, x), y)) { revert(0, 0) }
<?shortType>
product := mulmod(x, y, <powerOfTwo>)
<!shortType>
product := mul(x, y)
</shortType>
<?signed>
// overflow, if x > 0, y > 0 and x > (maxValue / y)
if and(and(sgt(x, 0), sgt(y, 0)), gt(x, div(<maxValue>, y))) { revert(0, 0) }
// underflow, if x > 0, y < 0 and y < (minValue / x)
if and(and(sgt(x, 0), slt(y, 0)), slt(y, sdiv(<minValue>, x))) { revert(0, 0) }
// underflow, if x < 0, y > 0 and x < (minValue / y)
if and(and(slt(x, 0), sgt(y, 0)), slt(x, sdiv(<minValue>, y))) { revert(0, 0) }
// overflow, if x < 0, y < 0 and x < (maxValue / y)
if and(and(slt(x, 0), slt(y, 0)), slt(x, sdiv(<maxValue>, y))) { revert(0, 0) }
<!signed>
// overflow, if x != 0 and y > (maxValue / x)
if and(iszero(iszero(x)), gt(y, div(<maxValue>, x))) { revert(0, 0) }
</signed>
product := mul(x, y)
}
)")
("shortType", _bits < 256)
("functionName", functionName)
("powerOfTwo", toCompactHexWithPrefix(u256(1) << _bits))
("mask", toCompactHexWithPrefix((u256(1) << _bits) - 1))
.render();
("functionName", functionName)
("signed", _type.isSigned())
("maxValue", toCompactHexWithPrefix(u256(_type.maxValue())))
("minValue", toCompactHexWithPrefix(u256(_type.minValue())))
.render();
});
}
@ -620,7 +624,7 @@ string YulUtilFunctions::arrayConvertLengthToSize(ArrayType const& _type)
("multiSlot", baseType.storageSize() > 1)
("itemsPerSlot", to_string(32 / baseStorageBytes))
("storageSize", baseType.storageSize().str())
("mul", overflowCheckedUIntMulFunction(TypeProvider::uint256()->numBits()))
("mul", overflowCheckedIntMulFunction(*TypeProvider::uint256()))
.render();
}
case DataLocation::CallData: // fallthrough
@ -636,7 +640,7 @@ string YulUtilFunctions::arrayConvertLengthToSize(ArrayType const& _type)
("functionName", functionName)
("elementSize", _type.location() == DataLocation::Memory ? baseType.memoryHeadSize() : baseType.calldataEncodedSize())
("byteArray", _type.isByteArray())
("mul", overflowCheckedUIntMulFunction(TypeProvider::uint256()->numBits()))
("mul", overflowCheckedIntMulFunction(*TypeProvider::uint256()))
.render();
default:
solAssert(false, "");

View File

@ -96,7 +96,7 @@ public:
std::string overflowCheckedIntAddFunction(IntegerType const& _type);
/// signature: (x, y) -> product
std::string overflowCheckedUIntMulFunction(size_t _bits);
std::string overflowCheckedIntMulFunction(IntegerType const& _type);
/// @returns name of function to perform division on integers.
/// Checks for division by zero and the special case of

View File

@ -1136,8 +1136,7 @@ string IRGeneratorForStatements::binaryOperation(
fun = m_utils.overflowCheckedIntSubFunction(*type);
break;
case Token::Mul:
if (!type->isSigned())
fun = m_utils.overflowCheckedUIntMulFunction(type->numBits());
fun = m_utils.overflowCheckedIntMulFunction(*type);
break;
case Token::Div:
fun = m_utils.overflowCheckedIntDivFunction(*type);

View File

@ -0,0 +1,58 @@
contract C {
function f(int a, int b) public pure returns (int x) {
x = a * b;
}
function g(int8 a, int8 b) public pure returns (int8 x) {
x = a * b;
}
}
// ====
// compileViaYul: true
// ----
// f(int256,int256): 5, 6 -> 30
// f(int256,int256): -1, 1 -> -1
// f(int256,int256): -1, 2 -> -2
// # positive, positive #
// f(int256,int256): 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, 2 -> 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE
// f(int256,int256): 0x4000000000000000000000000000000000000000000000000000000000000000, 2 -> FAILURE
// f(int256,int256): 2, 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -> 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE
// f(int256,int256): 2, 0x4000000000000000000000000000000000000000000000000000000000000000 -> FAILURE
// # positive, negative #
// f(int256,int256): 0x4000000000000000000000000000000000000000000000000000000000000000, -2 -> 0x8000000000000000000000000000000000000000000000000000000000000000
// f(int256,int256): 0x4000000000000000000000000000000000000000000000000000000000000001, -2 -> FAILURE
// f(int256,int256): 2, 0xC000000000000000000000000000000000000000000000000000000000000000 -> 0x8000000000000000000000000000000000000000000000000000000000000000
// f(int256,int256): 2, 0xBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -> FAILURE
// # negative, positive #
// f(int256,int256): -2, 0x4000000000000000000000000000000000000000000000000000000000000000 -> 0x8000000000000000000000000000000000000000000000000000000000000000
// f(int256,int256): -2, 0x4000000000000000000000000000000000000000000000000000000000000001 -> FAILURE
// f(int256,int256): 0xC000000000000000000000000000000000000000000000000000000000000000, 2 -> 0x8000000000000000000000000000000000000000000000000000000000000000
// f(int256,int256): 0xBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, 2 -> FAILURE
// # negative, negative #
// f(int256,int256): 0xC000000000000000000000000000000000000000000000000000000000000001, -2 -> 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE
// f(int256,int256): 0xC000000000000000000000000000000000000000000000000000000000000000, -2 -> FAILURE
// f(int256,int256): -2, 0xC000000000000000000000000000000000000000000000000000000000000001 -> 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE
// f(int256,int256): -2, 0xC000000000000000000000000000000000000000000000000000000000000000 -> FAILURE
// # small type #
// g(int8,int8): 5, 6 -> 30
// g(int8,int8): -1, 1 -> -1
// g(int8,int8): -1, 2 -> -2
// # positive, positive #
// g(int8,int8): 63, 2 -> 126
// g(int8,int8): 64, 2 -> FAILURE
// g(int8,int8): 2, 63 -> 126
// g(int8,int8): 2, 64 -> FAILURE
// # positive, negative #
// g(int8,int8): 64, -2 -> -128
// g(int8,int8): 65, -2 -> FAILURE
// g(int8,int8): 2, -64 -> -128
// g(int8,int8): 2, -65 -> FAILURE
// # negative, positive #
// g(int8,int8): -2, 64 -> -128
// g(int8,int8): -2, 65 -> FAILURE
// g(int8,int8): -64, 2 -> -128
// g(int8,int8): -65, 2 -> FAILURE
// # negative, negative #
// g(int8,int8): -63, -2 -> 126
// g(int8,int8): -64, -2 -> FAILURE
// g(int8,int8): -2, -63 -> 126
// g(int8,int8): -2, -64 -> FAILURE