Merge pull request #3456 from ethereum/simplifier

Use simplification rules also for IULIA
This commit is contained in:
chriseth 2018-02-08 16:50:17 +01:00 committed by GitHub
commit 9b61fb2e99
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 990 additions and 184 deletions

View File

@ -181,7 +181,7 @@ string ExpressionClasses::fullDAGToString(ExpressionClasses::Id _id) const
return str.str(); return str.str();
} }
ExpressionClasses::Id ExpressionClasses::tryToSimplify(Expression const& _expr, bool _secondRun) ExpressionClasses::Id ExpressionClasses::tryToSimplify(Expression const& _expr)
{ {
static Rules rules; static Rules rules;
@ -202,14 +202,7 @@ ExpressionClasses::Id ExpressionClasses::tryToSimplify(Expression const& _expr,
//cout << "with rule " << match->first.toString() << endl; //cout << "with rule " << match->first.toString() << endl;
//ExpressionTemplate t(match->second()); //ExpressionTemplate t(match->second());
//cout << "to " << match->second().toString() << endl; //cout << "to " << match->second().toString() << endl;
return rebuildExpression(ExpressionTemplate(match->second(), _expr.item->location())); return rebuildExpression(ExpressionTemplate(match->action(), _expr.item->location()));
}
if (!_secondRun && _expr.arguments.size() == 2 && SemanticInformation::isCommutativeOperation(*_expr.item))
{
Expression expr = _expr;
swap(expr.arguments[0], expr.arguments[1]);
return tryToSimplify(expr, true);
} }
return -1; return -1;

View File

@ -108,8 +108,7 @@ public:
private: private:
/// Tries to simplify the given expression. /// Tries to simplify the given expression.
/// @returns its class if it possible or Id(-1) otherwise. /// @returns its class if it possible or Id(-1) otherwise.
/// @param _secondRun is set to true for the second run where arguments of commutative expressions are reversed Id tryToSimplify(Expression const& _expr);
Id tryToSimplify(Expression const& _expr, bool _secondRun = false);
/// Rebuilds an expression from a (matched) pattern. /// Rebuilds an expression from a (matched) pattern.
Id rebuildExpression(ExpressionTemplate const& _template); Id rebuildExpression(ExpressionTemplate const& _template);

255
libevmasm/RuleList.h Normal file
View File

@ -0,0 +1,255 @@
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @date 2018
* Templatized list of simplification rules.
*/
#pragma once
#include <vector>
#include <functional>
#include <libevmasm/Instruction.h>
#include <libevmasm/SimplificationRule.h>
#include <libdevcore/CommonData.h>
namespace dev
{
namespace solidity
{
template <class S> S divWorkaround(S const& _a, S const& _b)
{
return (S)(bigint(_a) / bigint(_b));
}
template <class S> S modWorkaround(S const& _a, S const& _b)
{
return (S)(bigint(_a) % bigint(_b));
}
/// @returns a list of simplification rules given certain match placeholders.
/// A, B and C should represent constants, X and Y arbitrary expressions.
/// The simplifications should neven change the order of evaluation of
/// arbitrary operations.
template <class Pattern>
std::vector<SimplificationRule<Pattern>> simplificationRuleList(
Pattern A,
Pattern B,
Pattern C,
Pattern X,
Pattern Y
)
{
std::vector<SimplificationRule<Pattern>> rules;
rules += std::vector<SimplificationRule<Pattern>>{
// arithmetics on constants
{{Instruction::ADD, {A, B}}, [=]{ return A.d() + B.d(); }, false},
{{Instruction::MUL, {A, B}}, [=]{ return A.d() * B.d(); }, false},
{{Instruction::SUB, {A, B}}, [=]{ return A.d() - B.d(); }, false},
{{Instruction::DIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : divWorkaround(A.d(), B.d()); }, false},
{{Instruction::SDIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(divWorkaround(u2s(A.d()), u2s(B.d()))); }, false},
{{Instruction::MOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : modWorkaround(A.d(), B.d()); }, false},
{{Instruction::SMOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(modWorkaround(u2s(A.d()), u2s(B.d()))); }, false},
{{Instruction::EXP, {A, B}}, [=]{ return u256(boost::multiprecision::powm(bigint(A.d()), bigint(B.d()), bigint(1) << 256)); }, false},
{{Instruction::NOT, {A}}, [=]{ return ~A.d(); }, false},
{{Instruction::LT, {A, B}}, [=]() -> u256 { return A.d() < B.d() ? 1 : 0; }, false},
{{Instruction::GT, {A, B}}, [=]() -> u256 { return A.d() > B.d() ? 1 : 0; }, false},
{{Instruction::SLT, {A, B}}, [=]() -> u256 { return u2s(A.d()) < u2s(B.d()) ? 1 : 0; }, false},
{{Instruction::SGT, {A, B}}, [=]() -> u256 { return u2s(A.d()) > u2s(B.d()) ? 1 : 0; }, false},
{{Instruction::EQ, {A, B}}, [=]() -> u256 { return A.d() == B.d() ? 1 : 0; }, false},
{{Instruction::ISZERO, {A}}, [=]() -> u256 { return A.d() == 0 ? 1 : 0; }, false},
{{Instruction::AND, {A, B}}, [=]{ return A.d() & B.d(); }, false},
{{Instruction::OR, {A, B}}, [=]{ return A.d() | B.d(); }, false},
{{Instruction::XOR, {A, B}}, [=]{ return A.d() ^ B.d(); }, false},
{{Instruction::BYTE, {A, B}}, [=]{ return A.d() >= 32 ? 0 : (B.d() >> unsigned(8 * (31 - A.d()))) & 0xff; }, false},
{{Instruction::ADDMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) + bigint(B.d())) % C.d()); }, false},
{{Instruction::MULMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) * bigint(B.d())) % C.d()); }, false},
{{Instruction::MULMOD, {A, B, C}}, [=]{ return A.d() * B.d(); }, false},
{{Instruction::SIGNEXTEND, {A, B}}, [=]() -> u256 {
if (A.d() >= 31)
return B.d();
unsigned testBit = unsigned(A.d()) * 8 + 7;
u256 mask = (u256(1) << testBit) - 1;
return u256(boost::multiprecision::bit_test(B.d(), testBit) ? B.d() | ~mask : B.d() & mask);
}, false},
// invariants involving known constants
{{Instruction::ADD, {X, 0}}, [=]{ return X; }, false},
{{Instruction::ADD, {0, X}}, [=]{ return X; }, false},
{{Instruction::SUB, {X, 0}}, [=]{ return X; }, false},
{{Instruction::MUL, {X, 0}}, [=]{ return u256(0); }, true},
{{Instruction::MUL, {0, X}}, [=]{ return u256(0); }, true},
{{Instruction::MUL, {X, 1}}, [=]{ return X; }, false},
{{Instruction::MUL, {1, X}}, [=]{ return X; }, false},
{{Instruction::MUL, {X, u256(-1)}}, [=]() -> Pattern { return {Instruction::SUB, {0, X}}; }, false},
{{Instruction::MUL, {u256(-1), X}}, [=]() -> Pattern { return {Instruction::SUB, {0, X}}; }, false},
{{Instruction::DIV, {X, 0}}, [=]{ return u256(0); }, true},
{{Instruction::DIV, {0, X}}, [=]{ return u256(0); }, true},
{{Instruction::DIV, {X, 1}}, [=]{ return X; }, false},
{{Instruction::SDIV, {X, 0}}, [=]{ return u256(0); }, true},
{{Instruction::SDIV, {0, X}}, [=]{ return u256(0); }, true},
{{Instruction::SDIV, {X, 1}}, [=]{ return X; }, false},
{{Instruction::AND, {X, ~u256(0)}}, [=]{ return X; }, false},
{{Instruction::AND, {~u256(0), X}}, [=]{ return X; }, false},
{{Instruction::AND, {X, 0}}, [=]{ return u256(0); }, true},
{{Instruction::AND, {0, X}}, [=]{ return u256(0); }, true},
{{Instruction::OR, {X, 0}}, [=]{ return X; }, false},
{{Instruction::OR, {0, X}}, [=]{ return X; }, false},
{{Instruction::OR, {X, ~u256(0)}}, [=]{ return ~u256(0); }, true},
{{Instruction::OR, {~u256(0), X}}, [=]{ return ~u256(0); }, true},
{{Instruction::XOR, {X, 0}}, [=]{ return X; }, false},
{{Instruction::XOR, {0, X}}, [=]{ return X; }, false},
{{Instruction::MOD, {X, 0}}, [=]{ return u256(0); }, true},
{{Instruction::MOD, {0, X}}, [=]{ return u256(0); }, true},
{{Instruction::EQ, {X, 0}}, [=]() -> Pattern { return {Instruction::ISZERO, {X}}; }, false },
{{Instruction::EQ, {0, X}}, [=]() -> Pattern { return {Instruction::ISZERO, {X}}; }, false },
// operations involving an expression and itself
{{Instruction::AND, {X, X}}, [=]{ return X; }, true},
{{Instruction::OR, {X, X}}, [=]{ return X; }, true},
{{Instruction::XOR, {X, X}}, [=]{ return u256(0); }, true},
{{Instruction::SUB, {X, X}}, [=]{ return u256(0); }, true},
{{Instruction::EQ, {X, X}}, [=]{ return u256(1); }, true},
{{Instruction::LT, {X, X}}, [=]{ return u256(0); }, true},
{{Instruction::SLT, {X, X}}, [=]{ return u256(0); }, true},
{{Instruction::GT, {X, X}}, [=]{ return u256(0); }, true},
{{Instruction::SGT, {X, X}}, [=]{ return u256(0); }, true},
{{Instruction::MOD, {X, X}}, [=]{ return u256(0); }, true},
// logical instruction combinations
{{Instruction::NOT, {{Instruction::NOT, {X}}}}, [=]{ return X; }, false},
{{Instruction::XOR, {X, {Instruction::XOR, {X, Y}}}}, [=]{ return Y; }, true},
{{Instruction::XOR, {X, {Instruction::XOR, {Y, X}}}}, [=]{ return Y; }, true},
{{Instruction::XOR, {{Instruction::XOR, {X, Y}}, X}}, [=]{ return Y; }, true},
{{Instruction::XOR, {{Instruction::XOR, {Y, X}}, X}}, [=]{ return Y; }, true},
{{Instruction::OR, {X, {Instruction::AND, {X, Y}}}}, [=]{ return X; }, true},
{{Instruction::OR, {X, {Instruction::AND, {Y, X}}}}, [=]{ return X; }, true},
{{Instruction::OR, {{Instruction::AND, {X, Y}}, X}}, [=]{ return X; }, true},
{{Instruction::OR, {{Instruction::AND, {Y, X}}, X}}, [=]{ return X; }, true},
{{Instruction::AND, {X, {Instruction::OR, {X, Y}}}}, [=]{ return X; }, true},
{{Instruction::AND, {X, {Instruction::OR, {Y, X}}}}, [=]{ return X; }, true},
{{Instruction::AND, {{Instruction::OR, {X, Y}}, X}}, [=]{ return X; }, true},
{{Instruction::AND, {{Instruction::OR, {Y, X}}, X}}, [=]{ return X; }, true},
{{Instruction::AND, {X, {Instruction::NOT, {X}}}}, [=]{ return u256(0); }, true},
{{Instruction::AND, {{Instruction::NOT, {X}}, X}}, [=]{ return u256(0); }, true},
{{Instruction::OR, {X, {Instruction::NOT, {X}}}}, [=]{ return ~u256(0); }, true},
{{Instruction::OR, {{Instruction::NOT, {X}}, X}}, [=]{ return ~u256(0); }, true},
};
// Double negation of opcodes with boolean result
for (auto const& op: std::vector<Instruction>{
Instruction::EQ,
Instruction::LT,
Instruction::SLT,
Instruction::GT,
Instruction::SGT
})
rules.push_back({
{Instruction::ISZERO, {{Instruction::ISZERO, {{op, {X, Y}}}}}},
[=]() -> Pattern { return {op, {X, Y}}; },
false
});
rules.push_back({
{Instruction::ISZERO, {{Instruction::ISZERO, {{Instruction::ISZERO, {X}}}}}},
[=]() -> Pattern { return {Instruction::ISZERO, {X}}; },
false
});
rules.push_back({
{Instruction::ISZERO, {{Instruction::XOR, {X, Y}}}},
[=]() -> Pattern { return { Instruction::EQ, {X, Y} }; },
false
});
// Associative operations
for (auto const& opFun: std::vector<std::pair<Instruction,std::function<u256(u256 const&,u256 const&)>>>{
{Instruction::ADD, std::plus<u256>()},
{Instruction::MUL, std::multiplies<u256>()},
{Instruction::AND, std::bit_and<u256>()},
{Instruction::OR, std::bit_or<u256>()},
{Instruction::XOR, std::bit_xor<u256>()}
})
{
auto op = opFun.first;
auto fun = opFun.second;
// Moving constants to the outside, order matters here - we first add rules
// for constants and then for non-constants.
// xa can be (X, A) or (A, X)
for (auto xa: {std::vector<Pattern>{X, A}, std::vector<Pattern>{A, X}})
{
rules += std::vector<SimplificationRule<Pattern>>{{
// (X+A)+B -> X+(A+B)
{op, {{op, xa}, B}},
[=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; },
false
}, {
// (X+A)+Y -> (X+Y)+A
{op, {{op, xa}, Y}},
[=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; },
false
}, {
// B+(X+A) -> X+(A+B)
{op, {B, {op, xa}}},
[=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; },
false
}, {
// Y+(X+A) -> (Y+X)+A
{op, {Y, {op, xa}}},
[=]() -> Pattern { return {op, {{op, {Y, X}}, A}}; },
false
}};
}
}
// move constants across subtractions
rules += std::vector<SimplificationRule<Pattern>>{
{
// X - A -> X + (-A)
{Instruction::SUB, {X, A}},
[=]() -> Pattern { return {Instruction::ADD, {X, 0 - A.d()}}; },
false
}, {
// (X + A) - Y -> (X - Y) + A
{Instruction::SUB, {{Instruction::ADD, {X, A}}, Y}},
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; },
false
}, {
// (A + X) - Y -> (X - Y) + A
{Instruction::SUB, {{Instruction::ADD, {A, X}}, Y}},
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; },
false
}, {
// X - (Y + A) -> (X - Y) + (-A)
{Instruction::SUB, {X, {Instruction::ADD, {Y, A}}}},
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; },
false
}, {
// X - (A + Y) -> (X - Y) + (-A)
{Instruction::SUB, {X, {Instruction::ADD, {A, Y}}}},
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; },
false
}
};
return rules;
}
}
}

View File

@ -0,0 +1,45 @@
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Expression simplification pattern.
*/
#pragma once
#include <functional>
namespace dev
{
namespace solidity
{
/**
* Rule that contains a pattern, an action that can be applied
* after the pattern has matched and a bool that indicates
* whether the action would remove something from the expression
* than is not a constant literal.
*/
template <class Pattern>
struct SimplificationRule
{
Pattern pattern;
std::function<Pattern()> action;
bool removesNonConstants;
};
}
}

View File

@ -23,7 +23,6 @@
#include <libevmasm/ExpressionClasses.h> #include <libevmasm/ExpressionClasses.h>
#include <utility> #include <utility>
#include <tuple>
#include <functional> #include <functional>
#include <boost/range/adaptor/reversed.hpp> #include <boost/range/adaptor/reversed.hpp>
#include <boost/noncopyable.hpp> #include <boost/noncopyable.hpp>
@ -31,12 +30,14 @@
#include <libevmasm/CommonSubexpressionEliminator.h> #include <libevmasm/CommonSubexpressionEliminator.h>
#include <libevmasm/SimplificationRules.h> #include <libevmasm/SimplificationRules.h>
#include <libevmasm/RuleList.h>
using namespace std; using namespace std;
using namespace dev; using namespace dev;
using namespace dev::eth; using namespace dev::eth;
pair<Pattern, function<Pattern()> > const* Rules::findFirstMatch( SimplificationRule<Pattern> const* Rules::findFirstMatch(
Expression const& _expr, Expression const& _expr,
ExpressionClasses const& _classes ExpressionClasses const& _classes
) )
@ -46,32 +47,22 @@ pair<Pattern, function<Pattern()> > const* Rules::findFirstMatch(
assertThrow(_expr.item, OptimizerException, ""); assertThrow(_expr.item, OptimizerException, "");
for (auto const& rule: m_rules[byte(_expr.item->instruction())]) for (auto const& rule: m_rules[byte(_expr.item->instruction())])
{ {
if (rule.first.matches(_expr, _classes)) if (rule.pattern.matches(_expr, _classes))
return &rule; return &rule;
resetMatchGroups(); resetMatchGroups();
} }
return nullptr; return nullptr;
} }
void Rules::addRules(std::vector<std::pair<Pattern, std::function<Pattern ()> > > const& _rules) void Rules::addRules(std::vector<SimplificationRule<Pattern>> const& _rules)
{ {
for (auto const& r: _rules) for (auto const& r: _rules)
addRule(r); addRule(r);
} }
void Rules::addRule(std::pair<Pattern, std::function<Pattern()> > const& _rule) void Rules::addRule(SimplificationRule<Pattern> const& _rule)
{ {
m_rules[byte(_rule.first.instruction())].push_back(_rule); m_rules[byte(_rule.pattern.instruction())].push_back(_rule);
}
template <class S> S divWorkaround(S const& _a, S const& _b)
{
return (S)(bigint(_a) / bigint(_b));
}
template <class S> S modWorkaround(S const& _a, S const& _b)
{
return (S)(bigint(_a) % bigint(_b));
} }
Rules::Rules() Rules::Rules()
@ -84,165 +75,13 @@ Rules::Rules()
// Anything. // Anything.
Pattern X; Pattern X;
Pattern Y; Pattern Y;
Pattern Z;
A.setMatchGroup(1, m_matchGroups); A.setMatchGroup(1, m_matchGroups);
B.setMatchGroup(2, m_matchGroups); B.setMatchGroup(2, m_matchGroups);
C.setMatchGroup(3, m_matchGroups); C.setMatchGroup(3, m_matchGroups);
X.setMatchGroup(4, m_matchGroups); X.setMatchGroup(4, m_matchGroups);
Y.setMatchGroup(5, m_matchGroups); Y.setMatchGroup(5, m_matchGroups);
Z.setMatchGroup(6, m_matchGroups);
addRules(vector<pair<Pattern, function<Pattern()>>>{ addRules(simplificationRuleList(A, B, C, X, Y));
// arithmetics on constants
{{Instruction::ADD, {A, B}}, [=]{ return A.d() + B.d(); }},
{{Instruction::MUL, {A, B}}, [=]{ return A.d() * B.d(); }},
{{Instruction::SUB, {A, B}}, [=]{ return A.d() - B.d(); }},
{{Instruction::DIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : divWorkaround(A.d(), B.d()); }},
{{Instruction::SDIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(divWorkaround(u2s(A.d()), u2s(B.d()))); }},
{{Instruction::MOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : modWorkaround(A.d(), B.d()); }},
{{Instruction::SMOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(modWorkaround(u2s(A.d()), u2s(B.d()))); }},
{{Instruction::EXP, {A, B}}, [=]{ return u256(boost::multiprecision::powm(bigint(A.d()), bigint(B.d()), bigint(1) << 256)); }},
{{Instruction::NOT, {A}}, [=]{ return ~A.d(); }},
{{Instruction::LT, {A, B}}, [=]() -> u256 { return A.d() < B.d() ? 1 : 0; }},
{{Instruction::GT, {A, B}}, [=]() -> u256 { return A.d() > B.d() ? 1 : 0; }},
{{Instruction::SLT, {A, B}}, [=]() -> u256 { return u2s(A.d()) < u2s(B.d()) ? 1 : 0; }},
{{Instruction::SGT, {A, B}}, [=]() -> u256 { return u2s(A.d()) > u2s(B.d()) ? 1 : 0; }},
{{Instruction::EQ, {A, B}}, [=]() -> u256 { return A.d() == B.d() ? 1 : 0; }},
{{Instruction::ISZERO, {A}}, [=]() -> u256 { return A.d() == 0 ? 1 : 0; }},
{{Instruction::AND, {A, B}}, [=]{ return A.d() & B.d(); }},
{{Instruction::OR, {A, B}}, [=]{ return A.d() | B.d(); }},
{{Instruction::XOR, {A, B}}, [=]{ return A.d() ^ B.d(); }},
{{Instruction::BYTE, {A, B}}, [=]{ return A.d() >= 32 ? 0 : (B.d() >> unsigned(8 * (31 - A.d()))) & 0xff; }},
{{Instruction::ADDMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) + bigint(B.d())) % C.d()); }},
{{Instruction::MULMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) * bigint(B.d())) % C.d()); }},
{{Instruction::MULMOD, {A, B, C}}, [=]{ return A.d() * B.d(); }},
{{Instruction::SIGNEXTEND, {A, B}}, [=]() -> u256 {
if (A.d() >= 31)
return B.d();
unsigned testBit = unsigned(A.d()) * 8 + 7;
u256 mask = (u256(1) << testBit) - 1;
return u256(boost::multiprecision::bit_test(B.d(), testBit) ? B.d() | ~mask : B.d() & mask);
}},
// invariants involving known constants (commutative instructions will be checked with swapped operants too)
{{Instruction::ADD, {X, 0}}, [=]{ return X; }},
{{Instruction::SUB, {X, 0}}, [=]{ return X; }},
{{Instruction::MUL, {X, 0}}, [=]{ return u256(0); }},
{{Instruction::MUL, {X, 1}}, [=]{ return X; }},
{{Instruction::DIV, {X, 0}}, [=]{ return u256(0); }},
{{Instruction::DIV, {0, X}}, [=]{ return u256(0); }},
{{Instruction::DIV, {X, 1}}, [=]{ return X; }},
{{Instruction::SDIV, {X, 0}}, [=]{ return u256(0); }},
{{Instruction::SDIV, {0, X}}, [=]{ return u256(0); }},
{{Instruction::SDIV, {X, 1}}, [=]{ return X; }},
{{Instruction::AND, {X, ~u256(0)}}, [=]{ return X; }},
{{Instruction::AND, {X, 0}}, [=]{ return u256(0); }},
{{Instruction::OR, {X, 0}}, [=]{ return X; }},
{{Instruction::OR, {X, ~u256(0)}}, [=]{ return ~u256(0); }},
{{Instruction::XOR, {X, 0}}, [=]{ return X; }},
{{Instruction::MOD, {X, 0}}, [=]{ return u256(0); }},
{{Instruction::MOD, {0, X}}, [=]{ return u256(0); }},
{{Instruction::EQ, {X, 0}}, [=]() -> Pattern { return {Instruction::ISZERO, {X}}; } },
// operations involving an expression and itself
{{Instruction::AND, {X, X}}, [=]{ return X; }},
{{Instruction::OR, {X, X}}, [=]{ return X; }},
{{Instruction::XOR, {X, X}}, [=]{ return u256(0); }},
{{Instruction::SUB, {X, X}}, [=]{ return u256(0); }},
{{Instruction::EQ, {X, X}}, [=]{ return u256(1); }},
{{Instruction::LT, {X, X}}, [=]{ return u256(0); }},
{{Instruction::SLT, {X, X}}, [=]{ return u256(0); }},
{{Instruction::GT, {X, X}}, [=]{ return u256(0); }},
{{Instruction::SGT, {X, X}}, [=]{ return u256(0); }},
{{Instruction::MOD, {X, X}}, [=]{ return u256(0); }},
// logical instruction combinations
{{Instruction::NOT, {{Instruction::NOT, {X}}}}, [=]{ return X; }},
{{Instruction::XOR, {{{X}, {Instruction::XOR, {X, Y}}}}}, [=]{ return Y; }},
{{Instruction::OR, {{{X}, {Instruction::AND, {X, Y}}}}}, [=]{ return X; }},
{{Instruction::AND, {{{X}, {Instruction::OR, {X, Y}}}}}, [=]{ return X; }},
{{Instruction::AND, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return u256(0); }},
{{Instruction::OR, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return ~u256(0); }},
});
// Double negation of opcodes with binary result
for (auto const& op: vector<Instruction>{
Instruction::EQ,
Instruction::LT,
Instruction::SLT,
Instruction::GT,
Instruction::SGT
})
addRule({
{Instruction::ISZERO, {{Instruction::ISZERO, {{op, {X, Y}}}}}},
[=]() -> Pattern { return {op, {X, Y}}; }
});
addRule({
{Instruction::ISZERO, {{Instruction::ISZERO, {{Instruction::ISZERO, {X}}}}}},
[=]() -> Pattern { return {Instruction::ISZERO, {X}}; }
});
addRule({
{Instruction::ISZERO, {{Instruction::XOR, {X, Y}}}},
[=]() -> Pattern { return { Instruction::EQ, {X, Y} }; }
});
// Associative operations
for (auto const& opFun: vector<pair<Instruction,function<u256(u256 const&,u256 const&)>>>{
{Instruction::ADD, plus<u256>()},
{Instruction::MUL, multiplies<u256>()},
{Instruction::AND, bit_and<u256>()},
{Instruction::OR, bit_or<u256>()},
{Instruction::XOR, bit_xor<u256>()}
})
{
auto op = opFun.first;
auto fun = opFun.second;
// Moving constants to the outside, order matters here!
// we need actions that return expressions (or patterns?) here, and we need also reversed rules
// (X+A)+B -> X+(A+B)
addRules(vector<pair<Pattern, function<Pattern()>>>{{
{op, {{op, {X, A}}, B}},
[=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }
}, {
// X+(Y+A) -> (X+Y)+A
{op, {{op, {X, A}}, Y}},
[=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }
}, {
// For now, we still need explicit commutativity for the inner pattern
{op, {{op, {A, X}}, B}},
[=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }
}, {
{op, {{op, {A, X}}, Y}},
[=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }
}});
}
// move constants across subtractions
addRules(vector<pair<Pattern, function<Pattern()>>>{
{
// X - A -> X + (-A)
{Instruction::SUB, {X, A}},
[=]() -> Pattern { return {Instruction::ADD, {X, 0 - A.d()}}; }
}, {
// (X + A) - Y -> (X - Y) + A
{Instruction::SUB, {{Instruction::ADD, {X, A}}, Y}},
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }
}, {
// (A + X) - Y -> (X - Y) + A
{Instruction::SUB, {{Instruction::ADD, {A, X}}, Y}},
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }
}, {
// X - (Y + A) -> (X - Y) + (-A)
{Instruction::SUB, {X, {Instruction::ADD, {Y, A}}}},
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }
}, {
// X - (A + Y) -> (X - Y) + (-A)
{Instruction::SUB, {X, {Instruction::ADD, {A, Y}}}},
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }
}
});
} }
Pattern::Pattern(Instruction _instruction, std::vector<Pattern> const& _arguments): Pattern::Pattern(Instruction _instruction, std::vector<Pattern> const& _arguments):

View File

@ -24,6 +24,7 @@
#pragma once #pragma once
#include <libevmasm/ExpressionClasses.h> #include <libevmasm/ExpressionClasses.h>
#include <libevmasm/SimplificationRule.h>
#include <functional> #include <functional>
#include <vector> #include <vector>
@ -47,19 +48,21 @@ public:
/// @returns a pointer to the first matching pattern and sets the match /// @returns a pointer to the first matching pattern and sets the match
/// groups accordingly. /// groups accordingly.
std::pair<Pattern, std::function<Pattern()>> const* findFirstMatch( SimplificationRule<Pattern> const* findFirstMatch(
Expression const& _expr, Expression const& _expr,
ExpressionClasses const& _classes ExpressionClasses const& _classes
); );
private: private:
void addRules(std::vector<std::pair<Pattern, std::function<Pattern()>>> const& _rules); void addRules(std::vector<SimplificationRule<Pattern>> const& _rules);
void addRule(std::pair<Pattern, std::function<Pattern()>> const& _rule); void addRule(SimplificationRule<Pattern> const& _rule);
void resetMatchGroups() { m_matchGroups.clear(); } void resetMatchGroups() { m_matchGroups.clear(); }
std::map<unsigned, Expression const*> m_matchGroups; std::map<unsigned, Expression const*> m_matchGroups;
std::vector<std::pair<Pattern, std::function<Pattern()>>> m_rules[256]; /// Pattern to match, replacement to be applied and flag indicating whether
/// the replacement might remove some elements (except constants).
std::vector<SimplificationRule<Pattern>> m_rules[256];
}; };
/** /**

View File

@ -0,0 +1,50 @@
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Optimiser component that uses the simplification rules to simplify expressions.
*/
#include <libjulia/optimiser/ExpressionSimplifier.h>
#include <libjulia/optimiser/SimplificationRules.h>
#include <libjulia/optimiser/Semantics.h>
#include <libsolidity/inlineasm/AsmData.h>
#include <libsolidity/interface/Exceptions.h>
#include <libdevcore/CommonData.h>
using namespace std;
using namespace dev;
using namespace dev::julia;
using namespace dev::solidity;
void ExpressionSimplifier::visit(Expression& _expression)
{
ASTModifier::visit(_expression);
while (auto match = SimplificationRules::findFirstMatch(_expression))
{
// Do not apply the rule if it removes non-constant parts of the expression.
// TODO: The check could actually be less strict than "movable".
// We only require "Does not cause side-effects".
if (match->removesNonConstants && !MovableChecker(_expression).movable())
return;
_expression = match->action().toExpression(locationOf(_expression));
}
}

View File

@ -0,0 +1,45 @@
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Optimiser component that uses the simplification rules to simplify expressions.
*/
#pragma once
#include <libjulia/ASTDataForward.h>
#include <libjulia/optimiser/ASTWalker.h>
namespace dev
{
namespace julia
{
/**
* Applies simplification rules to all expressions.
*/
class ExpressionSimplifier: public ASTModifier
{
public:
using ASTModifier::operator();
virtual void visit(Expression& _expression);
private:
};
}
}

View File

@ -78,3 +78,12 @@ a loop or conditional, the first one is not inside), the first assignment is rem
## Function Unifier ## Function Unifier
## Expression Simplifier
This step can only be applied for the EVM-flavoured dialect of iulia. It applies
simple rules like ``x + 0 == x`` to simplify expressions.
## Ineffective Statement Remover
This step removes statements that have no side-effects.

View File

@ -0,0 +1,182 @@
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Module for applying replacement rules against Expressions.
*/
#include <libjulia/optimiser/SimplificationRules.h>
#include <libjulia/optimiser/Utilities.h>
#include <libjulia/optimiser/ASTCopier.h>
#include <libjulia/optimiser/Semantics.h>
#include <libjulia/optimiser/SyntacticalEquality.h>
#include <libsolidity/inlineasm/AsmData.h>
#include <libevmasm/RuleList.h>
using namespace std;
using namespace dev;
using namespace dev::julia;
SimplificationRule<Pattern> const* SimplificationRules::findFirstMatch(Expression const& _expr)
{
if (_expr.type() != typeid(FunctionalInstruction))
return nullptr;
static SimplificationRules rules;
FunctionalInstruction const& instruction = boost::get<FunctionalInstruction const&>(_expr);
for (auto const& rule: rules.m_rules[byte(instruction.instruction)])
{
rules.resetMatchGroups();
if (rule.pattern.matches(_expr))
return &rule;
}
return nullptr;
}
void SimplificationRules::addRules(vector<SimplificationRule<Pattern>> const& _rules)
{
for (auto const& r: _rules)
addRule(r);
}
void SimplificationRules::addRule(SimplificationRule<Pattern> const& _rule)
{
m_rules[byte(_rule.pattern.instruction())].push_back(_rule);
}
SimplificationRules::SimplificationRules()
{
// Multiple occurences of one of these inside one rule must match the same equivalence class.
// Constants.
Pattern A(PatternKind::Constant);
Pattern B(PatternKind::Constant);
Pattern C(PatternKind::Constant);
// Anything.
Pattern X;
Pattern Y;
A.setMatchGroup(1, m_matchGroups);
B.setMatchGroup(2, m_matchGroups);
C.setMatchGroup(3, m_matchGroups);
X.setMatchGroup(4, m_matchGroups);
Y.setMatchGroup(5, m_matchGroups);
addRules(simplificationRuleList(A, B, C, X, Y));
}
Pattern::Pattern(solidity::Instruction _instruction, vector<Pattern> const& _arguments):
m_kind(PatternKind::Operation),
m_instruction(_instruction),
m_arguments(_arguments)
{
}
void Pattern::setMatchGroup(unsigned _group, map<unsigned, Expression const*>& _matchGroups)
{
m_matchGroup = _group;
m_matchGroups = &_matchGroups;
}
bool Pattern::matches(Expression const& _expr) const
{
if (m_kind == PatternKind::Constant)
{
if (_expr.type() != typeid(Literal))
return false;
Literal const& literal = boost::get<Literal const&>(_expr);
if (literal.kind != assembly::LiteralKind::Number)
return false;
if (m_data && *m_data != u256(literal.value))
return false;
assertThrow(m_arguments.empty(), OptimizerException, "");
}
else if (m_kind == PatternKind::Operation)
{
if (_expr.type() != typeid(FunctionalInstruction))
return false;
FunctionalInstruction const& instr = boost::get<FunctionalInstruction const&>(_expr);
if (m_instruction != instr.instruction)
return false;
assertThrow(m_arguments.size() == instr.arguments.size(), OptimizerException, "");
for (size_t i = 0; i < m_arguments.size(); ++i)
if (!m_arguments[i].matches(instr.arguments.at(i)))
return false;
}
else
{
assertThrow(m_arguments.empty(), OptimizerException, "");
}
// We support matching multiple expressions that require the same value
// based on identical ASTs, which have to be movable.
if (m_matchGroup)
{
if (m_matchGroups->count(m_matchGroup))
{
Expression const* firstMatch = (*m_matchGroups)[m_matchGroup];
assertThrow(firstMatch, OptimizerException, "Match set but to null.");
return
SyntacticalEqualityChecker::equal(*firstMatch, _expr) &&
MovableChecker(_expr).movable();
}
else
(*m_matchGroups)[m_matchGroup] = &_expr;
}
return true;
}
solidity::Instruction Pattern::instruction() const
{
assertThrow(m_kind == PatternKind::Operation, OptimizerException, "");
return m_instruction;
}
Expression Pattern::toExpression(SourceLocation const& _location) const
{
if (matchGroup())
return ASTCopier().translate(matchGroupValue());
if (m_kind == PatternKind::Constant)
{
assertThrow(m_data, OptimizerException, "No match group and no constant value given.");
return Literal{_location, assembly::LiteralKind::Number, m_data->str(), ""};
}
else if (m_kind == PatternKind::Operation)
{
vector<Expression> arguments;
for (auto const& arg: m_arguments)
arguments.emplace_back(arg.toExpression(_location));
return FunctionalInstruction{_location, m_instruction, std::move(arguments)};
}
assertThrow(false, OptimizerException, "Pattern of kind 'any', but no match group.");
}
u256 Pattern::d() const
{
Literal const& literal = boost::get<Literal const&>(matchGroupValue());
assertThrow(literal.kind == assembly::LiteralKind::Number, OptimizerException, "");
return u256(literal.value);
}
Expression const& Pattern::matchGroupValue() const
{
assertThrow(m_matchGroup > 0, OptimizerException, "");
assertThrow(!!m_matchGroups, OptimizerException, "");
assertThrow((*m_matchGroups)[m_matchGroup], OptimizerException, "");
return *(*m_matchGroups)[m_matchGroup];
}

View File

@ -0,0 +1,117 @@
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Module for applying replacement rules against Expressions.
*/
#pragma once
#include <libevmasm/ExpressionClasses.h>
#include <libevmasm/SimplificationRule.h>
#include <libjulia/ASTDataForward.h>
#include <libsolidity/inlineasm/AsmData.h>
#include <boost/noncopyable.hpp>
#include <functional>
#include <vector>
namespace dev
{
namespace julia
{
class Pattern;
/**
* Container for all simplification rules.
*/
class SimplificationRules: public boost::noncopyable
{
public:
SimplificationRules();
/// @returns a pointer to the first matching pattern and sets the match
/// groups accordingly.
static SimplificationRule<Pattern> const* findFirstMatch(Expression const& _expr);
private:
void addRules(std::vector<SimplificationRule<Pattern>> const& _rules);
void addRule(SimplificationRule<Pattern> const& _rule);
void resetMatchGroups() { m_matchGroups.clear(); }
std::map<unsigned, Expression const*> m_matchGroups;
std::vector<SimplificationRule<Pattern>> m_rules[256];
};
enum class PatternKind
{
Operation,
Constant,
Any
};
/**
* Pattern to match against an expression.
* Also stores matched expressions to retrieve them later, for constructing new expressions using
* ExpressionTemplate.
*/
class Pattern
{
public:
/// Matches any expression.
Pattern(PatternKind _kind = PatternKind::Any): m_kind(_kind) {}
// Matches a specific constant value.
Pattern(unsigned _value): Pattern(u256(_value)) {}
// Matches a specific constant value.
Pattern(u256 const& _value): m_kind(PatternKind::Constant), m_data(std::make_shared<u256>(_value)) {}
// Matches a given instruction with given arguments
Pattern(solidity::Instruction _instruction, std::vector<Pattern> const& _arguments = {});
/// Sets this pattern to be part of the match group with the identifier @a _group.
/// Inside one rule, all patterns in the same match group have to match expressions from the
/// same expression equivalence class.
void setMatchGroup(unsigned _group, std::map<unsigned, Expression const*>& _matchGroups);
unsigned matchGroup() const { return m_matchGroup; }
bool matches(Expression const& _expr) const;
std::vector<Pattern> arguments() const { return m_arguments; }
/// @returns the data of the matched expression if this pattern is part of a match group.
u256 d() const;
solidity::Instruction instruction() const;
/// Turns this pattern into an actual expression. Should only be called
/// for patterns resulting from an action, i.e. with match groups assigned.
Expression toExpression(SourceLocation const& _location) const;
private:
Expression const& matchGroupValue() const;
PatternKind m_kind = PatternKind::Any;
solidity::Instruction m_instruction; ///< Only valid if m_kind is Operation
std::shared_ptr<u256> m_data; ///< Only valid if m_kind is Constant
std::vector<Pattern> m_arguments;
unsigned m_matchGroup = 0;
std::map<unsigned, Expression const*>* m_matchGroups = nullptr;
};
}
}

View File

@ -0,0 +1,75 @@
/*(
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Component that can compare ASTs for equality on a syntactic basis.
*/
#include <libjulia/optimiser/SyntacticalEquality.h>
#include <libsolidity/inlineasm/AsmData.h>
#include <libsolidity/interface/Exceptions.h>
#include <libdevcore/CommonData.h>
using namespace std;
using namespace dev;
using namespace dev::julia;
bool SyntacticalEqualityChecker::equal(Expression const& _e1, Expression const& _e2)
{
if (_e1.type() != _e2.type())
return false;
// TODO This should be replaced by some kind of AST walker as soon as it gets
// more complex.
if (_e1.type() == typeid(FunctionalInstruction))
{
auto const& e1 = boost::get<FunctionalInstruction>(_e1);
auto const& e2 = boost::get<FunctionalInstruction>(_e2);
return
e1.instruction == e2.instruction &&
equalVector(e1.arguments, e2.arguments);
}
else if (_e1.type() == typeid(FunctionCall))
{
auto const& e1 = boost::get<FunctionCall>(_e1);
auto const& e2 = boost::get<FunctionCall>(_e2);
return
equal(e1.functionName, e2.functionName) &&
equalVector(e1.arguments, e2.arguments);
}
else if (_e1.type() == typeid(Identifier))
return boost::get<Identifier>(_e1).name == boost::get<Identifier>(_e2).name;
else if (_e1.type() == typeid(Literal))
{
auto const& e1 = boost::get<Literal>(_e1);
auto const& e2 = boost::get<Literal>(_e2);
return e1.kind == e2.kind && e1.value == e2.value && e1.type == e2.type;
}
else
{
solAssert(false, "Invlid expression");
}
return false;
}
bool SyntacticalEqualityChecker::equalVector(vector<Expression> const& _e1, vector<Expression> const& _e2)
{
return _e1.size() == _e2.size() &&
std::equal(begin(_e1), end(_e1), begin(_e2), SyntacticalEqualityChecker::equal);
}

View File

@ -0,0 +1,50 @@
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Component that can compare ASTs for equality on a syntactic basis.
*/
#pragma once
#include <libjulia/ASTDataForward.h>
#include <vector>
namespace dev
{
namespace julia
{
/**
* Component that can compare ASTs for equality on a syntactic basis.
* Ignores source locations but requires exact matches otherwise.
*
* TODO: Only implemented for Expressions for now.
* A future version might also recognize renamed variables and thus could be used to
* remove duplicate functions.
*/
class SyntacticalEqualityChecker
{
public:
static bool equal(Expression const& _e1, Expression const& _e2);
protected:
static bool equalVector(std::vector<Expression> const& _e1, std::vector<Expression> const& _e2);
};
}
}

View File

@ -22,11 +22,16 @@
#include <libjulia/ASTDataForward.h> #include <libjulia/ASTDataForward.h>
#include <libdevcore/Exceptions.h>
namespace dev namespace dev
{ {
namespace julia namespace julia
{ {
struct IuliaException: virtual Exception {};
struct OptimizerException: virtual IuliaException {};
/// Removes statements that are just empty blocks (non-recursive). /// Removes statements that are just empty blocks (non-recursive).
void removeEmptyBlocks(Block& _block); void removeEmptyBlocks(Block& _block);

View File

@ -42,6 +42,15 @@ fi
WORKSPACE=/root/project WORKSPACE=/root/project
# Increase nodejs stack size
if [ -e ~/.emscripten ]
then
sed -i -e 's/NODE_JS="nodejs"/NODE_JS=["nodejs", "--stack_size=8192"]/' ~/.emscripten
else
echo 'NODE_JS=["nodejs", "--stack_size=8192"]' > ~/.emscripten
fi
# Boost # Boost
echo -en 'travis_fold:start:compiling_boost\\r' echo -en 'travis_fold:start:compiling_boost\\r'
cd "$WORKSPACE"/boost_1_57_0 cd "$WORKSPACE"/boost_1_57_0

View File

@ -0,0 +1,130 @@
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @date 2017
* Unit tests for the expression simplifier optimizer stage.
*/
#include <test/libjulia/Common.h>
#include <libjulia/optimiser/ExpressionSimplifier.h>
#include <libsolidity/inlineasm/AsmPrinter.h>
#include <boost/test/unit_test.hpp>
#include <boost/range/adaptors.hpp>
#include <boost/algorithm/string/join.hpp>
using namespace std;
using namespace dev;
using namespace dev::julia;
using namespace dev::julia::test;
using namespace dev::solidity;
#define CHECK(_original, _expectation)\
do\
{\
assembly::AsmPrinter p;\
Block b = *(parse(_original, false).first);\
(ExpressionSimplifier{})(b);\
string result = p(b);\
BOOST_CHECK_EQUAL(result, format(_expectation, false));\
}\
while(false)
BOOST_AUTO_TEST_SUITE(IuliaSimplifier)
BOOST_AUTO_TEST_CASE(smoke_test)
{
CHECK("{ }", "{ }");
}
BOOST_AUTO_TEST_CASE(constants)
{
CHECK(
"{ let a := add(1, mul(3, 4)) }",
"{ let a := 13 }"
);
}
BOOST_AUTO_TEST_CASE(invariant)
{
CHECK(
"{ let a := mload(sub(7, 7)) let b := sub(a, 0) }",
"{ let a := mload(0) let b := a }"
);
}
BOOST_AUTO_TEST_CASE(reversed)
{
CHECK(
"{ let a := add(0, mload(0)) }",
"{ let a := mload(0) }"
);
}
BOOST_AUTO_TEST_CASE(constant_propagation)
{
CHECK(
"{ let a := add(7, sub(mload(0), 7)) }",
"{ let a := mload(0) }"
);
}
BOOST_AUTO_TEST_CASE(identity_rules_simple)
{
CHECK(
"{ let a := mload(0) let b := sub(a, a) }",
"{ let a := mload(0) let b := 0 }"
);
}
BOOST_AUTO_TEST_CASE(identity_rules_complex)
{
CHECK(
"{ let a := sub(calldataload(0), calldataload(0)) }",
"{ let a := 0 }"
);
}
BOOST_AUTO_TEST_CASE(identity_rules_negative)
{
CHECK(
"{ let a := sub(calldataload(1), calldataload(0)) }",
"{ let a := sub(calldataload(1), calldataload(0)) }"
);
}
BOOST_AUTO_TEST_CASE(including_function_calls)
{
CHECK(
"{ function f() -> a {} let b := add(7, sub(f(), 7)) }",
"{ function f() -> a {} let b := f() }"
);
}
BOOST_AUTO_TEST_CASE(inside_for)
{
CHECK(
"{ for { let a := 10 } iszero(eq(a, 0)) { a := add(a, 1) } {} }",
"{ for { let a := 10 } iszero(iszero(a)) { a := add(a, 1) } {} }"
);
}
BOOST_AUTO_TEST_SUITE_END()