Merge pull request #5292 from ethereum/redundantAssignEliminator

[Yul] Redundant assign eliminator.
This commit is contained in:
chriseth 2018-10-24 14:29:59 +02:00 committed by GitHub
commit 8d01db7c2d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
22 changed files with 791 additions and 0 deletions

View File

@ -0,0 +1,193 @@
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Optimiser component that removes assignments to variables that are not used
* until they go out of scope or are re-assigned.
*/
#include <libyul/optimiser/RedundantAssignEliminator.h>
#include <libyul/optimiser/Semantics.h>
#include <libsolidity/inlineasm/AsmData.h>
#include <libdevcore/CommonData.h>
#include <boost/range/algorithm_ext/erase.hpp>
using namespace std;
using namespace dev;
using namespace dev::yul;
using namespace dev::solidity;
void RedundantAssignEliminator::operator()(Identifier const& _identifier)
{
changeUndecidedTo(_identifier.name, State::Used);
}
void RedundantAssignEliminator::operator()(VariableDeclaration const& _variableDeclaration)
{
ASTWalker::operator()(_variableDeclaration);
for (auto const& var: _variableDeclaration.variables)
m_declaredVariables.insert(var.name);
}
void RedundantAssignEliminator::operator()(Assignment const& _assignment)
{
visit(*_assignment.value);
for (auto const& var: _assignment.variableNames)
changeUndecidedTo(var.name, State::Unused);
if (_assignment.variableNames.size() == 1)
// Default-construct it in "Undecided" state if it does not yet exist.
m_assignments[_assignment.variableNames.front().name][&_assignment];
}
void RedundantAssignEliminator::operator()(If const& _if)
{
visit(*_if.condition);
RedundantAssignEliminator branch{*this};
branch(_if.body);
join(branch);
}
void RedundantAssignEliminator::operator()(Switch const& _switch)
{
visit(*_switch.expression);
bool hasDefault = false;
vector<RedundantAssignEliminator> branches;
for (auto const& c: _switch.cases)
{
if (!c.value)
hasDefault = true;
branches.emplace_back(*this);
branches.back()(c.body);
}
if (hasDefault)
{
*this = std::move(branches.back());
branches.pop_back();
}
for (auto& branch: branches)
join(branch);
}
void RedundantAssignEliminator::operator()(FunctionDefinition const& _functionDefinition)
{
(*this)(_functionDefinition.body);
for (auto const& param: _functionDefinition.parameters)
changeUndecidedTo(param.name, State::Unused);
for (auto const& retParam: _functionDefinition.returnVariables)
changeUndecidedTo(retParam.name, State::Used);
}
void RedundantAssignEliminator::operator()(ForLoop const& _forLoop)
{
// This will set all variables that are declared in this
// block to "unused" when it is destroyed.
BlockScope scope(*this);
// We need to visit the statements directly because of the
// scoping rules.
walkVector(_forLoop.pre.statements);
// We just run the loop twice to account for the
// back edge.
// There need not be more runs because we only have three different states.
visit(*_forLoop.condition);
RedundantAssignEliminator zeroRuns{*this};
(*this)(_forLoop.body);
(*this)(_forLoop.post);
visit(*_forLoop.condition);
RedundantAssignEliminator oneRun{*this};
(*this)(_forLoop.body);
(*this)(_forLoop.post);
visit(*_forLoop.condition);
// Order does not matter because "max" is commutative and associative.
join(oneRun);
join(zeroRuns);
}
void RedundantAssignEliminator::operator()(Block const& _block)
{
// This will set all variables that are declared in this
// block to "unused" when it is destroyed.
BlockScope scope(*this);
ASTWalker::operator()(_block);
}
void RedundantAssignEliminator::run(Block& _ast)
{
RedundantAssignEliminator rae;
rae(_ast);
std::set<Assignment const*> assignmentsToRemove;
for (auto const& variables: rae.m_assignments)
for (auto const& assignment: variables.second)
{
assertThrow(assignment.second != State::Undecided, OptimizerException, "");
if (assignment.second == State::Unused && MovableChecker{*assignment.first->value}.movable())
assignmentsToRemove.insert(assignment.first);
}
AssignmentRemover remover{assignmentsToRemove};
remover(_ast);
}
void RedundantAssignEliminator::join(RedundantAssignEliminator& _other)
{
for (auto& var: _other.m_assignments)
if (m_assignments.count(var.first))
{
map<Assignment const*, State>& assignmentsHere = m_assignments[var.first];
for (auto& assignment: var.second)
assignmentsHere[assignment.first].join(assignment.second);
}
else
m_assignments[var.first] = std::move(var.second);
}
void RedundantAssignEliminator::changeUndecidedTo(string const& _variable, RedundantAssignEliminator::State _newState)
{
for (auto& assignment: m_assignments[_variable])
if (assignment.second == State{State::Undecided})
assignment.second = _newState;
}
void AssignmentRemover::operator()(Block& _block)
{
boost::range::remove_erase_if(_block.statements, [=](Statement const& _statement) -> bool {
return _statement.type() == typeid(Assignment) && m_toRemove.count(&boost::get<Assignment>(_statement));
});
ASTModifier::operator()(_block);
}

View File

@ -0,0 +1,185 @@
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* Optimiser component that removes assignments to variables that are not used
* until they go out of scope or are re-assigned.
*/
#pragma once
#include <libyul/ASTDataForward.h>
#include <libyul/optimiser/ASTWalker.h>
#include <map>
namespace dev
{
namespace yul
{
/**
* Optimiser component that removes assignments to variables that are not used
* until they go out of scope or are re-assigned. This component
* respects the control-flow and takes it into account for removal.
*
* Example:
*
* {
* let a
* a := 1
* a := 2
* b := 2
* if calldataload(0)
* {
* b := mload(a)
* }
* a := b
* }
*
* In the example, "a := 1" can be removed because the value from this assignment
* is not used in any control-flow branch (it is replaced right away).
* The assignment "a := 2" is also overwritten by "a := b" at the end,
* but there is a control-flow path (through the condition body) which uses
* the value from "a := 2" and thus, this assignment cannot be removed.
*
* Detailed rules:
*
* The AST is traversed twice: in an information gathering step and in the
* actual removal step. During information gathering, we maintain a
* mapping from assignment statements to the three states
* "unused", "undecided" and "used".
* When an assignment is visited, it is added to the mapping in the "undecided" state
* (see remark about for loops below) and every other assignment to the same variable
* that is still in the "undecided" state is changed to "unused".
* When a variable is referenced, the state of any assignment to that variable still
* in the "undecided" state is changed to "used".
* At points where control flow splits, a copy
* of the mapping is handed over to each branch. At points where control flow
* joins, the two mappings coming from the two branches are combined in the following way:
* Statements that are only in one mapping or have the same state are used unchanged.
* Conflicting values are resolved in the following way:
* "unused", "undecided" -> "undecided"
* "unused", "used" -> "used"
* "undecided, "used" -> "used".
*
* For for-loops, the condition, body and post-part are visited twice, taking
* the joining control-flow at the condition into account.
* In other words, we create three control flow paths: Zero runs of the loop,
* one run and two runs and then combine them at the end.
* Running at most twice is enough because there are only three different states.
*
* For switch statements that have a "default"-case, there is no control-flow
* part that skips the switch.
*
* When a variable goes out of scope, all statements still in the "undecided"
* state are changed to "unused", unless the variable is the return
* parameter of a function - there, the state changes to "used".
*
* In the second traversal, all assignments that are in the "unused" state are removed.
*
*
* This step is usually run right after the SSA transform to complete
* the generation of the pseudo-SSA.
*
* Prerequisite: Disambiguator.
*/
class RedundantAssignEliminator: public ASTWalker
{
public:
RedundantAssignEliminator(RedundantAssignEliminator const&) = default;
RedundantAssignEliminator& operator=(RedundantAssignEliminator const&) = default;
RedundantAssignEliminator(RedundantAssignEliminator&&) = default;
RedundantAssignEliminator& operator=(RedundantAssignEliminator&&) = default;
void operator()(Identifier const& _identifier) override;
void operator()(VariableDeclaration const& _variableDeclaration) override;
void operator()(Assignment const& _assignment) override;
void operator()(If const& _if) override;
void operator()(Switch const& _switch) override;
void operator()(FunctionDefinition const&) override;
void operator()(ForLoop const&) override;
void operator()(Block const& _block) override;
static void run(Block& _ast);
private:
RedundantAssignEliminator() {}
class State
{
public:
enum Value { Unused, Undecided, Used };
State(Value _value = Undecided): m_value(_value) {}
bool operator==(State _other) const { return m_value == _other.m_value; }
bool operator!=(State _other) const { return !operator==(_other); }
void join(State _other)
{
// Using "max" works here because of the order of the values in the enum.
m_value = Value(std::max(int(_other.m_value), int(m_value)));
}
private:
Value m_value = Undecided;
};
/**
* Takes care about storing the list of declared variables and
* sets them to "unused" when it is destroyed.
*/
class BlockScope
{
public:
explicit BlockScope(RedundantAssignEliminator& _rae): m_rae(_rae)
{
swap(m_rae.m_declaredVariables, m_outerDeclaredVariables);
}
~BlockScope()
{
for (auto const& var: m_rae.m_declaredVariables)
m_rae.changeUndecidedTo(var, State::Unused);
swap(m_rae.m_declaredVariables, m_outerDeclaredVariables);
}
private:
RedundantAssignEliminator& m_rae;
std::set<std::string> m_outerDeclaredVariables;
};
/// Joins the assignment mapping with @a _other according to the rules laid out
/// above.
/// Will destroy @a _other.
void join(RedundantAssignEliminator& _other);
void changeUndecidedTo(std::string const& _variable, State _newState);
std::set<std::string> m_declaredVariables;
std::map<std::string, std::map<Assignment const*, State>> m_assignments;
};
class AssignmentRemover: public ASTModifier
{
public:
explicit AssignmentRemover(std::set<Assignment const*> const& _toRemove):
m_toRemove(_toRemove)
{}
void operator()(Block& _block) override;
private:
std::set<Assignment const*> const& m_toRemove;
};
}
}

View File

@ -36,6 +36,7 @@
#include <libyul/optimiser/UnusedPruner.h>
#include <libyul/optimiser/ExpressionJoiner.h>
#include <libyul/optimiser/SSATransform.h>
#include <libyul/optimiser/RedundantAssignEliminator.h>
#include <libsolidity/parsing/Scanner.h>
#include <libsolidity/inlineasm/AsmPrinter.h>
@ -178,6 +179,18 @@ bool YulOptimizerTest::run(ostream& _stream, string const& _linePrefix, bool con
NameDispenser nameDispenser(*m_ast);
SSATransform::run(*m_ast, nameDispenser);
}
else if (m_optimizerStep == "redundantAssignEliminator")
{
disambiguate();
RedundantAssignEliminator::run(*m_ast);
}
else if (m_optimizerStep == "ssaPlusCleanup")
{
disambiguate();
NameDispenser nameDispenser(*m_ast);
SSATransform::run(*m_ast, nameDispenser);
RedundantAssignEliminator::run(*m_ast);
}
else
{
FormattedScope(_stream, _formatted, {formatting::BOLD, formatting::RED}) << _linePrefix << "Invalid optimizer step: " << m_optimizerStep << endl;

View File

@ -0,0 +1,26 @@
{
for {
let a := 2
// Should not be removed, even though you might think
// it goes out of scope
a := 3
} a { a := add(a, 1) }
{
a := 7
}
}
// ----
// redundantAssignEliminator
// {
// for {
// let a := 2
// a := 3
// }
// a
// {
// a := add(a, 1)
// }
// {
// a := 7
// }
// }

View File

@ -0,0 +1,31 @@
{
let x
let y
// Cannot be removed, because we might skip the loop
x := 1
for { } calldataload(0) { }
{
// Cannot be removed
x := 2
// Can be removed
y := 3
}
y := 8
mstore(x, 0)
}
// ----
// redundantAssignEliminator
// {
// let x
// let y
// x := 1
// for {
// }
// calldataload(0)
// {
// }
// {
// x := 2
// }
// mstore(x, 0)
// }

View File

@ -0,0 +1,27 @@
{
let x
// Cannot be removed, because we might run the loop only once
x := 1
for { } calldataload(0) { }
{
mstore(x, 2)
// Cannot be removed because of the line above
x := 2
}
x := 3
}
// ----
// redundantAssignEliminator
// {
// let x
// x := 1
// for {
// }
// calldataload(0)
// {
// }
// {
// mstore(x, 2)
// x := 2
// }
// }

View File

@ -0,0 +1,23 @@
{
let r
r := 1
function f(x, y) -> a, b {
// Can be removed, is param
x := 1
y := 2
// Cannot be removed, is return param
a := 3
b := 4
}
r := 2
}
// ----
// redundantAssignEliminator
// {
// let r
// function f(x, y) -> a, b
// {
// a := 3
// b := 4
// }
// }

View File

@ -0,0 +1,24 @@
{
let c
let d
c := calldataload(0)
d := 1
if c {
d := 2
}
// This enforces that none of the assignments above can be removed.
mstore(0, d)
}
// ----
// redundantAssignEliminator
// {
// let c
// let d
// c := calldataload(0)
// d := 1
// if c
// {
// d := 2
// }
// mstore(0, d)
// }

View File

@ -0,0 +1,24 @@
{
let c
let d
c := calldataload(0)
// This assignment will be overwritten in all branches and thus can be removed.
d := 1
if c {
d := 2
}
d := 3
mstore(0, d)
}
// ----
// redundantAssignEliminator
// {
// let c
// let d
// c := calldataload(0)
// if c
// {
// }
// d := 3
// mstore(0, d)
// }

View File

@ -0,0 +1,25 @@
{
let c
let d
c := calldataload(0)
d := 1
if c {
// Uses the assignment above
d := d
}
d := 3
mstore(0, d)
}
// ----
// redundantAssignEliminator
// {
// let c
// let d
// c := calldataload(0)
// d := 1
// if c
// {
// }
// d := 3
// mstore(0, d)
// }

View File

@ -0,0 +1,19 @@
{
function f() -> a, b {}
let x, y
x := 1
x := 2
// Will not be used, but is a multi-assign, so not removed.
x, y := f()
x := 3
y := 4
}
// ----
// redundantAssignEliminator
// {
// function f() -> a, b
// {
// }
// let x, y
// x, y := f()
// }

View File

@ -0,0 +1,15 @@
{
let a := 2
a := 7
let b := 8
b := a
a := b
}
// ----
// redundantAssignEliminator
// {
// let a := 2
// a := 7
// let b := 8
// b := a
// }

View File

@ -0,0 +1,11 @@
{
let a
a := 0
a := mload(0)
}
// ----
// redundantAssignEliminator
// {
// let a
// a := mload(0)
// }

View File

@ -0,0 +1,16 @@
{
let a
{
let b
b := 2
a := 2
}
}
// ----
// redundantAssignEliminator
// {
// let a
// {
// let b
// }
// }

View File

@ -0,0 +1,10 @@
{
let a
a := 1
a := 2
}
// ----
// redundantAssignEliminator
// {
// let a
// }

View File

@ -0,0 +1,22 @@
{
let x
// Will be overwritten in all branches
x := 1
switch calldataload(0)
case 0 { x := 2 }
default { x := 3 }
mstore(x, 0)
}
// ----
// redundantAssignEliminator
// {
// let x
// switch calldataload(0)
// case 0 {
// x := 2
// }
// default {
// x := 3
// }
// mstore(x, 0)
// }

View File

@ -0,0 +1,19 @@
{
let x
// Will NOT be overwritten in all branches
x := 1
switch calldataload(0)
case 0 { x := 2 }
mstore(x, 0)
}
// ----
// redundantAssignEliminator
// {
// let x
// x := 1
// switch calldataload(0)
// case 0 {
// x := 2
// }
// mstore(x, 0)
// }

View File

@ -0,0 +1,23 @@
{
let x
// Will be used in some and overwritten in others
x := 1
switch calldataload(0)
case 0 { x := 2 }
default { mstore(x, 1) }
mstore(x, 0)
}
// ----
// redundantAssignEliminator
// {
// let x
// x := 1
// switch calldataload(0)
// case 0 {
// x := 2
// }
// default {
// mstore(x, 1)
// }
// mstore(x, 0)
// }

View File

@ -0,0 +1,16 @@
{
let x
// Not referenced anywhere.
x := 1
switch calldataload(0)
case 0 { mstore(0, 1) }
}
// ----
// redundantAssignEliminator
// {
// let x
// switch calldataload(0)
// case 0 {
// mstore(0, 1)
// }
// }

View File

@ -0,0 +1,35 @@
{
function copy(from, to) -> length {
length := mload(from)
mstore(to, length)
from := add(from, 0x20)
to := add(to, 0x20)
for { let x := 1 } lt(x, length) { x := add(x, 0x20) } {
mstore(add(to, x), mload(add(from, x)))
}
}
}
// ----
// ssaPlusCleanup
// {
// function copy(from, to) -> length
// {
// let length_1 := mload(from)
// length := length_1
// mstore(to, length_1)
// let from_1 := add(from, 0x20)
// let to_1 := add(to, 0x20)
// for {
// let x_1 := 1
// let x := x_1
// }
// lt(x, length_1)
// {
// let x_2 := add(x, 0x20)
// x := x_2
// }
// {
// mstore(add(to_1, x), mload(add(from_1, x)))
// }
// }
// }

View File

@ -0,0 +1,17 @@
{
let a := 1
a := 2
a := 3
a := 4
mstore(0, a)
}
// ----
// ssaPlusCleanup
// {
// let a_1 := 1
// let a := a_1
// let a_2 := 2
// let a_3 := 3
// let a_4 := 4
// mstore(0, a_4)
// }

View File

@ -0,0 +1,17 @@
{
let a := 1
a := add(a, 2)
a := add(a, 3)
a := mload(add(a, 4))
mstore(0, a)
}
// ----
// ssaPlusCleanup
// {
// let a_1 := 1
// let a := a_1
// let a_2 := add(a_1, 2)
// let a_3 := add(a_2, 3)
// let a_4 := mload(add(a_3, 4))
// mstore(0, a_4)
// }