mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
[yul-phaser] Add RangeSelection, MosaicSelection and RandomSelection classes
This commit is contained in:
parent
3c41bfbc4e
commit
83b8ab8012
@ -147,6 +147,7 @@ set(yul_phaser_sources
|
||||
yulPhaser/GeneticAlgorithms.cpp
|
||||
yulPhaser/Population.cpp
|
||||
yulPhaser/Program.cpp
|
||||
yulPhaser/Selections.cpp
|
||||
yulPhaser/SimulationRNG.cpp
|
||||
|
||||
# FIXME: yul-phaser is not a library so I can't just add it to target_link_libraries().
|
||||
@ -157,6 +158,7 @@ set(yul_phaser_sources
|
||||
../tools/yulPhaser/GeneticAlgorithms.cpp
|
||||
../tools/yulPhaser/Population.cpp
|
||||
../tools/yulPhaser/Program.cpp
|
||||
../tools/yulPhaser/Selections.cpp
|
||||
../tools/yulPhaser/SimulationRNG.cpp
|
||||
)
|
||||
detect_stray_source_files("${yul_phaser_sources}" "yulPhaser/")
|
||||
|
206
test/yulPhaser/Selections.cpp
Normal file
206
test/yulPhaser/Selections.cpp
Normal file
@ -0,0 +1,206 @@
|
||||
/*
|
||||
This file is part of solidity.
|
||||
|
||||
solidity is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
solidity is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <test/yulPhaser/Common.h>
|
||||
|
||||
#include <tools/yulPhaser/Selections.h>
|
||||
#include <tools/yulPhaser/SimulationRNG.h>
|
||||
|
||||
#include <libsolutil/CommonData.h>
|
||||
|
||||
#include <boost/test/unit_test.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace solidity::phaser::test
|
||||
{
|
||||
|
||||
BOOST_AUTO_TEST_SUITE(Phaser)
|
||||
BOOST_AUTO_TEST_SUITE(SelectionsTest)
|
||||
BOOST_AUTO_TEST_SUITE(RangeSelectionTest)
|
||||
|
||||
BOOST_AUTO_TEST_CASE(materialise)
|
||||
{
|
||||
BOOST_TEST(RangeSelection(0.0, 1.0).materialise(10) == vector<size_t>({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
|
||||
BOOST_TEST(RangeSelection(0.0, 0.1).materialise(10) == vector<size_t>({0}));
|
||||
BOOST_TEST(RangeSelection(0.0, 0.2).materialise(10) == vector<size_t>({0, 1}));
|
||||
BOOST_TEST(RangeSelection(0.0, 0.7).materialise(10) == vector<size_t>({0, 1, 2, 3, 4, 5, 6}));
|
||||
|
||||
BOOST_TEST(RangeSelection(0.9, 1.0).materialise(10) == vector<size_t>({ 9}));
|
||||
BOOST_TEST(RangeSelection(0.8, 1.0).materialise(10) == vector<size_t>({ 8, 9}));
|
||||
BOOST_TEST(RangeSelection(0.5, 1.0).materialise(10) == vector<size_t>({ 5, 6, 7, 8, 9}));
|
||||
|
||||
BOOST_TEST(RangeSelection(0.3, 0.6).materialise(10) == vector<size_t>({ 3, 4, 5 }));
|
||||
BOOST_TEST(RangeSelection(0.2, 0.7).materialise(10) == vector<size_t>({ 2, 3, 4, 5, 6 }));
|
||||
BOOST_TEST(RangeSelection(0.4, 0.7).materialise(10) == vector<size_t>({ 4, 5, 6 }));
|
||||
|
||||
BOOST_TEST(RangeSelection(0.4, 0.7).materialise(5) == vector<size_t>({2, 3}));
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(materialise_should_round_indices)
|
||||
{
|
||||
BOOST_TEST(RangeSelection(0.01, 0.99).materialise(10) == vector<size_t>({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
|
||||
BOOST_TEST(RangeSelection(0.04, 0.96).materialise(10) == vector<size_t>({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}));
|
||||
BOOST_TEST(RangeSelection(0.05, 0.95).materialise(10) == vector<size_t>({ 1, 2, 3, 4, 5, 6, 7, 8, 9}));
|
||||
BOOST_TEST(RangeSelection(0.06, 0.94).materialise(10) == vector<size_t>({ 1, 2, 3, 4, 5, 6, 7, 8 }));
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(materialise_should_handle_empty_collections)
|
||||
{
|
||||
BOOST_TEST(RangeSelection(0.0, 0.0).materialise(0).empty());
|
||||
BOOST_TEST(RangeSelection(0.0, 1.0).materialise(0).empty());
|
||||
BOOST_TEST(RangeSelection(0.5, 1.0).materialise(0).empty());
|
||||
BOOST_TEST(RangeSelection(0.0, 0.5).materialise(0).empty());
|
||||
BOOST_TEST(RangeSelection(0.2, 0.7).materialise(0).empty());
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(materialise_should_handle_empty_selection_ranges)
|
||||
{
|
||||
BOOST_TEST(RangeSelection(0.0, 0.0).materialise(1).empty());
|
||||
BOOST_TEST(RangeSelection(1.0, 1.0).materialise(1).empty());
|
||||
|
||||
BOOST_TEST(RangeSelection(0.0, 0.0).materialise(100).empty());
|
||||
BOOST_TEST(RangeSelection(1.0, 1.0).materialise(100).empty());
|
||||
BOOST_TEST(RangeSelection(0.5, 0.5).materialise(100).empty());
|
||||
|
||||
BOOST_TEST(RangeSelection(0.45, 0.54).materialise(10).empty());
|
||||
BOOST_TEST(!RangeSelection(0.45, 0.54).materialise(100).empty());
|
||||
BOOST_TEST(RangeSelection(0.045, 0.054).materialise(100).empty());
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_SUITE_END()
|
||||
BOOST_AUTO_TEST_SUITE(MosaicSelectionTest)
|
||||
|
||||
BOOST_AUTO_TEST_CASE(materialise)
|
||||
{
|
||||
BOOST_TEST(MosaicSelection({1}, 0.5).materialise(4) == vector<size_t>({1, 1}));
|
||||
BOOST_TEST(MosaicSelection({1}, 1.0).materialise(4) == vector<size_t>({1, 1, 1, 1}));
|
||||
BOOST_TEST(MosaicSelection({1}, 2.0).materialise(4) == vector<size_t>({1, 1, 1, 1, 1, 1, 1, 1}));
|
||||
BOOST_TEST(MosaicSelection({1}, 1.0).materialise(2) == vector<size_t>({1, 1}));
|
||||
|
||||
BOOST_TEST(MosaicSelection({0, 1}, 0.5).materialise(4) == vector<size_t>({0, 1}));
|
||||
BOOST_TEST(MosaicSelection({0, 1}, 1.0).materialise(4) == vector<size_t>({0, 1, 0, 1}));
|
||||
BOOST_TEST(MosaicSelection({0, 1}, 2.0).materialise(4) == vector<size_t>({0, 1, 0, 1, 0, 1, 0, 1}));
|
||||
BOOST_TEST(MosaicSelection({0, 1}, 1.0).materialise(2) == vector<size_t>({0, 1}));
|
||||
|
||||
BOOST_TEST(MosaicSelection({3, 2, 1, 0}, 0.5).materialise(4) == vector<size_t>({3, 2}));
|
||||
BOOST_TEST(MosaicSelection({3, 2, 1, 0}, 1.0).materialise(4) == vector<size_t>({3, 2, 1, 0}));
|
||||
BOOST_TEST(MosaicSelection({3, 2, 1, 0}, 2.0).materialise(4) == vector<size_t>({3, 2, 1, 0, 3, 2, 1, 0}));
|
||||
BOOST_TEST(MosaicSelection({1, 0, 1, 0}, 1.0).materialise(2) == vector<size_t>({1, 0}));
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(materialise_should_round_indices)
|
||||
{
|
||||
BOOST_TEST(MosaicSelection({4, 3, 2, 1, 0}, 0.49).materialise(5) == vector<size_t>({4, 3}));
|
||||
BOOST_TEST(MosaicSelection({4, 3, 2, 1, 0}, 0.50).materialise(5) == vector<size_t>({4, 3, 2}));
|
||||
BOOST_TEST(MosaicSelection({4, 3, 2, 1, 0}, 0.51).materialise(5) == vector<size_t>({4, 3, 2}));
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(materialise_should_handle_empty_collections)
|
||||
{
|
||||
BOOST_TEST(MosaicSelection({1}, 1.0).materialise(0).empty());
|
||||
BOOST_TEST(MosaicSelection({1, 3}, 2.0).materialise(0).empty());
|
||||
BOOST_TEST(MosaicSelection({5, 4, 3, 2}, 0.5).materialise(0).empty());
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(materialise_should_handle_empty_selections)
|
||||
{
|
||||
BOOST_TEST(MosaicSelection({1}, 0.0).materialise(8).empty());
|
||||
BOOST_TEST(MosaicSelection({1, 3}, 0.0).materialise(8).empty());
|
||||
BOOST_TEST(MosaicSelection({5, 4, 3, 2}, 0.0).materialise(8).empty());
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(materialise_should_clamp_indices_at_collection_size)
|
||||
{
|
||||
BOOST_TEST(MosaicSelection({4, 3, 2, 1, 0}, 1.0).materialise(4) == vector<size_t>({3, 3, 2, 1}));
|
||||
BOOST_TEST(MosaicSelection({4, 3, 2, 1, 0}, 2.0).materialise(3) == vector<size_t>({2, 2, 2, 1, 0, 2}));
|
||||
BOOST_TEST(MosaicSelection({4, 3, 2, 1, 0}, 1.0).materialise(1) == vector<size_t>({0}));
|
||||
BOOST_TEST(MosaicSelection({4, 3, 2, 1, 0}, 7.0).materialise(1) == vector<size_t>({0, 0, 0, 0, 0, 0, 0}));
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_SUITE_END()
|
||||
BOOST_AUTO_TEST_SUITE(RandomSelectionTest)
|
||||
|
||||
BOOST_AUTO_TEST_CASE(materialise_should_return_random_values_with_equal_probabilities)
|
||||
{
|
||||
constexpr int collectionSize = 10;
|
||||
constexpr int selectionSize = 100;
|
||||
constexpr double relativeTolerance = 0.1;
|
||||
constexpr double expectedValue = (collectionSize - 1) / 2.0;
|
||||
constexpr double variance = (collectionSize * collectionSize - 1) / 12.0;
|
||||
|
||||
SimulationRNG::reset(1);
|
||||
vector<size_t> samples = RandomSelection(selectionSize).materialise(collectionSize);
|
||||
|
||||
BOOST_TEST(abs(mean(samples) - expectedValue) < expectedValue * relativeTolerance);
|
||||
BOOST_TEST(abs(meanSquaredError(samples, expectedValue) - variance) < variance * relativeTolerance);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(materialise_should_return_only_values_that_can_be_used_as_collection_indices)
|
||||
{
|
||||
const size_t collectionSize = 200;
|
||||
|
||||
vector<size_t> indices = RandomSelection(0.5).materialise(collectionSize);
|
||||
|
||||
BOOST_TEST(indices.size() == 100);
|
||||
BOOST_TEST(all_of(indices.begin(), indices.end(), [&](auto const& index){ return index <= collectionSize; }));
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(materialise_should_return_number_of_indices_thats_a_fraction_of_collection_size)
|
||||
{
|
||||
BOOST_TEST(RandomSelection(0.0).materialise(10).size() == 0);
|
||||
BOOST_TEST(RandomSelection(0.3).materialise(10).size() == 3);
|
||||
BOOST_TEST(RandomSelection(0.5).materialise(10).size() == 5);
|
||||
BOOST_TEST(RandomSelection(0.7).materialise(10).size() == 7);
|
||||
BOOST_TEST(RandomSelection(1.0).materialise(10).size() == 10);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(materialise_should_support_number_of_indices_bigger_than_collection_size)
|
||||
{
|
||||
BOOST_TEST(RandomSelection(2.0).materialise(5).size() == 10);
|
||||
BOOST_TEST(RandomSelection(1.5).materialise(10).size() == 15);
|
||||
BOOST_TEST(RandomSelection(10.0).materialise(10).size() == 100);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(materialise_should_round_the_number_of_indices_to_the_nearest_integer)
|
||||
{
|
||||
BOOST_TEST(RandomSelection(0.49).materialise(3).size() == 1);
|
||||
BOOST_TEST(RandomSelection(0.50).materialise(3).size() == 2);
|
||||
BOOST_TEST(RandomSelection(0.51).materialise(3).size() == 2);
|
||||
|
||||
BOOST_TEST(RandomSelection(1.51).materialise(3).size() == 5);
|
||||
|
||||
BOOST_TEST(RandomSelection(0.01).materialise(2).size() == 0);
|
||||
BOOST_TEST(RandomSelection(0.01).materialise(3).size() == 0);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(materialise_should_return_no_indices_if_collection_is_empty)
|
||||
{
|
||||
BOOST_TEST(RandomSelection(0.0).materialise(0).empty());
|
||||
BOOST_TEST(RandomSelection(0.5).materialise(0).empty());
|
||||
BOOST_TEST(RandomSelection(1.0).materialise(0).empty());
|
||||
BOOST_TEST(RandomSelection(2.0).materialise(0).empty());
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_SUITE_END()
|
||||
BOOST_AUTO_TEST_SUITE_END()
|
||||
BOOST_AUTO_TEST_SUITE_END()
|
||||
|
||||
}
|
@ -16,3 +16,45 @@
|
||||
*/
|
||||
|
||||
#include <tools/yulPhaser/Selections.h>
|
||||
|
||||
#include <tools/yulPhaser/SimulationRNG.h>
|
||||
|
||||
#include <cmath>
|
||||
|
||||
using namespace std;
|
||||
using namespace solidity::phaser;
|
||||
|
||||
vector<size_t> RangeSelection::materialise(size_t _poolSize) const
|
||||
{
|
||||
size_t beginIndex = static_cast<size_t>(round(_poolSize * m_startPercent));
|
||||
size_t endIndex = static_cast<size_t>(round(_poolSize * m_endPercent));
|
||||
vector<size_t> selection;
|
||||
|
||||
for (size_t i = beginIndex; i < endIndex; ++i)
|
||||
selection.push_back(i);
|
||||
|
||||
return selection;
|
||||
}
|
||||
|
||||
vector<size_t> MosaicSelection::materialise(size_t _poolSize) const
|
||||
{
|
||||
size_t count = static_cast<size_t>(round(_poolSize * m_selectionSize));
|
||||
|
||||
vector<size_t> selection;
|
||||
for (size_t i = 0; i < count; ++i)
|
||||
selection.push_back(min(m_pattern[i % m_pattern.size()], _poolSize - 1));
|
||||
|
||||
return selection;
|
||||
}
|
||||
|
||||
vector<size_t> RandomSelection::materialise(size_t _poolSize) const
|
||||
{
|
||||
size_t count = static_cast<size_t>(round(_poolSize * m_selectionSize));
|
||||
|
||||
vector<size_t> selection;
|
||||
for (size_t i = 0; i < count; ++i)
|
||||
selection.push_back(SimulationRNG::uniformInt(0, _poolSize - 1));
|
||||
|
||||
return selection;
|
||||
}
|
||||
|
||||
|
@ -21,6 +21,7 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cassert>
|
||||
#include <vector>
|
||||
|
||||
namespace solidity::phaser
|
||||
@ -49,4 +50,72 @@ public:
|
||||
virtual std::vector<size_t> materialise(size_t _poolSize) const = 0;
|
||||
};
|
||||
|
||||
/**
|
||||
* A selection that selects a contiguous slice of the container. Start and end of this part are
|
||||
* specified as percentages of its size.
|
||||
*/
|
||||
class RangeSelection: public Selection
|
||||
{
|
||||
public:
|
||||
explicit RangeSelection(double _startPercent = 0.0, double _endPercent = 1.0):
|
||||
m_startPercent(_startPercent),
|
||||
m_endPercent(_endPercent)
|
||||
{
|
||||
assert(0 <= m_startPercent && m_startPercent <= m_endPercent && m_endPercent <= 1.0);
|
||||
}
|
||||
|
||||
std::vector<size_t> materialise(size_t _poolSize) const override;
|
||||
|
||||
private:
|
||||
double m_startPercent;
|
||||
double m_endPercent;
|
||||
};
|
||||
|
||||
/**
|
||||
* A selection that selects elements at specific, fixed positions indicated by a repeating "pattern".
|
||||
* If the positions in the pattern exceed the size of the container, they are capped at the maximum
|
||||
* available position. Always selects as many elements as the size of the container multiplied by
|
||||
* @a _selectionSize (unless the container is empty).
|
||||
*
|
||||
* E.g. if the pattern is {0, 9} and collection size is 5, the selection will materialise into
|
||||
* {0, 4, 0, 4, 0}. If the size is 3, it will be {0, 2, 0}.
|
||||
*/
|
||||
class MosaicSelection: public Selection
|
||||
{
|
||||
public:
|
||||
explicit MosaicSelection(std::vector<size_t> _pattern, double _selectionSize = 1.0):
|
||||
m_pattern(move(_pattern)),
|
||||
m_selectionSize(_selectionSize)
|
||||
{
|
||||
assert(m_pattern.size() > 0 || _selectionSize == 0.0);
|
||||
}
|
||||
|
||||
std::vector<size_t> materialise(size_t _poolSize) const override;
|
||||
|
||||
private:
|
||||
std::vector<size_t> m_pattern;
|
||||
double m_selectionSize;
|
||||
};
|
||||
|
||||
/**
|
||||
* A selection that randomly selects elements from a container. The resulting set of indices may
|
||||
* contain duplicates and is different on each call to @a materialise(). Always selects as many
|
||||
* elements as the size of the container multiplied by @a _selectionSize (unless the container is
|
||||
* empty).
|
||||
*/
|
||||
class RandomSelection: public Selection
|
||||
{
|
||||
public:
|
||||
explicit RandomSelection(double _selectionSize):
|
||||
m_selectionSize(_selectionSize)
|
||||
{
|
||||
assert(_selectionSize >= 0);
|
||||
}
|
||||
|
||||
std::vector<size_t> materialise(size_t _poolSize) const override;
|
||||
|
||||
private:
|
||||
double m_selectionSize;
|
||||
};
|
||||
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user