mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
Split off libevmasm specific optimiser tests
This commit is contained in:
parent
092c2815e5
commit
8107177b9c
871
test/libevmasm/Optimiser.cpp
Normal file
871
test/libevmasm/Optimiser.cpp
Normal file
@ -0,0 +1,871 @@
|
||||
/*
|
||||
This file is part of solidity.
|
||||
|
||||
solidity is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
solidity is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/**
|
||||
* @author Christian <c@ethdev.com>
|
||||
* @date 2014
|
||||
* Tests for the Solidity optimizer.
|
||||
*/
|
||||
|
||||
#include <libevmasm/CommonSubexpressionEliminator.h>
|
||||
#include <libevmasm/PeepholeOptimiser.h>
|
||||
#include <libevmasm/ControlFlowGraph.h>
|
||||
#include <libevmasm/BlockDeduplicator.h>
|
||||
#include <libevmasm/Assembly.h>
|
||||
|
||||
#include <boost/test/unit_test.hpp>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
|
||||
#include <chrono>
|
||||
#include <string>
|
||||
#include <tuple>
|
||||
#include <memory>
|
||||
|
||||
using namespace std;
|
||||
using namespace dev::eth;
|
||||
|
||||
namespace dev
|
||||
{
|
||||
namespace solidity
|
||||
{
|
||||
namespace test
|
||||
{
|
||||
|
||||
namespace
|
||||
{
|
||||
AssemblyItems addDummyLocations(AssemblyItems const& _input)
|
||||
{
|
||||
// add dummy locations to each item so that we can check that they are not deleted
|
||||
AssemblyItems input = _input;
|
||||
for (AssemblyItem& item: input)
|
||||
item.setLocation(SourceLocation(1, 3, make_shared<string>("")));
|
||||
return input;
|
||||
}
|
||||
|
||||
eth::KnownState createInitialState(AssemblyItems const& _input)
|
||||
{
|
||||
eth::KnownState state;
|
||||
for (auto const& item: addDummyLocations(_input))
|
||||
state.feedItem(item, true);
|
||||
return state;
|
||||
}
|
||||
|
||||
AssemblyItems CSE(AssemblyItems const& _input, eth::KnownState const& _state = eth::KnownState())
|
||||
{
|
||||
AssemblyItems input = addDummyLocations(_input);
|
||||
|
||||
eth::CommonSubexpressionEliminator cse(_state);
|
||||
BOOST_REQUIRE(cse.feedItems(input.begin(), input.end()) == input.end());
|
||||
AssemblyItems output = cse.getOptimizedItems();
|
||||
|
||||
for (AssemblyItem const& item: output)
|
||||
{
|
||||
BOOST_CHECK(item == Instruction::POP || !item.location().isEmpty());
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
void checkCSE(
|
||||
AssemblyItems const& _input,
|
||||
AssemblyItems const& _expectation,
|
||||
KnownState const& _state = eth::KnownState()
|
||||
)
|
||||
{
|
||||
AssemblyItems output = CSE(_input, _state);
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(_expectation.begin(), _expectation.end(), output.begin(), output.end());
|
||||
}
|
||||
|
||||
AssemblyItems CFG(AssemblyItems const& _input)
|
||||
{
|
||||
AssemblyItems output = _input;
|
||||
// Running it four times should be enough for these tests.
|
||||
for (unsigned i = 0; i < 4; ++i)
|
||||
{
|
||||
ControlFlowGraph cfg(output);
|
||||
AssemblyItems optItems;
|
||||
for (BasicBlock const& block: cfg.optimisedBlocks())
|
||||
copy(output.begin() + block.begin, output.begin() + block.end,
|
||||
back_inserter(optItems));
|
||||
output = move(optItems);
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
void checkCFG(AssemblyItems const& _input, AssemblyItems const& _expectation)
|
||||
{
|
||||
AssemblyItems output = CFG(_input);
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(_expectation.begin(), _expectation.end(), output.begin(), output.end());
|
||||
}
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_SUITE(Optimiser)
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_intermediate_swap)
|
||||
{
|
||||
eth::KnownState state;
|
||||
eth::CommonSubexpressionEliminator cse(state);
|
||||
AssemblyItems input{
|
||||
Instruction::SWAP1, Instruction::POP, Instruction::ADD, u256(0), Instruction::SWAP1,
|
||||
Instruction::SLOAD, Instruction::SWAP1, u256(100), Instruction::EXP, Instruction::SWAP1,
|
||||
Instruction::DIV, u256(0xff), Instruction::AND
|
||||
};
|
||||
BOOST_REQUIRE(cse.feedItems(input.begin(), input.end()) == input.end());
|
||||
AssemblyItems output = cse.getOptimizedItems();
|
||||
BOOST_CHECK(!output.empty());
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_negative_stack_access)
|
||||
{
|
||||
AssemblyItems input{Instruction::DUP2, u256(0)};
|
||||
checkCSE(input, input);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_negative_stack_end)
|
||||
{
|
||||
AssemblyItems input{Instruction::ADD};
|
||||
checkCSE(input, input);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_intermediate_negative_stack)
|
||||
{
|
||||
AssemblyItems input{Instruction::ADD, u256(1), Instruction::DUP1};
|
||||
checkCSE(input, input);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_pop)
|
||||
{
|
||||
checkCSE({Instruction::POP}, {Instruction::POP});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_unneeded_items)
|
||||
{
|
||||
AssemblyItems input{
|
||||
Instruction::ADD,
|
||||
Instruction::SWAP1,
|
||||
Instruction::POP,
|
||||
u256(7),
|
||||
u256(8),
|
||||
};
|
||||
checkCSE(input, input);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_constant_addition)
|
||||
{
|
||||
AssemblyItems input{u256(7), u256(8), Instruction::ADD};
|
||||
checkCSE(input, {u256(7 + 8)});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_invariants)
|
||||
{
|
||||
AssemblyItems input{
|
||||
Instruction::DUP1,
|
||||
Instruction::DUP1,
|
||||
u256(0),
|
||||
Instruction::OR,
|
||||
Instruction::OR
|
||||
};
|
||||
checkCSE(input, {Instruction::DUP1});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_subself)
|
||||
{
|
||||
checkCSE({Instruction::DUP1, Instruction::SUB}, {Instruction::POP, u256(0)});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_subother)
|
||||
{
|
||||
checkCSE({Instruction::SUB}, {Instruction::SUB});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_double_negation)
|
||||
{
|
||||
checkCSE({Instruction::DUP5, Instruction::NOT, Instruction::NOT}, {Instruction::DUP5});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_double_iszero)
|
||||
{
|
||||
checkCSE({Instruction::GT, Instruction::ISZERO, Instruction::ISZERO}, {Instruction::GT});
|
||||
checkCSE({Instruction::GT, Instruction::ISZERO}, {Instruction::GT, Instruction::ISZERO});
|
||||
checkCSE(
|
||||
{Instruction::ISZERO, Instruction::ISZERO, Instruction::ISZERO},
|
||||
{Instruction::ISZERO}
|
||||
);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_associativity)
|
||||
{
|
||||
AssemblyItems input{
|
||||
Instruction::DUP1,
|
||||
Instruction::DUP1,
|
||||
u256(0),
|
||||
Instruction::OR,
|
||||
Instruction::OR
|
||||
};
|
||||
checkCSE(input, {Instruction::DUP1});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_associativity2)
|
||||
{
|
||||
AssemblyItems input{
|
||||
u256(0),
|
||||
Instruction::DUP2,
|
||||
u256(2),
|
||||
u256(1),
|
||||
Instruction::DUP6,
|
||||
Instruction::ADD,
|
||||
u256(2),
|
||||
Instruction::ADD,
|
||||
Instruction::ADD,
|
||||
Instruction::ADD,
|
||||
Instruction::ADD
|
||||
};
|
||||
checkCSE(input, {Instruction::DUP2, Instruction::DUP2, Instruction::ADD, u256(5), Instruction::ADD});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_storage)
|
||||
{
|
||||
AssemblyItems input{
|
||||
u256(0),
|
||||
Instruction::SLOAD,
|
||||
u256(0),
|
||||
Instruction::SLOAD,
|
||||
Instruction::ADD,
|
||||
u256(0),
|
||||
Instruction::SSTORE
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(0),
|
||||
Instruction::DUP1,
|
||||
Instruction::SLOAD,
|
||||
Instruction::DUP1,
|
||||
Instruction::ADD,
|
||||
Instruction::SWAP1,
|
||||
Instruction::SSTORE
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_noninterleaved_storage)
|
||||
{
|
||||
// two stores to the same location should be replaced by only one store, even if we
|
||||
// read in the meantime
|
||||
AssemblyItems input{
|
||||
u256(7),
|
||||
Instruction::DUP2,
|
||||
Instruction::SSTORE,
|
||||
Instruction::DUP1,
|
||||
Instruction::SLOAD,
|
||||
u256(8),
|
||||
Instruction::DUP3,
|
||||
Instruction::SSTORE
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(8),
|
||||
Instruction::DUP2,
|
||||
Instruction::SSTORE,
|
||||
u256(7)
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_interleaved_storage)
|
||||
{
|
||||
// stores and reads to/from two unknown locations, should not optimize away the first store
|
||||
AssemblyItems input{
|
||||
u256(7),
|
||||
Instruction::DUP2,
|
||||
Instruction::SSTORE, // store to "DUP1"
|
||||
Instruction::DUP2,
|
||||
Instruction::SLOAD, // read from "DUP2", might be equal to "DUP1"
|
||||
u256(0),
|
||||
Instruction::DUP3,
|
||||
Instruction::SSTORE // store different value to "DUP1"
|
||||
};
|
||||
checkCSE(input, input);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_interleaved_storage_same_value)
|
||||
{
|
||||
// stores and reads to/from two unknown locations, should not optimize away the first store
|
||||
// but it should optimize away the second, since we already know the value will be the same
|
||||
AssemblyItems input{
|
||||
u256(7),
|
||||
Instruction::DUP2,
|
||||
Instruction::SSTORE, // store to "DUP1"
|
||||
Instruction::DUP2,
|
||||
Instruction::SLOAD, // read from "DUP2", might be equal to "DUP1"
|
||||
u256(6),
|
||||
u256(1),
|
||||
Instruction::ADD,
|
||||
Instruction::DUP3,
|
||||
Instruction::SSTORE // store same value to "DUP1"
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(7),
|
||||
Instruction::DUP2,
|
||||
Instruction::SSTORE,
|
||||
Instruction::DUP2,
|
||||
Instruction::SLOAD
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_interleaved_storage_at_known_location)
|
||||
{
|
||||
// stores and reads to/from two known locations, should optimize away the first store,
|
||||
// because we know that the location is different
|
||||
AssemblyItems input{
|
||||
u256(0x70),
|
||||
u256(1),
|
||||
Instruction::SSTORE, // store to 1
|
||||
u256(2),
|
||||
Instruction::SLOAD, // read from 2, is different from 1
|
||||
u256(0x90),
|
||||
u256(1),
|
||||
Instruction::SSTORE // store different value at 1
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(2),
|
||||
Instruction::SLOAD,
|
||||
u256(0x90),
|
||||
u256(1),
|
||||
Instruction::SSTORE
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_interleaved_storage_at_known_location_offset)
|
||||
{
|
||||
// stores and reads to/from two locations which are known to be different,
|
||||
// should optimize away the first store, because we know that the location is different
|
||||
AssemblyItems input{
|
||||
u256(0x70),
|
||||
Instruction::DUP2,
|
||||
u256(1),
|
||||
Instruction::ADD,
|
||||
Instruction::SSTORE, // store to "DUP1"+1
|
||||
Instruction::DUP1,
|
||||
u256(2),
|
||||
Instruction::ADD,
|
||||
Instruction::SLOAD, // read from "DUP1"+2, is different from "DUP1"+1
|
||||
u256(0x90),
|
||||
Instruction::DUP3,
|
||||
u256(1),
|
||||
Instruction::ADD,
|
||||
Instruction::SSTORE // store different value at "DUP1"+1
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(2),
|
||||
Instruction::DUP2,
|
||||
Instruction::ADD,
|
||||
Instruction::SLOAD,
|
||||
u256(0x90),
|
||||
u256(1),
|
||||
Instruction::DUP4,
|
||||
Instruction::ADD,
|
||||
Instruction::SSTORE
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_deep_stack)
|
||||
{
|
||||
AssemblyItems input{
|
||||
Instruction::ADD,
|
||||
Instruction::SWAP1,
|
||||
Instruction::POP,
|
||||
Instruction::SWAP8,
|
||||
Instruction::POP,
|
||||
Instruction::SWAP8,
|
||||
Instruction::POP,
|
||||
Instruction::SWAP8,
|
||||
Instruction::SWAP5,
|
||||
Instruction::POP,
|
||||
Instruction::POP,
|
||||
Instruction::POP,
|
||||
Instruction::POP,
|
||||
Instruction::POP,
|
||||
};
|
||||
checkCSE(input, {
|
||||
Instruction::SWAP4,
|
||||
Instruction::SWAP12,
|
||||
Instruction::SWAP3,
|
||||
Instruction::SWAP11,
|
||||
Instruction::POP,
|
||||
Instruction::SWAP1,
|
||||
Instruction::SWAP3,
|
||||
Instruction::ADD,
|
||||
Instruction::SWAP8,
|
||||
Instruction::POP,
|
||||
Instruction::SWAP6,
|
||||
Instruction::POP,
|
||||
Instruction::POP,
|
||||
Instruction::POP,
|
||||
Instruction::POP,
|
||||
Instruction::POP,
|
||||
Instruction::POP,
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_jumpi_no_jump)
|
||||
{
|
||||
AssemblyItems input{
|
||||
u256(0),
|
||||
u256(1),
|
||||
Instruction::DUP2,
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMPI
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(0),
|
||||
u256(1)
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_jumpi_jump)
|
||||
{
|
||||
AssemblyItems input{
|
||||
u256(1),
|
||||
u256(1),
|
||||
Instruction::DUP2,
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMPI
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(1),
|
||||
Instruction::DUP1,
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMP
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_empty_keccak256)
|
||||
{
|
||||
AssemblyItems input{
|
||||
u256(0),
|
||||
Instruction::DUP2,
|
||||
Instruction::KECCAK256
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(dev::keccak256(bytesConstRef()))
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_partial_keccak256)
|
||||
{
|
||||
AssemblyItems input{
|
||||
u256(0xabcd) << (256 - 16),
|
||||
u256(0),
|
||||
Instruction::MSTORE,
|
||||
u256(2),
|
||||
u256(0),
|
||||
Instruction::KECCAK256
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(0xabcd) << (256 - 16),
|
||||
u256(0),
|
||||
Instruction::MSTORE,
|
||||
u256(dev::keccak256(bytes{0xab, 0xcd}))
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_keccak256_twice_same_location)
|
||||
{
|
||||
// Keccak-256 twice from same dynamic location
|
||||
AssemblyItems input{
|
||||
Instruction::DUP2,
|
||||
Instruction::DUP1,
|
||||
Instruction::MSTORE,
|
||||
u256(64),
|
||||
Instruction::DUP2,
|
||||
Instruction::KECCAK256,
|
||||
u256(64),
|
||||
Instruction::DUP3,
|
||||
Instruction::KECCAK256
|
||||
};
|
||||
checkCSE(input, {
|
||||
Instruction::DUP2,
|
||||
Instruction::DUP1,
|
||||
Instruction::MSTORE,
|
||||
u256(64),
|
||||
Instruction::DUP2,
|
||||
Instruction::KECCAK256,
|
||||
Instruction::DUP1
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_keccak256_twice_same_content)
|
||||
{
|
||||
// Keccak-256 twice from different dynamic location but with same content
|
||||
AssemblyItems input{
|
||||
Instruction::DUP1,
|
||||
u256(0x80),
|
||||
Instruction::MSTORE, // m[128] = DUP1
|
||||
u256(0x20),
|
||||
u256(0x80),
|
||||
Instruction::KECCAK256, // keccak256(m[128..(128+32)])
|
||||
Instruction::DUP2,
|
||||
u256(12),
|
||||
Instruction::MSTORE, // m[12] = DUP1
|
||||
u256(0x20),
|
||||
u256(12),
|
||||
Instruction::KECCAK256 // keccak256(m[12..(12+32)])
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(0x80),
|
||||
Instruction::DUP2,
|
||||
Instruction::DUP2,
|
||||
Instruction::MSTORE,
|
||||
u256(0x20),
|
||||
Instruction::SWAP1,
|
||||
Instruction::KECCAK256,
|
||||
u256(12),
|
||||
Instruction::DUP3,
|
||||
Instruction::SWAP1,
|
||||
Instruction::MSTORE,
|
||||
Instruction::DUP1
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_keccak256_twice_same_content_dynamic_store_in_between)
|
||||
{
|
||||
// Keccak-256 twice from different dynamic location but with same content,
|
||||
// dynamic mstore in between, which forces us to re-calculate the hash
|
||||
AssemblyItems input{
|
||||
u256(0x80),
|
||||
Instruction::DUP2,
|
||||
Instruction::DUP2,
|
||||
Instruction::MSTORE, // m[128] = DUP1
|
||||
u256(0x20),
|
||||
Instruction::DUP1,
|
||||
Instruction::DUP3,
|
||||
Instruction::KECCAK256, // keccak256(m[128..(128+32)])
|
||||
u256(12),
|
||||
Instruction::DUP5,
|
||||
Instruction::DUP2,
|
||||
Instruction::MSTORE, // m[12] = DUP1
|
||||
Instruction::DUP12,
|
||||
Instruction::DUP14,
|
||||
Instruction::MSTORE, // destroys memory knowledge
|
||||
Instruction::SWAP2,
|
||||
Instruction::SWAP1,
|
||||
Instruction::SWAP2,
|
||||
Instruction::KECCAK256 // keccak256(m[12..(12+32)])
|
||||
};
|
||||
checkCSE(input, input);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_keccak256_twice_same_content_noninterfering_store_in_between)
|
||||
{
|
||||
// Keccak-256 twice from different dynamic location but with same content,
|
||||
// dynamic mstore in between, but does not force us to re-calculate the hash
|
||||
AssemblyItems input{
|
||||
u256(0x80),
|
||||
Instruction::DUP2,
|
||||
Instruction::DUP2,
|
||||
Instruction::MSTORE, // m[128] = DUP1
|
||||
u256(0x20),
|
||||
Instruction::DUP1,
|
||||
Instruction::DUP3,
|
||||
Instruction::KECCAK256, // keccak256(m[128..(128+32)])
|
||||
u256(12),
|
||||
Instruction::DUP5,
|
||||
Instruction::DUP2,
|
||||
Instruction::MSTORE, // m[12] = DUP1
|
||||
Instruction::DUP12,
|
||||
u256(12 + 32),
|
||||
Instruction::MSTORE, // does not destoy memory knowledge
|
||||
Instruction::DUP13,
|
||||
u256(128 - 32),
|
||||
Instruction::MSTORE, // does not destoy memory knowledge
|
||||
u256(0x20),
|
||||
u256(12),
|
||||
Instruction::KECCAK256 // keccak256(m[12..(12+32)])
|
||||
};
|
||||
// if this changes too often, only count the number of SHA3 and MSTORE instructions
|
||||
AssemblyItems output = CSE(input);
|
||||
BOOST_CHECK_EQUAL(4, count(output.begin(), output.end(), AssemblyItem(Instruction::MSTORE)));
|
||||
BOOST_CHECK_EQUAL(1, count(output.begin(), output.end(), AssemblyItem(Instruction::KECCAK256)));
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_with_initially_known_stack)
|
||||
{
|
||||
eth::KnownState state = createInitialState(AssemblyItems{
|
||||
u256(0x12),
|
||||
u256(0x20),
|
||||
Instruction::ADD
|
||||
});
|
||||
AssemblyItems input{
|
||||
u256(0x12 + 0x20)
|
||||
};
|
||||
checkCSE(input, AssemblyItems{Instruction::DUP1}, state);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_equality_on_initially_known_stack)
|
||||
{
|
||||
eth::KnownState state = createInitialState(AssemblyItems{Instruction::DUP1});
|
||||
AssemblyItems input{
|
||||
Instruction::EQ
|
||||
};
|
||||
AssemblyItems output = CSE(input, state);
|
||||
// check that it directly pushes 1 (true)
|
||||
BOOST_CHECK(find(output.begin(), output.end(), AssemblyItem(u256(1))) != output.end());
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_access_previous_sequence)
|
||||
{
|
||||
// Tests that the code generator detects whether it tries to access SLOAD instructions
|
||||
// from a sequenced expression which is not in its scope.
|
||||
eth::KnownState state = createInitialState(AssemblyItems{
|
||||
u256(0),
|
||||
Instruction::SLOAD,
|
||||
u256(1),
|
||||
Instruction::ADD,
|
||||
u256(0),
|
||||
Instruction::SSTORE
|
||||
});
|
||||
// now stored: val_1 + 1 (value at sequence 1)
|
||||
// if in the following instructions, the SLOAD cresolves to "val_1 + 1",
|
||||
// this cannot be generated because we cannot load from sequence 1 anymore.
|
||||
AssemblyItems input{
|
||||
u256(0),
|
||||
Instruction::SLOAD,
|
||||
};
|
||||
BOOST_CHECK_THROW(CSE(input, state), StackTooDeepException);
|
||||
// @todo for now, this throws an exception, but it should recover to the following
|
||||
// (or an even better version) at some point:
|
||||
// 0, SLOAD, 1, ADD, SSTORE, 0 SLOAD
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_optimise_return)
|
||||
{
|
||||
checkCSE(
|
||||
AssemblyItems{u256(0), u256(7), Instruction::RETURN},
|
||||
AssemblyItems{Instruction::STOP}
|
||||
);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(control_flow_graph_remove_unused)
|
||||
{
|
||||
// remove parts of the code that are unused
|
||||
AssemblyItems input{
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMP,
|
||||
u256(7),
|
||||
AssemblyItem(Tag, 1),
|
||||
};
|
||||
checkCFG(input, {});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(control_flow_graph_remove_unused_loop)
|
||||
{
|
||||
AssemblyItems input{
|
||||
AssemblyItem(PushTag, 3),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 1),
|
||||
u256(7),
|
||||
AssemblyItem(PushTag, 2),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 2),
|
||||
u256(8),
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 3),
|
||||
u256(11)
|
||||
};
|
||||
checkCFG(input, {u256(11)});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(control_flow_graph_reconnect_single_jump_source)
|
||||
{
|
||||
// move code that has only one unconditional jump source
|
||||
AssemblyItems input{
|
||||
u256(1),
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 2),
|
||||
u256(2),
|
||||
AssemblyItem(PushTag, 3),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 1),
|
||||
u256(3),
|
||||
AssemblyItem(PushTag, 2),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 3),
|
||||
u256(4),
|
||||
};
|
||||
checkCFG(input, {u256(1), u256(3), u256(2), u256(4)});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(control_flow_graph_do_not_remove_returned_to)
|
||||
{
|
||||
// do not remove parts that are "returned to"
|
||||
AssemblyItems input{
|
||||
AssemblyItem(PushTag, 1),
|
||||
AssemblyItem(PushTag, 2),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 2),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 1),
|
||||
u256(2)
|
||||
};
|
||||
checkCFG(input, {u256(2)});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(block_deduplicator)
|
||||
{
|
||||
AssemblyItems input{
|
||||
AssemblyItem(PushTag, 2),
|
||||
AssemblyItem(PushTag, 1),
|
||||
AssemblyItem(PushTag, 3),
|
||||
u256(6),
|
||||
Instruction::SWAP3,
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 1),
|
||||
u256(6),
|
||||
Instruction::SWAP3,
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 2),
|
||||
u256(6),
|
||||
Instruction::SWAP3,
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 3)
|
||||
};
|
||||
BlockDeduplicator dedup(input);
|
||||
dedup.deduplicate();
|
||||
|
||||
set<u256> pushTags;
|
||||
for (AssemblyItem const& item: input)
|
||||
if (item.type() == PushTag)
|
||||
pushTags.insert(item.data());
|
||||
BOOST_CHECK_EQUAL(pushTags.size(), 2);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(block_deduplicator_loops)
|
||||
{
|
||||
AssemblyItems input{
|
||||
u256(0),
|
||||
Instruction::SLOAD,
|
||||
AssemblyItem(PushTag, 1),
|
||||
AssemblyItem(PushTag, 2),
|
||||
Instruction::JUMPI,
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 1),
|
||||
u256(5),
|
||||
u256(6),
|
||||
Instruction::SSTORE,
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 2),
|
||||
u256(5),
|
||||
u256(6),
|
||||
Instruction::SSTORE,
|
||||
AssemblyItem(PushTag, 2),
|
||||
Instruction::JUMP,
|
||||
};
|
||||
BlockDeduplicator dedup(input);
|
||||
dedup.deduplicate();
|
||||
|
||||
set<u256> pushTags;
|
||||
for (AssemblyItem const& item: input)
|
||||
if (item.type() == PushTag)
|
||||
pushTags.insert(item.data());
|
||||
BOOST_CHECK_EQUAL(pushTags.size(), 1);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(clear_unreachable_code)
|
||||
{
|
||||
AssemblyItems items{
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMP,
|
||||
u256(0),
|
||||
Instruction::SLOAD,
|
||||
AssemblyItem(Tag, 2),
|
||||
u256(5),
|
||||
u256(6),
|
||||
Instruction::SSTORE,
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMP,
|
||||
u256(5),
|
||||
u256(6)
|
||||
};
|
||||
AssemblyItems expectation{
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 2),
|
||||
u256(5),
|
||||
u256(6),
|
||||
Instruction::SSTORE,
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMP
|
||||
};
|
||||
PeepholeOptimiser peepOpt(items);
|
||||
BOOST_REQUIRE(peepOpt.optimise());
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(
|
||||
items.begin(), items.end(),
|
||||
expectation.begin(), expectation.end()
|
||||
);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(peephole_double_push)
|
||||
{
|
||||
AssemblyItems items{
|
||||
u256(0),
|
||||
u256(0),
|
||||
u256(5),
|
||||
u256(5),
|
||||
u256(4),
|
||||
u256(5)
|
||||
};
|
||||
AssemblyItems expectation{
|
||||
u256(0),
|
||||
Instruction::DUP1,
|
||||
u256(5),
|
||||
Instruction::DUP1,
|
||||
u256(4),
|
||||
u256(5)
|
||||
};
|
||||
PeepholeOptimiser peepOpt(items);
|
||||
BOOST_REQUIRE(peepOpt.optimise());
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(
|
||||
items.begin(), items.end(),
|
||||
expectation.begin(), expectation.end()
|
||||
);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_sub_zero)
|
||||
{
|
||||
checkCSE({
|
||||
u256(0),
|
||||
Instruction::DUP2,
|
||||
Instruction::SUB
|
||||
}, {
|
||||
Instruction::DUP1
|
||||
});
|
||||
|
||||
checkCSE({
|
||||
Instruction::DUP1,
|
||||
u256(0),
|
||||
Instruction::SUB
|
||||
}, {
|
||||
u256(0),
|
||||
Instruction::DUP2,
|
||||
Instruction::SWAP1,
|
||||
Instruction::SUB
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_SUITE_END()
|
||||
|
||||
}
|
||||
}
|
||||
} // end namespaces
|
@ -22,11 +22,7 @@
|
||||
|
||||
#include <test/libsolidity/SolidityExecutionFramework.h>
|
||||
|
||||
#include <libevmasm/CommonSubexpressionEliminator.h>
|
||||
#include <libevmasm/PeepholeOptimiser.h>
|
||||
#include <libevmasm/ControlFlowGraph.h>
|
||||
#include <libevmasm/Assembly.h>
|
||||
#include <libevmasm/BlockDeduplicator.h>
|
||||
#include <libevmasm/Instruction.h>
|
||||
|
||||
#include <boost/test/unit_test.hpp>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
@ -106,71 +102,6 @@ public:
|
||||
"\nOptimized: " + toHex(optimizedOutput));
|
||||
}
|
||||
|
||||
AssemblyItems addDummyLocations(AssemblyItems const& _input)
|
||||
{
|
||||
// add dummy locations to each item so that we can check that they are not deleted
|
||||
AssemblyItems input = _input;
|
||||
for (AssemblyItem& item: input)
|
||||
item.setLocation(SourceLocation(1, 3, make_shared<string>("")));
|
||||
return input;
|
||||
}
|
||||
|
||||
eth::KnownState createInitialState(AssemblyItems const& _input)
|
||||
{
|
||||
eth::KnownState state;
|
||||
for (auto const& item: addDummyLocations(_input))
|
||||
state.feedItem(item, true);
|
||||
return state;
|
||||
}
|
||||
|
||||
AssemblyItems CSE(AssemblyItems const& _input, eth::KnownState const& _state = eth::KnownState())
|
||||
{
|
||||
AssemblyItems input = addDummyLocations(_input);
|
||||
|
||||
eth::CommonSubexpressionEliminator cse(_state);
|
||||
BOOST_REQUIRE(cse.feedItems(input.begin(), input.end()) == input.end());
|
||||
AssemblyItems output = cse.getOptimizedItems();
|
||||
|
||||
for (AssemblyItem const& item: output)
|
||||
{
|
||||
BOOST_CHECK(item == Instruction::POP || !item.location().isEmpty());
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
void checkCSE(
|
||||
AssemblyItems const& _input,
|
||||
AssemblyItems const& _expectation,
|
||||
KnownState const& _state = eth::KnownState()
|
||||
)
|
||||
{
|
||||
AssemblyItems output = CSE(_input, _state);
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(_expectation.begin(), _expectation.end(), output.begin(), output.end());
|
||||
}
|
||||
|
||||
AssemblyItems CFG(AssemblyItems const& _input)
|
||||
{
|
||||
AssemblyItems output = _input;
|
||||
// Running it four times should be enough for these tests.
|
||||
for (unsigned i = 0; i < 4; ++i)
|
||||
{
|
||||
ControlFlowGraph cfg(output);
|
||||
AssemblyItems optItems;
|
||||
for (BasicBlock const& block: cfg.optimisedBlocks())
|
||||
copy(output.begin() + block.begin, output.begin() + block.end,
|
||||
back_inserter(optItems));
|
||||
output = move(optItems);
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
void checkCFG(AssemblyItems const& _input, AssemblyItems const& _expectation)
|
||||
{
|
||||
AssemblyItems output = CFG(_input);
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(_expectation.begin(), _expectation.end(), output.begin(), output.end());
|
||||
}
|
||||
|
||||
protected:
|
||||
/// @returns the number of intructions in the given bytecode, not taking the metadata hash
|
||||
/// into account.
|
||||
size_t numInstructions(bytes const& _bytecode)
|
||||
@ -187,6 +118,7 @@ protected:
|
||||
return instructions;
|
||||
}
|
||||
|
||||
protected:
|
||||
Address m_optimizedContract;
|
||||
Address m_nonOptimizedContract;
|
||||
};
|
||||
@ -434,734 +366,6 @@ BOOST_AUTO_TEST_CASE(sequence_number_for_calls)
|
||||
compareVersions("f(string,string)", 0x40, 0x80, 3, "abc", 3, "def");
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_intermediate_swap)
|
||||
{
|
||||
eth::KnownState state;
|
||||
eth::CommonSubexpressionEliminator cse(state);
|
||||
AssemblyItems input{
|
||||
Instruction::SWAP1, Instruction::POP, Instruction::ADD, u256(0), Instruction::SWAP1,
|
||||
Instruction::SLOAD, Instruction::SWAP1, u256(100), Instruction::EXP, Instruction::SWAP1,
|
||||
Instruction::DIV, u256(0xff), Instruction::AND
|
||||
};
|
||||
BOOST_REQUIRE(cse.feedItems(input.begin(), input.end()) == input.end());
|
||||
AssemblyItems output = cse.getOptimizedItems();
|
||||
BOOST_CHECK(!output.empty());
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_negative_stack_access)
|
||||
{
|
||||
AssemblyItems input{Instruction::DUP2, u256(0)};
|
||||
checkCSE(input, input);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_negative_stack_end)
|
||||
{
|
||||
AssemblyItems input{Instruction::ADD};
|
||||
checkCSE(input, input);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_intermediate_negative_stack)
|
||||
{
|
||||
AssemblyItems input{Instruction::ADD, u256(1), Instruction::DUP1};
|
||||
checkCSE(input, input);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_pop)
|
||||
{
|
||||
checkCSE({Instruction::POP}, {Instruction::POP});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_unneeded_items)
|
||||
{
|
||||
AssemblyItems input{
|
||||
Instruction::ADD,
|
||||
Instruction::SWAP1,
|
||||
Instruction::POP,
|
||||
u256(7),
|
||||
u256(8),
|
||||
};
|
||||
checkCSE(input, input);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_constant_addition)
|
||||
{
|
||||
AssemblyItems input{u256(7), u256(8), Instruction::ADD};
|
||||
checkCSE(input, {u256(7 + 8)});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_invariants)
|
||||
{
|
||||
AssemblyItems input{
|
||||
Instruction::DUP1,
|
||||
Instruction::DUP1,
|
||||
u256(0),
|
||||
Instruction::OR,
|
||||
Instruction::OR
|
||||
};
|
||||
checkCSE(input, {Instruction::DUP1});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_subself)
|
||||
{
|
||||
checkCSE({Instruction::DUP1, Instruction::SUB}, {Instruction::POP, u256(0)});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_subother)
|
||||
{
|
||||
checkCSE({Instruction::SUB}, {Instruction::SUB});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_double_negation)
|
||||
{
|
||||
checkCSE({Instruction::DUP5, Instruction::NOT, Instruction::NOT}, {Instruction::DUP5});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_double_iszero)
|
||||
{
|
||||
checkCSE({Instruction::GT, Instruction::ISZERO, Instruction::ISZERO}, {Instruction::GT});
|
||||
checkCSE({Instruction::GT, Instruction::ISZERO}, {Instruction::GT, Instruction::ISZERO});
|
||||
checkCSE(
|
||||
{Instruction::ISZERO, Instruction::ISZERO, Instruction::ISZERO},
|
||||
{Instruction::ISZERO}
|
||||
);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_associativity)
|
||||
{
|
||||
AssemblyItems input{
|
||||
Instruction::DUP1,
|
||||
Instruction::DUP1,
|
||||
u256(0),
|
||||
Instruction::OR,
|
||||
Instruction::OR
|
||||
};
|
||||
checkCSE(input, {Instruction::DUP1});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_associativity2)
|
||||
{
|
||||
AssemblyItems input{
|
||||
u256(0),
|
||||
Instruction::DUP2,
|
||||
u256(2),
|
||||
u256(1),
|
||||
Instruction::DUP6,
|
||||
Instruction::ADD,
|
||||
u256(2),
|
||||
Instruction::ADD,
|
||||
Instruction::ADD,
|
||||
Instruction::ADD,
|
||||
Instruction::ADD
|
||||
};
|
||||
checkCSE(input, {Instruction::DUP2, Instruction::DUP2, Instruction::ADD, u256(5), Instruction::ADD});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_storage)
|
||||
{
|
||||
AssemblyItems input{
|
||||
u256(0),
|
||||
Instruction::SLOAD,
|
||||
u256(0),
|
||||
Instruction::SLOAD,
|
||||
Instruction::ADD,
|
||||
u256(0),
|
||||
Instruction::SSTORE
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(0),
|
||||
Instruction::DUP1,
|
||||
Instruction::SLOAD,
|
||||
Instruction::DUP1,
|
||||
Instruction::ADD,
|
||||
Instruction::SWAP1,
|
||||
Instruction::SSTORE
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_noninterleaved_storage)
|
||||
{
|
||||
// two stores to the same location should be replaced by only one store, even if we
|
||||
// read in the meantime
|
||||
AssemblyItems input{
|
||||
u256(7),
|
||||
Instruction::DUP2,
|
||||
Instruction::SSTORE,
|
||||
Instruction::DUP1,
|
||||
Instruction::SLOAD,
|
||||
u256(8),
|
||||
Instruction::DUP3,
|
||||
Instruction::SSTORE
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(8),
|
||||
Instruction::DUP2,
|
||||
Instruction::SSTORE,
|
||||
u256(7)
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_interleaved_storage)
|
||||
{
|
||||
// stores and reads to/from two unknown locations, should not optimize away the first store
|
||||
AssemblyItems input{
|
||||
u256(7),
|
||||
Instruction::DUP2,
|
||||
Instruction::SSTORE, // store to "DUP1"
|
||||
Instruction::DUP2,
|
||||
Instruction::SLOAD, // read from "DUP2", might be equal to "DUP1"
|
||||
u256(0),
|
||||
Instruction::DUP3,
|
||||
Instruction::SSTORE // store different value to "DUP1"
|
||||
};
|
||||
checkCSE(input, input);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_interleaved_storage_same_value)
|
||||
{
|
||||
// stores and reads to/from two unknown locations, should not optimize away the first store
|
||||
// but it should optimize away the second, since we already know the value will be the same
|
||||
AssemblyItems input{
|
||||
u256(7),
|
||||
Instruction::DUP2,
|
||||
Instruction::SSTORE, // store to "DUP1"
|
||||
Instruction::DUP2,
|
||||
Instruction::SLOAD, // read from "DUP2", might be equal to "DUP1"
|
||||
u256(6),
|
||||
u256(1),
|
||||
Instruction::ADD,
|
||||
Instruction::DUP3,
|
||||
Instruction::SSTORE // store same value to "DUP1"
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(7),
|
||||
Instruction::DUP2,
|
||||
Instruction::SSTORE,
|
||||
Instruction::DUP2,
|
||||
Instruction::SLOAD
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_interleaved_storage_at_known_location)
|
||||
{
|
||||
// stores and reads to/from two known locations, should optimize away the first store,
|
||||
// because we know that the location is different
|
||||
AssemblyItems input{
|
||||
u256(0x70),
|
||||
u256(1),
|
||||
Instruction::SSTORE, // store to 1
|
||||
u256(2),
|
||||
Instruction::SLOAD, // read from 2, is different from 1
|
||||
u256(0x90),
|
||||
u256(1),
|
||||
Instruction::SSTORE // store different value at 1
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(2),
|
||||
Instruction::SLOAD,
|
||||
u256(0x90),
|
||||
u256(1),
|
||||
Instruction::SSTORE
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_interleaved_storage_at_known_location_offset)
|
||||
{
|
||||
// stores and reads to/from two locations which are known to be different,
|
||||
// should optimize away the first store, because we know that the location is different
|
||||
AssemblyItems input{
|
||||
u256(0x70),
|
||||
Instruction::DUP2,
|
||||
u256(1),
|
||||
Instruction::ADD,
|
||||
Instruction::SSTORE, // store to "DUP1"+1
|
||||
Instruction::DUP1,
|
||||
u256(2),
|
||||
Instruction::ADD,
|
||||
Instruction::SLOAD, // read from "DUP1"+2, is different from "DUP1"+1
|
||||
u256(0x90),
|
||||
Instruction::DUP3,
|
||||
u256(1),
|
||||
Instruction::ADD,
|
||||
Instruction::SSTORE // store different value at "DUP1"+1
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(2),
|
||||
Instruction::DUP2,
|
||||
Instruction::ADD,
|
||||
Instruction::SLOAD,
|
||||
u256(0x90),
|
||||
u256(1),
|
||||
Instruction::DUP4,
|
||||
Instruction::ADD,
|
||||
Instruction::SSTORE
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_deep_stack)
|
||||
{
|
||||
AssemblyItems input{
|
||||
Instruction::ADD,
|
||||
Instruction::SWAP1,
|
||||
Instruction::POP,
|
||||
Instruction::SWAP8,
|
||||
Instruction::POP,
|
||||
Instruction::SWAP8,
|
||||
Instruction::POP,
|
||||
Instruction::SWAP8,
|
||||
Instruction::SWAP5,
|
||||
Instruction::POP,
|
||||
Instruction::POP,
|
||||
Instruction::POP,
|
||||
Instruction::POP,
|
||||
Instruction::POP,
|
||||
};
|
||||
checkCSE(input, {
|
||||
Instruction::SWAP4,
|
||||
Instruction::SWAP12,
|
||||
Instruction::SWAP3,
|
||||
Instruction::SWAP11,
|
||||
Instruction::POP,
|
||||
Instruction::SWAP1,
|
||||
Instruction::SWAP3,
|
||||
Instruction::ADD,
|
||||
Instruction::SWAP8,
|
||||
Instruction::POP,
|
||||
Instruction::SWAP6,
|
||||
Instruction::POP,
|
||||
Instruction::POP,
|
||||
Instruction::POP,
|
||||
Instruction::POP,
|
||||
Instruction::POP,
|
||||
Instruction::POP,
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_jumpi_no_jump)
|
||||
{
|
||||
AssemblyItems input{
|
||||
u256(0),
|
||||
u256(1),
|
||||
Instruction::DUP2,
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMPI
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(0),
|
||||
u256(1)
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_jumpi_jump)
|
||||
{
|
||||
AssemblyItems input{
|
||||
u256(1),
|
||||
u256(1),
|
||||
Instruction::DUP2,
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMPI
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(1),
|
||||
Instruction::DUP1,
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMP
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_empty_keccak256)
|
||||
{
|
||||
AssemblyItems input{
|
||||
u256(0),
|
||||
Instruction::DUP2,
|
||||
Instruction::KECCAK256
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(dev::keccak256(bytesConstRef()))
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_partial_keccak256)
|
||||
{
|
||||
AssemblyItems input{
|
||||
u256(0xabcd) << (256 - 16),
|
||||
u256(0),
|
||||
Instruction::MSTORE,
|
||||
u256(2),
|
||||
u256(0),
|
||||
Instruction::KECCAK256
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(0xabcd) << (256 - 16),
|
||||
u256(0),
|
||||
Instruction::MSTORE,
|
||||
u256(dev::keccak256(bytes{0xab, 0xcd}))
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_keccak256_twice_same_location)
|
||||
{
|
||||
// Keccak-256 twice from same dynamic location
|
||||
AssemblyItems input{
|
||||
Instruction::DUP2,
|
||||
Instruction::DUP1,
|
||||
Instruction::MSTORE,
|
||||
u256(64),
|
||||
Instruction::DUP2,
|
||||
Instruction::KECCAK256,
|
||||
u256(64),
|
||||
Instruction::DUP3,
|
||||
Instruction::KECCAK256
|
||||
};
|
||||
checkCSE(input, {
|
||||
Instruction::DUP2,
|
||||
Instruction::DUP1,
|
||||
Instruction::MSTORE,
|
||||
u256(64),
|
||||
Instruction::DUP2,
|
||||
Instruction::KECCAK256,
|
||||
Instruction::DUP1
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_keccak256_twice_same_content)
|
||||
{
|
||||
// Keccak-256 twice from different dynamic location but with same content
|
||||
AssemblyItems input{
|
||||
Instruction::DUP1,
|
||||
u256(0x80),
|
||||
Instruction::MSTORE, // m[128] = DUP1
|
||||
u256(0x20),
|
||||
u256(0x80),
|
||||
Instruction::KECCAK256, // keccak256(m[128..(128+32)])
|
||||
Instruction::DUP2,
|
||||
u256(12),
|
||||
Instruction::MSTORE, // m[12] = DUP1
|
||||
u256(0x20),
|
||||
u256(12),
|
||||
Instruction::KECCAK256 // keccak256(m[12..(12+32)])
|
||||
};
|
||||
checkCSE(input, {
|
||||
u256(0x80),
|
||||
Instruction::DUP2,
|
||||
Instruction::DUP2,
|
||||
Instruction::MSTORE,
|
||||
u256(0x20),
|
||||
Instruction::SWAP1,
|
||||
Instruction::KECCAK256,
|
||||
u256(12),
|
||||
Instruction::DUP3,
|
||||
Instruction::SWAP1,
|
||||
Instruction::MSTORE,
|
||||
Instruction::DUP1
|
||||
});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_keccak256_twice_same_content_dynamic_store_in_between)
|
||||
{
|
||||
// Keccak-256 twice from different dynamic location but with same content,
|
||||
// dynamic mstore in between, which forces us to re-calculate the hash
|
||||
AssemblyItems input{
|
||||
u256(0x80),
|
||||
Instruction::DUP2,
|
||||
Instruction::DUP2,
|
||||
Instruction::MSTORE, // m[128] = DUP1
|
||||
u256(0x20),
|
||||
Instruction::DUP1,
|
||||
Instruction::DUP3,
|
||||
Instruction::KECCAK256, // keccak256(m[128..(128+32)])
|
||||
u256(12),
|
||||
Instruction::DUP5,
|
||||
Instruction::DUP2,
|
||||
Instruction::MSTORE, // m[12] = DUP1
|
||||
Instruction::DUP12,
|
||||
Instruction::DUP14,
|
||||
Instruction::MSTORE, // destroys memory knowledge
|
||||
Instruction::SWAP2,
|
||||
Instruction::SWAP1,
|
||||
Instruction::SWAP2,
|
||||
Instruction::KECCAK256 // keccak256(m[12..(12+32)])
|
||||
};
|
||||
checkCSE(input, input);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_keccak256_twice_same_content_noninterfering_store_in_between)
|
||||
{
|
||||
// Keccak-256 twice from different dynamic location but with same content,
|
||||
// dynamic mstore in between, but does not force us to re-calculate the hash
|
||||
AssemblyItems input{
|
||||
u256(0x80),
|
||||
Instruction::DUP2,
|
||||
Instruction::DUP2,
|
||||
Instruction::MSTORE, // m[128] = DUP1
|
||||
u256(0x20),
|
||||
Instruction::DUP1,
|
||||
Instruction::DUP3,
|
||||
Instruction::KECCAK256, // keccak256(m[128..(128+32)])
|
||||
u256(12),
|
||||
Instruction::DUP5,
|
||||
Instruction::DUP2,
|
||||
Instruction::MSTORE, // m[12] = DUP1
|
||||
Instruction::DUP12,
|
||||
u256(12 + 32),
|
||||
Instruction::MSTORE, // does not destoy memory knowledge
|
||||
Instruction::DUP13,
|
||||
u256(128 - 32),
|
||||
Instruction::MSTORE, // does not destoy memory knowledge
|
||||
u256(0x20),
|
||||
u256(12),
|
||||
Instruction::KECCAK256 // keccak256(m[12..(12+32)])
|
||||
};
|
||||
// if this changes too often, only count the number of SHA3 and MSTORE instructions
|
||||
AssemblyItems output = CSE(input);
|
||||
BOOST_CHECK_EQUAL(4, count(output.begin(), output.end(), AssemblyItem(Instruction::MSTORE)));
|
||||
BOOST_CHECK_EQUAL(1, count(output.begin(), output.end(), AssemblyItem(Instruction::KECCAK256)));
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_with_initially_known_stack)
|
||||
{
|
||||
eth::KnownState state = createInitialState(AssemblyItems{
|
||||
u256(0x12),
|
||||
u256(0x20),
|
||||
Instruction::ADD
|
||||
});
|
||||
AssemblyItems input{
|
||||
u256(0x12 + 0x20)
|
||||
};
|
||||
checkCSE(input, AssemblyItems{Instruction::DUP1}, state);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_equality_on_initially_known_stack)
|
||||
{
|
||||
eth::KnownState state = createInitialState(AssemblyItems{Instruction::DUP1});
|
||||
AssemblyItems input{
|
||||
Instruction::EQ
|
||||
};
|
||||
AssemblyItems output = CSE(input, state);
|
||||
// check that it directly pushes 1 (true)
|
||||
BOOST_CHECK(find(output.begin(), output.end(), AssemblyItem(u256(1))) != output.end());
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_access_previous_sequence)
|
||||
{
|
||||
// Tests that the code generator detects whether it tries to access SLOAD instructions
|
||||
// from a sequenced expression which is not in its scope.
|
||||
eth::KnownState state = createInitialState(AssemblyItems{
|
||||
u256(0),
|
||||
Instruction::SLOAD,
|
||||
u256(1),
|
||||
Instruction::ADD,
|
||||
u256(0),
|
||||
Instruction::SSTORE
|
||||
});
|
||||
// now stored: val_1 + 1 (value at sequence 1)
|
||||
// if in the following instructions, the SLOAD cresolves to "val_1 + 1",
|
||||
// this cannot be generated because we cannot load from sequence 1 anymore.
|
||||
AssemblyItems input{
|
||||
u256(0),
|
||||
Instruction::SLOAD,
|
||||
};
|
||||
BOOST_CHECK_THROW(CSE(input, state), StackTooDeepException);
|
||||
// @todo for now, this throws an exception, but it should recover to the following
|
||||
// (or an even better version) at some point:
|
||||
// 0, SLOAD, 1, ADD, SSTORE, 0 SLOAD
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_optimise_return)
|
||||
{
|
||||
checkCSE(
|
||||
AssemblyItems{u256(0), u256(7), Instruction::RETURN},
|
||||
AssemblyItems{Instruction::STOP}
|
||||
);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(control_flow_graph_remove_unused)
|
||||
{
|
||||
// remove parts of the code that are unused
|
||||
AssemblyItems input{
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMP,
|
||||
u256(7),
|
||||
AssemblyItem(Tag, 1),
|
||||
};
|
||||
checkCFG(input, {});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(control_flow_graph_remove_unused_loop)
|
||||
{
|
||||
AssemblyItems input{
|
||||
AssemblyItem(PushTag, 3),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 1),
|
||||
u256(7),
|
||||
AssemblyItem(PushTag, 2),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 2),
|
||||
u256(8),
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 3),
|
||||
u256(11)
|
||||
};
|
||||
checkCFG(input, {u256(11)});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(control_flow_graph_reconnect_single_jump_source)
|
||||
{
|
||||
// move code that has only one unconditional jump source
|
||||
AssemblyItems input{
|
||||
u256(1),
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 2),
|
||||
u256(2),
|
||||
AssemblyItem(PushTag, 3),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 1),
|
||||
u256(3),
|
||||
AssemblyItem(PushTag, 2),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 3),
|
||||
u256(4),
|
||||
};
|
||||
checkCFG(input, {u256(1), u256(3), u256(2), u256(4)});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(control_flow_graph_do_not_remove_returned_to)
|
||||
{
|
||||
// do not remove parts that are "returned to"
|
||||
AssemblyItems input{
|
||||
AssemblyItem(PushTag, 1),
|
||||
AssemblyItem(PushTag, 2),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 2),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 1),
|
||||
u256(2)
|
||||
};
|
||||
checkCFG(input, {u256(2)});
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(block_deduplicator)
|
||||
{
|
||||
AssemblyItems input{
|
||||
AssemblyItem(PushTag, 2),
|
||||
AssemblyItem(PushTag, 1),
|
||||
AssemblyItem(PushTag, 3),
|
||||
u256(6),
|
||||
Instruction::SWAP3,
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 1),
|
||||
u256(6),
|
||||
Instruction::SWAP3,
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 2),
|
||||
u256(6),
|
||||
Instruction::SWAP3,
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 3)
|
||||
};
|
||||
BlockDeduplicator dedup(input);
|
||||
dedup.deduplicate();
|
||||
|
||||
set<u256> pushTags;
|
||||
for (AssemblyItem const& item: input)
|
||||
if (item.type() == PushTag)
|
||||
pushTags.insert(item.data());
|
||||
BOOST_CHECK_EQUAL(pushTags.size(), 2);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(block_deduplicator_loops)
|
||||
{
|
||||
AssemblyItems input{
|
||||
u256(0),
|
||||
Instruction::SLOAD,
|
||||
AssemblyItem(PushTag, 1),
|
||||
AssemblyItem(PushTag, 2),
|
||||
Instruction::JUMPI,
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 1),
|
||||
u256(5),
|
||||
u256(6),
|
||||
Instruction::SSTORE,
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 2),
|
||||
u256(5),
|
||||
u256(6),
|
||||
Instruction::SSTORE,
|
||||
AssemblyItem(PushTag, 2),
|
||||
Instruction::JUMP,
|
||||
};
|
||||
BlockDeduplicator dedup(input);
|
||||
dedup.deduplicate();
|
||||
|
||||
set<u256> pushTags;
|
||||
for (AssemblyItem const& item: input)
|
||||
if (item.type() == PushTag)
|
||||
pushTags.insert(item.data());
|
||||
BOOST_CHECK_EQUAL(pushTags.size(), 1);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(clear_unreachable_code)
|
||||
{
|
||||
AssemblyItems items{
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMP,
|
||||
u256(0),
|
||||
Instruction::SLOAD,
|
||||
AssemblyItem(Tag, 2),
|
||||
u256(5),
|
||||
u256(6),
|
||||
Instruction::SSTORE,
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMP,
|
||||
u256(5),
|
||||
u256(6)
|
||||
};
|
||||
AssemblyItems expectation{
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMP,
|
||||
AssemblyItem(Tag, 2),
|
||||
u256(5),
|
||||
u256(6),
|
||||
Instruction::SSTORE,
|
||||
AssemblyItem(PushTag, 1),
|
||||
Instruction::JUMP
|
||||
};
|
||||
PeepholeOptimiser peepOpt(items);
|
||||
BOOST_REQUIRE(peepOpt.optimise());
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(
|
||||
items.begin(), items.end(),
|
||||
expectation.begin(), expectation.end()
|
||||
);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(peephole_double_push)
|
||||
{
|
||||
AssemblyItems items{
|
||||
u256(0),
|
||||
u256(0),
|
||||
u256(5),
|
||||
u256(5),
|
||||
u256(4),
|
||||
u256(5)
|
||||
};
|
||||
AssemblyItems expectation{
|
||||
u256(0),
|
||||
Instruction::DUP1,
|
||||
u256(5),
|
||||
Instruction::DUP1,
|
||||
u256(4),
|
||||
u256(5)
|
||||
};
|
||||
PeepholeOptimiser peepOpt(items);
|
||||
BOOST_REQUIRE(peepOpt.optimise());
|
||||
BOOST_CHECK_EQUAL_COLLECTIONS(
|
||||
items.begin(), items.end(),
|
||||
expectation.begin(), expectation.end()
|
||||
);
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(computing_constants)
|
||||
{
|
||||
char const* sourceCode = R"(
|
||||
@ -1377,29 +581,6 @@ BOOST_AUTO_TEST_CASE(invalid_state_at_control_flow_join)
|
||||
compareVersions("test()");
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(cse_sub_zero)
|
||||
{
|
||||
checkCSE({
|
||||
u256(0),
|
||||
Instruction::DUP2,
|
||||
Instruction::SUB
|
||||
}, {
|
||||
Instruction::DUP1
|
||||
});
|
||||
|
||||
checkCSE({
|
||||
Instruction::DUP1,
|
||||
u256(0),
|
||||
Instruction::SUB
|
||||
}, {
|
||||
u256(0),
|
||||
Instruction::DUP2,
|
||||
Instruction::SWAP1,
|
||||
Instruction::SUB
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_SUITE_END()
|
||||
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user