Merge pull request #4004 from ethereum/mulitVariableAssignment

Multi variable declarations
This commit is contained in:
chriseth 2018-05-16 09:37:58 +02:00 committed by GitHub
commit 7f965c8671
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 200 additions and 23 deletions

View File

@ -7,6 +7,7 @@ Features:
* Control Flow Graph: Add Control Flow Graph as analysis structure.
* Control Flow Graph: Warn about returning uninitialized storage pointers.
* Gas Estimator: Only explore paths with higher gas costs. This reduces accuracy but greatly improves the speed of gas estimation.
* General: Allow multiple variables to be declared as part of a tuple assignment, e.g. ``(uint a, uint b) = ...``.
* Optimizer: Remove unnecessary masking of the result of known short instructions (``ADDRESS``, ``CALLER``, ``ORIGIN`` and ``COINBASE``).
* Parser: Display nicer error messages by showing the actual tokens and not internal names.
* Parser: Use the entire location of the token instead of only its starting position as source location for parser errors.

View File

@ -272,9 +272,12 @@ Assignment
Destructuring Assignments and Returning Multiple Values
-------------------------------------------------------
Solidity internally allows tuple types, i.e. a list of objects of potentially different types whose size is a constant at compile-time. Those tuples can be used to return multiple values at the same time and also assign them to multiple variables (or LValues in general) at the same time::
Solidity internally allows tuple types, i.e. a list of objects of potentially different types whose size is a constant at compile-time. Those tuples can be used to return multiple values at the same time.
These can then either be assigned to newly declared variables or to pre-existing variables (or LValues in general):
pragma solidity ^0.4.16;
::
pragma solidity >0.4.23 <0.5.0;
contract C {
uint[] data;
@ -284,12 +287,8 @@ Solidity internally allows tuple types, i.e. a list of objects of potentially di
}
function g() public {
// Variables declared with type
uint x;
bool b;
uint y;
// Tuple values can be assigned to these pre-existing variables
(x, b, y) = f();
// Variables declared with type and assigned from the returned tuple.
(uint x, bool b, uint y) = f();
// Common trick to swap values -- does not work for non-value storage types.
(x, y) = (y, x);
// Components can be left out (also for variable declarations).
@ -330,7 +329,9 @@ A variable declared anywhere within a function will be in scope for the *entire
(this will change soon, see below).
This happens because Solidity inherits its scoping rules from JavaScript.
This is in contrast to many languages where variables are only scoped where they are declared until the end of the semantic block.
As a result, the following code is illegal and cause the compiler to throw an error, ``Identifier already declared``::
As a result, the following code is illegal and cause the compiler to throw an error, ``Identifier already declared``:
::
// This will not compile

View File

@ -203,7 +203,7 @@ situation.
If you do not want to throw, you can return a pair::
pragma solidity ^0.4.16;
pragma solidity >0.4.23 <0.5.0;
contract C {
uint[] counters;
@ -219,7 +219,7 @@ If you do not want to throw, you can return a pair::
}
function checkCounter(uint index) public view {
var (counter, error) = getCounter(index);
(uint counter, bool error) = getCounter(index);
if (error) {
// ...
} else {

View File

@ -78,7 +78,7 @@ Break = 'break'
Return = 'return' Expression?
Throw = 'throw'
EmitStatement = 'emit' FunctionCall
VariableDefinition = ('var' IdentifierList | VariableDeclaration) ( '=' Expression )?
VariableDefinition = ('var' IdentifierList | VariableDeclaration | '(' VariableDeclaration? (',' VariableDeclaration? )* ')' ) ( '=' Expression )?
IdentifierList = '(' ( Identifier? ',' )* Identifier? ')'
// Precedence by order (see github.com/ethereum/solidity/pull/732)

View File

@ -388,7 +388,7 @@ high or low invalid bids.
::
pragma solidity ^0.4.22;
pragma solidity >0.4.23 <0.5.0;
contract BlindAuction {
struct Bid {
@ -467,8 +467,8 @@ high or low invalid bids.
uint refund;
for (uint i = 0; i < length; i++) {
var bid = bids[msg.sender][i];
var (value, fake, secret) =
Bid storage bid = bids[msg.sender][i];
(uint value, bool fake, bytes32 secret) =
(_values[i], _fake[i], _secret[i]);
if (bid.blindedBid != keccak256(value, fake, secret)) {
// Bid was not actually revealed.

View File

@ -54,6 +54,7 @@ public:
template <class NodeType, typename... Args>
ASTPointer<NodeType> createNode(Args&& ... _args)
{
solAssert(m_location.sourceName, "");
if (m_location.end < 0)
markEndPosition();
return make_shared<NodeType>(m_location, forward<Args>(_args)...);
@ -1086,6 +1087,69 @@ ASTPointer<Statement> Parser::parseSimpleStatement(ASTPointer<ASTString> const&
LookAheadInfo statementType;
IndexAccessedPath iap;
if (m_scanner->currentToken() == Token::LParen)
{
ASTNodeFactory nodeFactory(*this);
size_t emptyComponents = 0;
// First consume all empty components.
expectToken(Token::LParen);
while (m_scanner->currentToken() == Token::Comma)
{
m_scanner->next();
emptyComponents++;
}
// Now see whether we have a variable declaration or an expression.
tie(statementType, iap) = tryParseIndexAccessedPath();
switch (statementType)
{
case LookAheadInfo::VariableDeclaration:
{
vector<ASTPointer<VariableDeclaration>> variables;
ASTPointer<Expression> value;
// We have already parsed something like `(,,,,a.b.c[2][3]`
VarDeclParserOptions options;
options.allowLocationSpecifier = true;
variables = vector<ASTPointer<VariableDeclaration>>(emptyComponents, nullptr);
variables.push_back(parseVariableDeclaration(options, typeNameFromIndexAccessStructure(iap)));
while (m_scanner->currentToken() != Token::RParen)
{
expectToken(Token::Comma);
if (m_scanner->currentToken() == Token::Comma || m_scanner->currentToken() == Token::RParen)
variables.push_back(nullptr);
else
variables.push_back(parseVariableDeclaration(options));
}
expectToken(Token::RParen);
expectToken(Token::Assign);
value = parseExpression();
nodeFactory.setEndPositionFromNode(value);
return nodeFactory.createNode<VariableDeclarationStatement>(_docString, variables, value);
}
case LookAheadInfo::Expression:
{
// Complete parsing the expression in the current component.
vector<ASTPointer<Expression>> components(emptyComponents, nullptr);
components.push_back(parseExpression(expressionFromIndexAccessStructure(iap)));
while (m_scanner->currentToken() != Token::RParen)
{
expectToken(Token::Comma);
if (m_scanner->currentToken() == Token::Comma || m_scanner->currentToken() == Token::RParen)
components.push_back(ASTPointer<Expression>());
else
components.push_back(parseExpression());
}
nodeFactory.markEndPosition();
expectToken(Token::RParen);
return parseExpressionStatement(_docString, nodeFactory.createNode<TupleExpression>(components, false));
}
default:
solAssert(false, "");
}
}
else
{
tie(statementType, iap) = tryParseIndexAccessedPath();
switch (statementType)
{
@ -1096,6 +1160,7 @@ ASTPointer<Statement> Parser::parseSimpleStatement(ASTPointer<ASTString> const&
default:
solAssert(false, "");
}
}
}
bool Parser::IndexAccessedPath::empty() const
@ -1144,6 +1209,9 @@ ASTPointer<VariableDeclarationStatement> Parser::parseVariableDeclarationStateme
ASTPointer<TypeName> const& _lookAheadArrayType
)
{
// This does not parse multi variable declaration statements starting directly with
// `(`, they are parsed in parseSimpleStatement, because they are hard to distinguish
// from tuple expressions.
RecursionGuard recursionGuard(*this);
ASTNodeFactory nodeFactory(*this);
if (_lookAheadArrayType)

View File

@ -7610,6 +7610,33 @@ BOOST_AUTO_TEST_CASE(multi_variable_declaration)
ABI_CHECK(callContractFunction("f()", encodeArgs()), encodeArgs(true));
}
BOOST_AUTO_TEST_CASE(typed_multi_variable_declaration)
{
char const* sourceCode = R"(
contract C {
struct S { uint x; }
S s;
function g() internal returns (uint, S storage, uint) {
s.x = 7;
return (1, s, 2);
}
function f() returns (bool) {
(uint x1, S storage y1, uint z1) = g();
if (x1 != 1 || y1.x != 7 || z1 != 2) return false;
(, S storage y2,) = g();
if (y2.x != 7) return false;
(uint x2,,) = g();
if (x2 != 1) return false;
(,,uint z2) = g();
if (z2 != 2) return false;
return true;
}
}
)";
compileAndRun(sourceCode);
ABI_CHECK(callContractFunction("f()", encodeArgs()), encodeArgs(true));
}
BOOST_AUTO_TEST_CASE(tuples)
{
char const* sourceCode = R"(

View File

@ -0,0 +1,6 @@
contract C {
function f() internal returns (uint) {
(uint a) = f();
a;
}
}

View File

@ -0,0 +1,11 @@
contract D {
struct S { uint a; uint b; }
}
contract C {
function f() internal returns (uint, uint, uint, D.S[20] storage, uint) {
(,,,D.S[10*2] storage x,) = f();
x;
}
}
// ----
// Warning: (110-117): This variable is of storage pointer type and might be returned without assignment. This can cause storage corruption. Assign the variable (potentially from itself) to remove this warning.

View File

@ -0,0 +1,8 @@
contract C {
function f() internal returns (uint, uint, uint, uint) {
var (uint a, uint b,,) = f();
a; b;
}
}
// ----
// ParserError: (81-85): Expected identifier but got 'uint'

View File

@ -0,0 +1,9 @@
contract C {
function f() internal returns (string memory, uint, uint, uint) {
(uint a, string memory b,,) = f();
a; b;
}
}
// ----
// TypeError: (85-118): Type string memory is not implicitly convertible to expected type uint256.
// TypeError: (85-118): Type uint256 is not implicitly convertible to expected type string memory.

View File

@ -0,0 +1,12 @@
pragma experimental "v0.5.0";
contract C {
function f() internal {
{
(uint a, uint b, uint c) = (1, 2, 3);
}
a;
}
}
// ----
// DeclarationError: (130-131): Undeclared identifier.

View File

@ -0,0 +1,13 @@
pragma experimental "v0.5.0";
contract C {
function f() internal {
{
(uint a, uint b, uint c) = (a, b, c);
}
}
}
// ----
// DeclarationError: (110-111): Undeclared identifier. Did you mean "a"?
// DeclarationError: (113-114): Undeclared identifier. Did you mean "b"?
// DeclarationError: (116-117): Undeclared identifier. Did you mean "c"?

View File

@ -0,0 +1,12 @@
contract C {
function f() internal returns (uint, uint, uint, uint) {
(uint a, uint b,,) = f();
a; b;
}
function g() internal returns (bytes memory, string storage) {
(bytes memory a, string storage b) = g();
a; b;
}
}
// ----
// Warning: (163-169): This variable is of storage pointer type and might be returned without assignment. This can cause storage corruption. Assign the variable (potentially from itself) to remove this warning.

View File

@ -0,0 +1,9 @@
contract C {
struct S { function() returns (S storage)[] x; }
S s;
function f() internal pure returns (uint, uint, uint, S storage, uint, uint) {
(,,,s.x[2](),,) = f();
}
}
// ----
// TypeError: (160-168): Expression has to be an lvalue.