Merge pull request #7379 from sifmelcara/ssa-var-after-control-flow-join

[YulOpt] Create SSA variable after control flow joins
This commit is contained in:
chriseth 2019-09-17 15:13:38 +02:00 committed by GitHub
commit 7190227149
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 323 additions and 54 deletions

View File

@ -98,6 +98,14 @@ inline std::set<T> operator+(std::set<T>&& _a, U&& _b)
ret += std::forward<U>(_b);
return ret;
}
/// Remove one set from another one.
template <class T>
inline std::set<T>& operator-=(std::set<T>& _a, std::set<T> const& _b)
{
for (auto const& x: _b)
_a.erase(x);
return _a;
}
namespace dev
{

View File

@ -119,8 +119,9 @@ so that other components can more easily work with it. The final representation
will be similar to a static-single-assignment (SSA) form, with the difference
that it does not make use of explicit "phi" functions which combines the values
from different branches of control flow because such a feature does not exist
in the Yul language. Instead, assignments to existing variables are
used.
in the Yul language. Instead, when control flow merges, if a variable is re-assigned
in one of the branches, a new SSA variable is declared to hold its current value,
so that the following expressions still only need to reference SSA variables.
An example transformation is the following:
@ -139,21 +140,25 @@ as follows:
{
let _1 := 0
let a_1 := calldataload(_1)
let a_9 := calldataload(_1)
let a := a_9
let _2 := 0x20
let b_1 := calldataload(_2)
let b := b_1
let b_10 := calldataload(_2)
let b := b_10
let _3 := 0
let _4 := gt(a_1, _3)
if _4 {
let _4 := gt(a_9, _3)
if _4
{
let _5 := 0x20
let b_2 := mul(b_1, _5)
b := b_2
let b_11 := mul(b_10, _5)
b := b_11
}
let a_2 := add(a_1, 1)
let _6 := 0x20
let _7 := add(b, _6)
sstore(a_2, _7)
let b_12 := b
let _6 := 1
let a_13 := add(a_9, _6)
let _7 := 0x20
let _8 := add(b_12, _7)
sstore(a_13, _8)
}
Note that the only variable that is re-assigned in this snippet is ``b``.
@ -240,6 +245,10 @@ reference to ``a`` by ``a_i``.
The current value mapping is cleared for a variable ``a`` at the end of each block
in which it was assigned to and at the end of the for loop init block if it is assigned
inside the for loop body or post block.
If a variable's value is cleared according to the rule above and the variable is declared outside
the block, a new SSA variable will be created at the location where control flow joins,
this includes the beginning of loop post/body block and the location right after
If/Switch/ForLoop/Block statement.
After this stage, the Redundant Assign Eliminator is recommended to remove the unnecessary
intermediate assignments.

View File

@ -50,8 +50,6 @@ public:
private:
NameDispenser& m_nameDispenser;
/// This is a set of all variables that are assigned to anywhere in the code.
/// Variables that are only declared but never re-assigned are not touched.
set<YulString> const& m_variablesToReplace;
};
@ -130,7 +128,142 @@ void IntroduceSSA::operator()(Block& _block)
}
/**
* Second step of SSA transform: Replace the references to variables-to-be-replaced
* Second step of SSA transform: Introduces new SSA variables at each control-flow join
* and at the beginning of functions.
*/
class IntroduceControlFlowSSA: public ASTModifier
{
public:
explicit IntroduceControlFlowSSA(
NameDispenser& _nameDispenser,
set<YulString> const& _variablesToReplace
):
m_nameDispenser(_nameDispenser), m_variablesToReplace(_variablesToReplace)
{ }
void operator()(FunctionDefinition& _function) override;
void operator()(ForLoop& _forLoop) override;
void operator()(Switch& _switch) override;
void operator()(Block& _block) override;
private:
NameDispenser& m_nameDispenser;
set<YulString> const& m_variablesToReplace;
/// Variables (that are to be replaced) currently in scope.
set<YulString> m_variablesInScope;
/// Set of variables that do not have a specific value.
set<YulString> m_variablesToReassign;
};
void IntroduceControlFlowSSA::operator()(FunctionDefinition& _function)
{
set<YulString> varsInScope;
std::swap(varsInScope, m_variablesInScope);
set<YulString> toReassign;
std::swap(toReassign, m_variablesToReassign);
for (auto const& param: _function.parameters)
if (m_variablesToReplace.count(param.name))
{
m_variablesInScope.insert(param.name);
m_variablesToReassign.insert(param.name);
}
ASTModifier::operator()(_function);
m_variablesInScope = std::move(varsInScope);
m_variablesToReassign = std::move(toReassign);
}
void IntroduceControlFlowSSA::operator()(ForLoop& _for)
{
(*this)(_for.pre);
Assignments assignments;
assignments(_for.body);
assignments(_for.post);
for (auto const& var: assignments.names())
if (m_variablesInScope.count(var))
m_variablesToReassign.insert(var);
(*this)(_for.body);
(*this)(_for.post);
}
void IntroduceControlFlowSSA::operator()(Switch& _switch)
{
yulAssert(m_variablesToReassign.empty(), "");
set<YulString> toReassign;
for (auto& c: _switch.cases)
{
(*this)(c.body);
toReassign += m_variablesToReassign;
}
m_variablesToReassign += toReassign;
}
void IntroduceControlFlowSSA::operator()(Block& _block)
{
set<YulString> variablesDeclaredHere;
set<YulString> assignedVariables;
iterateReplacing(
_block.statements,
[&](Statement& _s) -> boost::optional<vector<Statement>>
{
vector<Statement> toPrepend;
for (YulString toReassign: m_variablesToReassign)
{
YulString newName = m_nameDispenser.newName(toReassign);
toPrepend.emplace_back(VariableDeclaration{
locationOf(_s),
{TypedName{locationOf(_s), newName, {}}},
make_unique<Expression>(Identifier{locationOf(_s), toReassign})
});
assignedVariables.insert(toReassign);
}
m_variablesToReassign.clear();
if (_s.type() == typeid(VariableDeclaration))
{
VariableDeclaration& varDecl = boost::get<VariableDeclaration>(_s);
for (auto const& var: varDecl.variables)
if (m_variablesToReplace.count(var.name))
{
variablesDeclaredHere.insert(var.name);
m_variablesInScope.insert(var.name);
}
}
else if (_s.type() == typeid(Assignment))
{
Assignment& assignment = boost::get<Assignment>(_s);
for (auto const& var: assignment.variableNames)
if (m_variablesToReplace.count(var.name))
assignedVariables.insert(var.name);
}
else
visit(_s);
if (toPrepend.empty())
return {};
else
{
toPrepend.emplace_back(std::move(_s));
return toPrepend;
}
}
);
m_variablesToReassign += assignedVariables;
m_variablesInScope -= variablesDeclaredHere;
m_variablesToReassign -= variablesDeclaredHere;
}
/**
* Third step of SSA transform: Replace the references to variables-to-be-replaced
* by their current values.
*/
class PropagateValues: public ASTModifier
@ -166,13 +299,27 @@ void PropagateValues::operator()(VariableDeclaration& _varDecl)
if (_varDecl.variables.size() != 1)
return;
YulString name = _varDecl.variables.front().name;
if (!m_variablesToReplace.count(name))
return;
YulString variable = _varDecl.variables.front().name;
if (m_variablesToReplace.count(variable))
{
// `let a := a_1` - regular declaration of non-SSA variable
yulAssert(_varDecl.value->type() == typeid(Identifier), "");
m_currentVariableValues[name] = boost::get<Identifier>(*_varDecl.value).name;
m_clearAtEndOfBlock.insert(name);
m_currentVariableValues[variable] = boost::get<Identifier>(*_varDecl.value).name;
m_clearAtEndOfBlock.insert(variable);
}
else if (_varDecl.value && _varDecl.value->type() == typeid(Identifier))
{
// `let a_1 := a` - assignment to SSA variable after a branch.
YulString value = boost::get<Identifier>(*_varDecl.value).name;
if (m_variablesToReplace.count(value))
{
// This is safe because `a_1` is not a "variable to replace" and thus
// will not be re-assigned.
m_currentVariableValues[value] = variable;
m_clearAtEndOfBlock.insert(value);
}
}
}
@ -186,7 +333,7 @@ void PropagateValues::operator()(Assignment& _assignment)
if (!m_variablesToReplace.count(name))
return;
yulAssert(_assignment.value->type() == typeid(Identifier), "");
yulAssert(_assignment.value && _assignment.value->type() == typeid(Identifier), "");
m_currentVariableValues[name] = boost::get<Identifier>(*_assignment.value).name;
m_clearAtEndOfBlock.insert(name);
}
@ -231,6 +378,7 @@ void SSATransform::run(Block& _ast, NameDispenser& _nameDispenser)
Assignments assignments;
assignments(_ast);
IntroduceSSA{_nameDispenser, assignments.names()}(_ast);
IntroduceControlFlowSSA{_nameDispenser, assignments.names()}(_ast);
PropagateValues{assignments.names()}(_ast);
}

View File

@ -23,6 +23,8 @@
#include <libyul/AsmDataForward.h>
#include <libyul/optimiser/ASTWalker.h>
#include <liblangutil/SourceLocation.h>
#include <vector>
namespace yul
@ -61,8 +63,10 @@ class NameDispenser;
* Furthermore, always note the current variable/value assigned to a and replace each
* reference to a by this variable.
* The current value mapping is cleared for a variable a at the end of each block
* in which it was assigned and just after the for loop init block if it is assigned
* inside the for loop.
* in which it was assigned. We compensate that by appending a declaration
* of the form of "let a_1 := a" right after the location where control flow joins so
* variable references can use the SSA variable. The only exception to this rule are
* for loop conditions, as we cannot insert a variable declaration there.
*
* After this stage, redundantAssignmentRemover is recommended to remove the unnecessary
* intermediate assignments.
@ -70,7 +74,17 @@ class NameDispenser;
* This stage provides best results if CSE is run right before it, because
* then it does not generate excessive amounts of variables.
*
* The transform is implemented in three stages. All stages are only concerned
* with variables that are assigned somewhere in the code (excluding declarations).
* The first stage inserts new SSA variables for each declaration and assignment of
* such variables.
* The second stage inserts new SSA variables at control flow joins.
* The last stage replaces references to variables that are assigned to somewhere in the
* code by their current SSA variable.
*
* TODO Which transforms are required to keep this idempotent?
*
* Prerequisite: Disambiguator.
*/
class SSATransform: public ASTModifier
{

View File

@ -24,7 +24,7 @@
// for { } lt(mload(a), mload(b)) { a := mload(b) }
// {
// let b_4 := mload(a)
// let a_7 := mload(b_4)
// b := mload(a_7)
// a := mload(b_4)
// b := mload(a)
// }
// }

View File

@ -16,21 +16,25 @@
// {
// function copy(from, to) -> length
// {
// let length_1 := mload(from)
// let from_6 := from
// let to_7 := to
// let length_1 := mload(from_6)
// length := length_1
// mstore(to, length_1)
// let from_2 := add(from, 0x20)
// let to_3 := add(to, 0x20)
// mstore(to_7, length_1)
// let from_2 := add(from_6, 0x20)
// let to_3 := add(to_7, 0x20)
// let x_4 := 1
// let x := x_4
// for { }
// lt(x, length_1)
// {
// let x_5 := add(x, 0x20)
// let x_9 := x
// let x_5 := add(x_9, 0x20)
// x := x_5
// }
// {
// mstore(add(to_3, x), mload(add(from_2, x)))
// let x_8 := x
// mstore(add(to_3, x_8), mload(add(from_2, x_8)))
// }
// }
// }

View File

@ -20,7 +20,8 @@
// let a_3 := add(a_2, 1)
// a := a_3
// }
// let a_4 := add(a, 1)
// let a_5 := a
// let a_4 := add(a_5, 1)
// a := a_4
// mstore(a_4, 1)
// }

View File

@ -12,10 +12,17 @@
// {
// let a_1 := mload(0)
// let a := a_1
// for { mstore(0, a_1) } a { mstore(0, a) }
// for { mstore(0, a_1) }
// a
// {
// let a_2 := add(a, 3)
// let a_4 := a
// mstore(0, a_4)
// }
// {
// let a_3 := a
// let a_2 := add(a_3, 3)
// a := a_2
// }
// mstore(0, a)
// let a_5 := a
// mstore(0, a_5)
// }

View File

@ -17,7 +17,14 @@
// a := a_2
// }
// a
// { mstore(0, a) }
// { mstore(0, a) }
// mstore(0, a)
// {
// let a_4 := a
// mstore(0, a_4)
// }
// {
// let a_3 := a
// mstore(0, a_3)
// }
// let a_5 := a
// mstore(0, a_5)
// }

View File

@ -15,9 +15,14 @@
// for { mstore(0, a_1) }
// a
// {
// let a_2 := add(a, 3)
// let a_4 := a
// let a_2 := add(a_4, 3)
// a := a_2
// }
// { mstore(0, a) }
// mstore(0, a)
// {
// let a_3 := a
// mstore(0, a_3)
// }
// let a_5 := a
// mstore(0, a_5)
// }

View File

@ -26,23 +26,28 @@
// let a_3 := add(a_2, 2)
// a := a_3
// }
// let a_9 := a
// {
// let a_4 := add(a, 4)
// let a_4 := add(a_9, 4)
// a := a_4
// }
// let a_10 := a
// for {
// let a_5 := add(a, 3)
// let a_5 := add(a_10, 3)
// a := a_5
// }
// a
// {
// let a_6 := add(a, 6)
// let a_12 := a
// let a_6 := add(a_12, 6)
// a := a_6
// }
// {
// let a_7 := add(a, 12)
// let a_11 := a
// let a_7 := add(a_11, 12)
// a := a_7
// }
// let a_8 := add(a, 8)
// let a_13 := a
// let a_8 := add(a_13, 8)
// a := a_8
// }

View File

@ -12,13 +12,15 @@
// {
// function f(a, b) -> c, d
// {
// let b_1 := add(b, a)
// let b_5 := b
// let a_6 := a
// let b_1 := add(b_5, a_6)
// b := b_1
// let c_2 := add(c, b_1)
// c := c_2
// let d_3 := add(d, c_2)
// d := d_3
// let a_4 := add(a, d_3)
// let a_4 := add(a_6, d_3)
// a := a_4
// }
// }

View File

@ -28,6 +28,7 @@
// let a_6 := 4
// a := a_6
// }
// let a_7 := add(b_4, a)
// let a_8 := a
// let a_7 := add(b_4, a_8)
// a := a_7
// }

View File

@ -0,0 +1,32 @@
{
let a
let b
let x
if a {
if b {
x := 2
}
}
// Should create new SSA variables for x here,
// but not above because end of block
mstore(0, x)
}
// ====
// step: ssaTransform
// ----
// {
// let a
// let b
// let x_1
// let x := x_1
// if a
// {
// if b
// {
// let x_2 := 2
// x := x_2
// }
// }
// let x_3 := x
// mstore(0, x_3)
// }

View File

@ -20,8 +20,10 @@
// a := a_2
// }
// default {
// let a_3 := add(a, 8)
// let a_4 := a
// let a_3 := add(a_4, 8)
// a := a_3
// }
// mstore(0, a)
// let a_5 := a
// mstore(0, a_5)
// }

View File

@ -0,0 +1,23 @@
{
let a := mload(0)
switch a
case 0 { a := add(a, 4) }
default { }
// should still create an SSA variable for a
mstore(0, a)
}
// ====
// step: ssaTransform
// ----
// {
// let a_1 := mload(0)
// let a := a_1
// switch a_1
// case 0 {
// let a_2 := add(a_1, 4)
// a := a_2
// }
// default { }
// let a_3 := a
// mstore(0, a_3)
// }

View File

@ -33,7 +33,8 @@
// a := a_4
// mstore(a_4, 0)
// }
// mstore(a, 0)
// let a_6 := a
// mstore(a_6, 0)
// let a_5 := 4
// a := a_5
// mstore(a_5, 0)