Update documentation examples.

This commit is contained in:
chriseth 2018-08-09 15:36:00 +02:00
parent f873389c62
commit 6cf299bec6
10 changed files with 99 additions and 86 deletions

View File

@ -494,8 +494,8 @@ As an example, the code
contract Test {
struct S { uint a; uint[] b; T[] c; }
struct T { uint x; uint y; }
function f(S memory s, T memory t, uint a) public { }
function g() public returns (S memory s, T memory t, uint a) {}
function f(S memory s, T memory t, uint a) public;
function g() public returns (S memory s, T memory t, uint a);
}
would result in the JSON:

View File

@ -82,7 +82,7 @@ you really know what you are doing.
library VectorSum {
// This function is less efficient because the optimizer currently fails to
// remove the bounds checks in array access.
function sumSolidity(uint[] memory _data) public view returns (uint o_sum) {
function sumSolidity(uint[] memory _data) public pure returns (uint o_sum) {
for (uint i = 0; i < _data.length; ++i)
o_sum += _data[i];
}
@ -90,7 +90,7 @@ you really know what you are doing.
// We know that we only access the array in bounds, so we can avoid the check.
// 0x20 needs to be added to an array because the first slot contains the
// array length.
function sumAsm(uint[] memory _data) public view returns (uint o_sum) {
function sumAsm(uint[] memory _data) public pure returns (uint o_sum) {
for (uint i = 0; i < _data.length; ++i) {
assembly {
o_sum := add(o_sum, mload(add(add(_data, 0x20), mul(i, 0x20))))
@ -99,7 +99,7 @@ you really know what you are doing.
}
// Same as above, but accomplish the entire code within inline assembly.
function sumPureAsm(uint[] memory _data) public view returns (uint o_sum) {
function sumPureAsm(uint[] memory _data) public pure returns (uint o_sum) {
assembly {
// Load the length (first 32 bytes)
let len := mload(_data)
@ -378,23 +378,13 @@ used ``x_slot`` and to retrieve the byte-offset you used ``x_offset``.
In assignments (see below), we can even use local Solidity variables to assign to.
Functions external to inline assembly can also be accessed: The assembly will
push their entry label (with virtual function resolution applied). The calling semantics
in solidity are:
- the caller pushes ``return label``, ``arg1``, ``arg2``, ..., ``argn``
- the call returns with ``ret1``, ``ret2``, ..., ``retm``
This feature is still a bit cumbersome to use, because the stack offset essentially
changes during the call, and thus references to local variables will be wrong.
.. code::
pragma solidity ^0.4.11;
contract C {
uint b;
function f(uint x) public returns (uint r) {
function f(uint x) public view returns (uint r) {
assembly {
r := mul(x, sload(b_slot)) // ignore the offset, we know it is zero
}

View File

@ -198,7 +198,7 @@ restrictions highly readable.
);
_;
if (msg.value > _amount)
msg.sender.send(msg.value - _amount);
msg.sender.transfer(msg.value - _amount);
}
function forceOwnerChange(address _newOwner)

View File

@ -110,11 +110,11 @@ This means that cyclic creation dependencies are impossible.
function isTokenTransferOK(address currentOwner, address newOwner)
public
view
pure
returns (bool ok)
{
// Check some arbitrary condition.
return currentOwner != newOwner;
return keccak256(abi.encodePacked(currentOwner, newOwner))[0] == 0x7f;
}
}
@ -187,8 +187,6 @@ In the following example, ``D``, can call ``c.getData()`` to retrieve the value
::
// This will not compile
pragma solidity ^0.4.0;
contract C {
@ -200,6 +198,7 @@ In the following example, ``D``, can call ``c.getData()`` to retrieve the value
function compute(uint a, uint b) internal pure returns (uint) { return a + b; }
}
// This will not compile
contract D {
function readData() public {
C c = new C();
@ -227,8 +226,8 @@ The compiler automatically creates getter functions for
all **public** state variables. For the contract given below, the compiler will
generate a function called ``data`` that does not take any
arguments and returns a ``uint``, the value of the state
variable ``data``. The initialization of state variables can
be done at declaration.
variable ``data``. State variables can be initialized
when they are declared.
::
@ -240,8 +239,8 @@ be done at declaration.
contract Caller {
C c = new C();
function f() public {
uint local = c.data();
function f() public view returns (uint) {
return c.data();
}
}
@ -256,9 +255,9 @@ it is evaluated as a state variable. If it is accessed externally
contract C {
uint public data;
function x() public {
function x() public returns (uint) {
data = 3; // internal access
uint val = this.data(); // external access
return this.data(); // external access
}
}
@ -615,14 +614,13 @@ Like any function, the fallback function can execute complex operations as long
}
contract Caller {
function callTest(Test test) public {
address(test).call(abi.encodeWithSignature("nonExistingFunction()"));
function callTest(Test test) public returns (bool) {
require(address(test).call(abi.encodeWithSignature("nonExistingFunction()")));
// results in test.x becoming == 1.
// If someone sends ether to that contract,
// the transaction will fail and reject the
// Ether.
address(test).send(2 ether);
// the transfer will fail, i.e. this returns false here.
return address(test).send(2 ether);
}
}
@ -633,9 +631,11 @@ Like any function, the fallback function can execute complex operations as long
Function Overloading
====================
A Contract can have multiple functions of the same name but with different arguments.
This also applies to inherited functions. The following example shows overloading of the
``f`` function in the scope of contract ``A``.
A contract can have multiple functions of the same name but with different parameter
types.
This process is called "overloading" and also applies to inherited functions.
The following example shows overloading of the function
``f`` in the scope of contract ``A``.
::
@ -643,11 +643,12 @@ This also applies to inherited functions. The following example shows overloadin
contract A {
function f(uint _in) public pure returns (uint out) {
out = 1;
out = _in;
}
function f(uint _in, bytes32 _key) public pure returns (uint out) {
out = 2;
function f(uint _in, bool _really) public pure returns (uint out) {
if (_really)
out = _in;
}
}
@ -656,9 +657,9 @@ externally visible functions differ by their Solidity types but not by their ext
::
// This will not compile
pragma solidity ^0.4.16;
// This will not compile
contract A {
function f(B _in) public pure returns (B out) {
out = _in;
@ -1037,10 +1038,12 @@ derived contracts need to specify all of them. This can be done in two ways::
constructor(uint _x) public { x = _x; }
}
// Either directly specify in the inheritance list...
contract Derived1 is Base(7) {
constructor(uint _y) public {}
constructor() public {}
}
// or through a "modifier" of the derived constructor.
contract Derived2 is Base {
constructor(uint _y) Base(_y * _y) public {}
}
@ -1079,12 +1082,11 @@ error "Linearization of inheritance graph impossible".
::
// This will not compile
pragma solidity ^0.4.0;
contract X {}
contract A is X {}
// This will not compile
contract C is A, X {}
The reason for this is that ``C`` requests ``X`` to override ``A``
@ -1342,6 +1344,7 @@ custom types without the overhead of external function calls:
BigInt.bigint memory x = BigInt.fromUint(7);
BigInt.bigint memory y = BigInt.fromUint(uint(-1));
BigInt.bigint memory z = x.add(y);
assert(z.limb(1) > 0);
}
}

View File

@ -23,8 +23,9 @@ something like::
pragma solidity ^0.4.16;
contract Simple {
function taker(uint _a, uint _b) public pure {
// do something with _a and _b.
uint sum;
function taker(uint _a, uint _b) public {
sum = _a + _b;
}
}
@ -102,7 +103,7 @@ this nonsensical example::
pragma solidity ^0.4.16;
contract C {
function g(uint a) public pure returns (uint ret) { return f(); }
function g(uint a) public pure returns (uint ret) { return a + f(); }
function f() internal pure returns (uint ret) { return g(7) + f(); }
}
@ -184,14 +185,16 @@ parameters from the function declaration, but can be in arbitrary order.
pragma solidity ^0.4.0;
contract C {
function f(uint key, uint value) public {
// ...
mapping(uint => uint) data;
function f() public {
set({value: 2, key: 3});
}
function g() public {
// named arguments
f({value: 2, key: 3});
function set(uint key, uint value) public {
data[key] = value;
}
}
Omitted Function Parameter Names
@ -228,7 +231,7 @@ creation-dependencies are not possible.
pragma solidity >0.4.24;
contract D {
uint x;
uint public x;
constructor(uint a) public payable {
x = a;
}
@ -239,11 +242,13 @@ creation-dependencies are not possible.
function createD(uint arg) public {
D newD = new D(arg);
newD.x();
}
function createAndEndowD(uint arg, uint amount) public payable {
// Send ether along with the creation
D newD = (new D).value(amount)(arg);
newD.x();
}
}
@ -287,12 +292,13 @@ These can then either be assigned to newly declared variables or to pre-existing
}
function g() public {
// Variables declared with type and assigned from the returned tuple.
(uint x, bool b, uint y) = f();
// Variables declared with type and assigned from the returned tuple,
// not all elements have to be specified (but the amount must match).
(uint x, , uint y) = f();
// Common trick to swap values -- does not work for non-value storage types.
(x, y) = (y, x);
// Components can be left out (also for variable declarations).
(data.length,,) = f(); // Sets the length to 7
(data.length, , ) = f(); // Sets the length to 7
}
}
@ -338,11 +344,13 @@ the two variables have the same name but disjoint scopes.
contract C {
function minimalScoping() pure public {
{
uint same2 = 0;
uint same;
same = 1;
}
{
uint same2 = 0;
uint same;
same = 3;
}
}
}
@ -354,6 +362,7 @@ In any case, you will get a warning about the outer variable being shadowed.
::
pragma solidity >0.4.24;
// This will report a warning
contract C {
function f() pure public returns (uint) {
uint x = 1;
@ -372,9 +381,8 @@ In any case, you will get a warning about the outer variable being shadowed.
::
// This will not compile
pragma solidity >0.4.24;
// This will not compile
contract C {
function f() pure public returns (uint) {
x = 2;

View File

@ -62,7 +62,8 @@ Example::
contract C {
function f() public pure returns (uint8[5] memory) {
string[4] memory adaArr = ["This", "is", "an", "array"];
return ([1, 2, 3, 4, 5]);
adaArr[0] = "That";
return [1, 2, 3, 4, 5];
}
}
@ -186,9 +187,10 @@ If you do not want to throw, you can return a pair::
function checkCounter(uint index) public view {
(uint counter, bool error) = getCounter(index);
if (error) {
// ...
// Handle the error
} else {
// ...
// Do something with counter.
require(counter > 7, "Invalid counter value");
}
}
}
@ -372,15 +374,14 @@ contract level) with ``arrayname.length = <some new length>;``. If you get the
::
// This will not compile
pragma solidity ^0.4.18;
// This will not compile
contract C {
int8[] dynamicStorageArray;
int8[5] fixedStorageArray;
function f() {
function f() public {
int8[] memory memArr; // Case 1
memArr.length++; // illegal

View File

@ -204,7 +204,7 @@ for the two input parameters and two returned values.
* @return s The calculated surface.
* @return p The calculated perimeter.
*/
function rectangle(uint w, uint h) public returns (uint s, uint p) {
function rectangle(uint w, uint h) public pure returns (uint s, uint p) {
s = w * h;
p = 2 * (w + h);
}

View File

@ -467,22 +467,22 @@ high or low invalid bids.
uint refund;
for (uint i = 0; i < length; i++) {
Bid storage bid = bids[msg.sender][i];
Bid storage bidToCheck = bids[msg.sender][i];
(uint value, bool fake, bytes32 secret) =
(_values[i], _fake[i], _secret[i]);
if (bid.blindedBid != keccak256(abi.encodePacked(value, fake, secret))) {
if (bidToCheck.blindedBid != keccak256(abi.encodePacked(value, fake, secret))) {
// Bid was not actually revealed.
// Do not refund deposit.
continue;
}
refund += bid.deposit;
if (!fake && bid.deposit >= value) {
refund += bidToCheck.deposit;
if (!fake && bidToCheck.deposit >= value) {
if (placeBid(msg.sender, value))
refund -= value;
}
// Make it impossible for the sender to re-claim
// the same deposit.
bid.blindedBid = bytes32(0);
bidToCheck.blindedBid = bytes32(0);
}
msg.sender.transfer(refund);
}

View File

@ -75,7 +75,7 @@ Function modifiers can be used to amend the semantics of functions in a declarat
_;
}
function abort() public onlySeller { // Modifier usage
function abort() public view onlySeller { // Modifier usage
// ...
}
}

View File

@ -447,7 +447,7 @@ which returns the :ref:`ABI function selector <abi_function_selector>`::
pragma solidity ^0.4.16;
contract Selector {
function f() public view returns (bytes4) {
function f() public pure returns (bytes4) {
return this.f.selector;
}
}
@ -510,15 +510,15 @@ Another example that uses external function types::
contract Oracle {
struct Request {
bytes data;
function(bytes memory) external callback;
function(uint) external callback;
}
Request[] requests;
event NewRequest(uint);
function query(bytes memory data, function(bytes memory) external callback) public {
function query(bytes memory data, function(uint) external callback) public {
requests.push(Request(data, callback));
emit NewRequest(requests.length - 1);
}
function reply(uint requestID, bytes memory response) public {
function reply(uint requestID, uint response) public {
// Here goes the check that the reply comes from a trusted source
requests[requestID].callback(response);
}
@ -526,15 +526,16 @@ Another example that uses external function types::
contract OracleUser {
Oracle constant oracle = Oracle(0x1234567); // known contract
uint exchangeRate;
function buySomething() public {
oracle.query("USD", this.oracleResponse);
}
function oracleResponse(bytes memory response) public {
function oracleResponse(uint response) public {
require(
msg.sender == address(oracle),
"Only oracle can call this."
);
// Use the data
exchangeRate = response;
}
}
@ -601,8 +602,8 @@ memory-stored reference type do not create a copy.
h(x); // calls h and creates an independent, temporary copy in memory
}
function g(uint[] storage storageArray) internal {}
function h(uint[] memory memoryArray) public {}
function g(uint[] storage) internal pure {}
function h(uint[] memory) public pure {}
}
Summary
@ -659,8 +660,9 @@ Allocating Memory Arrays
^^^^^^^^^^^^^^^^^^^^^^^^
Creating arrays with variable length in memory can be done using the ``new`` keyword.
As opposed to storage arrays, it is **not** possible to resize memory arrays by assigning to
the ``.length`` member.
As opposed to storage arrays, it is **not** possible to resize memory arrays (e.g. by assigning to
the ``.length`` member). You either have to calculate the required size in advance
or crete a new memory array and copy every element.
::
@ -670,7 +672,8 @@ the ``.length`` member.
function f(uint len) public pure {
uint[] memory a = new uint[](7);
bytes memory b = new bytes(len);
// Here we have a.length == 7 and b.length == len
assert(a.length == 7);
assert(b.length == len);
a[6] = 8;
}
}
@ -691,7 +694,7 @@ assigned to a variable right away.
function f() public pure {
g([uint(1), 2, 3]);
}
function g(uint[3] memory _data) public pure {
function g(uint[3] memory) public pure {
// ...
}
}
@ -706,10 +709,9 @@ possible:
::
// This will not compile.
pragma solidity ^0.4.0;
// This will not compile.
contract C {
function f() public {
// The next line creates a type error because uint[3] memory
@ -752,9 +754,12 @@ Members
uint[2**20] m_aLotOfIntegers;
// Note that the following is not a pair of dynamic arrays but a
// dynamic array of pairs (i.e. of fixed size arrays of length two).
// Because of that, T[] is always a dynamic array of T, even if T
// itself is an array.
bool[2][] m_pairsOfFlags;
// newPairs is stored in memory - the default for function arguments
// newPairs is stored in memory - the only possibility
// for public function arguments
function setAllFlagPairs(bool[2][] memory newPairs) public {
// assignment to a storage array replaces the complete array
m_pairsOfFlags = newPairs;
@ -797,6 +802,11 @@ Members
function createMemoryArray(uint size) public pure returns (bytes memory) {
// Dynamic memory arrays are created using `new`:
uint[2][] memory arrayOfPairs = new uint[2][](size);
// Inline arrays are always statically-sized and if you only
// use literals, you have to provide at least one type.
arrayOfPairs[0] = [uint(1), 2];
// Create a dynamic byte array:
bytes memory b = new bytes(200);
for (uint i = 0; i < b.length; i++)
@ -968,6 +978,7 @@ It is important to note that ``delete a`` really behaves like an assignment to `
// y is affected which is an alias to the storage object
// On the other hand: "delete y" is not valid, as assignments to local variables
// referencing storage objects can only be made from existing storage objects.
assert(y.length == 0);
}
}