Merge pull request #1561 from ethereum/develop

Merge develop into release for 0.4.8
This commit is contained in:
chriseth 2017-01-13 13:05:02 +01:00 committed by GitHub
commit 60cc166851
40 changed files with 2172 additions and 663 deletions

View File

@ -26,11 +26,13 @@
language: cpp
branches:
# We need to whitelist the branches which we want to have "push" automation.
# We need to whitelist the branches which we want to have "push" automation,
# this includes tags (which are treated as branches by travis).
# Pull request automation is not constrained to this set of branches.
only:
- develop
- release
- /^v[0-9]/
matrix:
include:
# Ubuntu 14.04 LTS "Trusty Tahr"
@ -71,6 +73,7 @@ matrix:
dist: trusty
sudo: required
compiler: gcc
node_js: stable
services:
- docker
before_install:
@ -137,11 +140,12 @@ cache:
directories:
- boost_1_57_0
- build
- $HOME/.local
install:
- test $TRAVIS_INSTALL_DEPS != On || ./scripts/install_deps.sh
- test "$TRAVIS_OS_NAME" != "linux" || ./scripts/install_cmake.sh
- echo -n "$TRAVIS_COMMIT" > commit_hash.txt
- test "$TRAVIS_PULL_REQUESTS" != "false" || test "$TRAVIS_BRANCH" != release || echo -n > prerelease.txt # this is a proper release
before_script:
- test $TRAVIS_EMSCRIPTEN != On || ./scripts/build_emscripten.sh
- test $TRAVIS_RELEASE != On || (mkdir -p build
@ -149,7 +153,8 @@ before_script:
&& cmake .. -DCMAKE_BUILD_TYPE=$TRAVIS_BUILD_TYPE
&& make -j2
&& cd ..
&& ./scripts/release.sh $ZIP_SUFFIX )
&& ./scripts/release.sh $ZIP_SUFFIX
&& ./scripts/create_source_tarball.sh )
script:
- test $TRAVIS_DOCS != On || ./scripts/docs.sh
@ -190,43 +195,20 @@ deploy:
- release
# This is the deploy target for the native build (Linux and macOS)
# which generates ZIPs per commit. We are in agreement that
# generating ZIPs per commit for the develop branch is probably
# just noise, so we only run this deployment target on 'release'.
#
# Unlike the Appveyor GitHub Releases target, the support in TravisCI
# seemingly doesn't provide a means for passing a description, tag, etc.
# In practice, we are letting the Appveyor CI do all that stuff, and
# then this deployment flow just seems to find that most recent tag,
# and just add our Linux and macOS ZIPs into the same tag, which is
# what we want to happen. But is very accidental and brittle-looking.
#
# The 'skip_cleanup' stops the workspace being cleaned out prior to
# generation of the artifacts. Strange that we should explicitly
# need to do that, but we do.
#
# Tokens in TravisCI can be generated a few different ways. Bob had
# success using the 'travis' gem, and then using that gem to
# create/edit this .travis.yml file, and then cut-and-pasting the
# good bits back out of what it generated. The gem changes all the
# whitespace and deletes comments, so cannot be used as-is. But
# it does generate an appropriate auth token.
#
# TODO - I do not know if the api_key below which work correctly
# for ethereum/solidity. I suspect not, for the same reason as
# my auth token does not work for Appveyor. I don't have enough
# permissions to enable this myself. Christian should be able to.
#
# See https://docs.travis-ci.com/user/deployment/releases
# See https://blog.travis-ci.com/2013-01-28-token-token-token/
# See https://github.com/ethereum/webthree-umbrella/issues/658
# which generates ZIPs per commit and the source tarball.
#
# This runs for each tag that is created and adds the corresponding files.
- provider: releases
api_key:
secure: PWH37xVBCF0XiSjl+eH7XIdkrfxZXjzvqF4PiBOnD3VnFz+odrdnIwBmCeBYTHTWF8efpp8fmzWJk2UVq1JcpyZiC+SVxO8dx91W2ia1a+wKrEQuDgkUrZBkl5IQNCv0QS81DDQhliyZEaYh8wHO/7RReyMpGpw2U2u85WkFiZ+LdlHEZPfzUeh9lxQ9n8qwFL8Rja+Q05d4cQ8zaVEtofJJT4T6DUWhc3TzuxDYxOmjwg37rC9CkGSLn6VadSh8b3j5R0SZupFsAEvBL/imBLP9r9ewoo7o4p6By3jwiIgH9yNg7LM618xbffcNaYF/KtLBi9uPHfqF7hRD4PlECz+D0PR78nQItOX5HKm1QMg5kCnghRVCA0IVjpV5fiYQnMLM7dCRv34I5b3zLpa69wQ/GLYB2FViqNUfvPeiZTEeIJ2OmATlFx8AH2JoqpY1XJknWb35+vMfa8LSiJJW++SLWeV+ncC92hrvyZ1cy3trepRRZIfyYepxHifnfdWMkddQUJk5b2WS5Fy/TJLZNPeombnpvRhUC38dsYItarKeXTc6k4oADCEDZ2rgGIcEiqRxXV11Y5xHJekLDWzUs+YJNcCuL4pnAP//LOnbnH2w9rLpwhQYSl0anCd097NivAXQJXO2JI/byIYz1kiCVQWnW6EM8+72mLOklf/Qr8k=
file: $TRAVIS_BUILD_DIR/solidity-$ZIP_SUFFIX.zip
overwrite: true
file_glob: true
file:
- $TRAVIS_BUILD_DIR/solidity*.zip
- $TRAVIS_BUILD_DIR/solidity*tar.gz
skip_cleanup: true
on:
repo: ethereum/solidity
branch: release
all_branches: true
tags: true
condition: $TRAVIS_RELEASE == On

View File

@ -8,7 +8,7 @@ include(EthPolicy)
eth_policy()
# project name and version should be set after cmake_policy CMP0048
set(PROJECT_VERSION "0.4.7")
set(PROJECT_VERSION "0.4.8")
project(solidity VERSION ${PROJECT_VERSION})
# Let's find our dependencies

View File

@ -1,3 +1,15 @@
### 0.4.8 (2017-01-13)
Features:
* Optimiser: Performance improvements.
* Output: Print assembly in new standardized Solidity assembly format.
Bugfixes:
* Remappings: Prefer longer context over longer prefix.
* Type checker, code generator: enable access to events of base contracts' names.
* Imports: ``import ".dir/a"`` is not a relative path. Relative paths begin with directory ``.`` or ``..``.
* Type checker, disallow inheritances of different kinds (e.g. a function and a modifier) of members of the same name
### 0.4.7 (2016-12-15)
Features:

950
docs/assembly.rst Normal file
View File

@ -0,0 +1,950 @@
#################
Solidity Assembly
#################
.. index:: ! assembly, ! asm, ! evmasm
Solidity defines an assembly language that can also be used without Solidity.
This assembly language can also be used as "inline assembly" inside Solidity
source code. We start with describing how to use inline assembly and how it
differs from standalone assembly and then specify assembly itself.
TODO: Write about how scoping rules of inline assembly are a bit different
and the complications that arise when for example using internal functions
of libraries. Furhermore, write about the symbols defined by the compiler.
Inline Assembly
===============
For more fine-grained control especially in order to enhance the language by writing libraries,
it is possible to interleave Solidity statements with inline assembly in a language close
to the one of the virtual machine. Due to the fact that the EVM is a stack machine, it is
often hard to address the correct stack slot and provide arguments to opcodes at the correct
point on the stack. Solidity's inline assembly tries to facilitate that and other issues
arising when writing manual assembly by the following features:
* functional-style opcodes: ``mul(1, add(2, 3))`` instead of ``push1 3 push1 2 add push1 1 mul``
* assembly-local variables: ``let x := add(2, 3) let y := mload(0x40) x := add(x, y)``
* access to external variables: ``function f(uint x) { assembly { x := sub(x, 1) } }``
* labels: ``let x := 10 repeat: x := sub(x, 1) jumpi(repeat, eq(x, 0))``
* loops: ``for { let i := 0 } lt(i, x) { i := add(i, 1) } { y := mul(2, y) }``
* switch statements: ``switch x case 0: { y := mul(x, 2) } default: { y := 0 }``
* function calls: ``function f(x) -> (y) { switch x case 0: { y := 1 } default: { y := mul(x, f(sub(x, 1))) } }``
.. note::
Of the above, loops, function calls and switch statements are not yet implemented.
We now want to describe the inline assembly language in detail.
.. warning::
Inline assembly is still a relatively new feature and might change if it does not prove useful,
so please try to keep up to date.
Example
-------
The following example provides library code to access the code of another contract and
load it into a ``bytes`` variable. This is not possible at all with "plain Solidity" and the
idea is that assembly libraries will be used to enhance the language in such ways.
.. code::
library GetCode {
function at(address _addr) returns (bytes o_code) {
assembly {
// retrieve the size of the code, this needs assembly
let size := extcodesize(_addr)
// allocate output byte array - this could also be done without assembly
// by using o_code = new bytes(size)
o_code := mload(0x40)
// new "memory end" including padding
mstore(0x40, add(o_code, and(add(add(size, 0x20), 0x1f), not(0x1f))))
// store length in memory
mstore(o_code, size)
// actually retrieve the code, this needs assembly
extcodecopy(_addr, add(o_code, 0x20), 0, size)
}
}
}
Inline assembly could also be beneficial in cases where the optimizer fails to produce
efficient code. Please be aware that assembly is much more difficult to write because
the compiler does not perform checks, so you should use it only if
you really know what you are doing.
.. code::
library VectorSum {
// This function is less efficient because the optimizer currently fails to
// remove the bounds checks in array access.
function sumSolidity(uint[] _data) returns (uint o_sum) {
for (uint i = 0; i < _data.length; ++i)
o_sum += _data[i];
}
// We know that we only access the array in bounds, so we can avoid the check.
// 0x20 needs to be added to an array because the first slot contains the
// array length.
function sumAsm(uint[] _data) returns (uint o_sum) {
for (uint i = 0; i < _data.length; ++i) {
assembly {
o_sum := mload(add(add(_data, 0x20), mul(i, 0x20)))
}
}
}
}
Syntax
------
Assembly parses comments, literals and identifiers exactly as Solidity, so you can use the
usual ``//`` and ``/* */`` comments. Inline assembly is marked by ``assembly { ... }`` and inside
these curly braces, the following can be used (see the later sections for more details)
- literals, i.e. ``0x123``, ``42`` or ``"abc"`` (strings up to 32 characters)
- opcodes (in "instruction style"), e.g. ``mload sload dup1 sstore``, for a list see below
- opcode in functional style, e.g. ``add(1, mlod(0))``
- labels, e.g. ``name:``
- variable declarations, e.g. ``let x := 7`` or ``let x := add(y, 3)``
- identifiers (labels or assembly-local variables and externals if used as inline assembly), e.g. ``jump(name)``, ``3 x add``
- assignments (in "instruction style"), e.g. ``3 =: x``
- assignments in functional style, e.g. ``x := add(y, 3)``
- blocks where local variables are scoped inside, e.g. ``{ let x := 3 { let y := add(x, 1) } }``
Opcodes
-------
This document does not want to be a full description of the Ethereum virtual machine, but the
following list can be used as a reference of its opcodes.
If an opcode takes arguments (always from the top of the stack), they are given in parentheses.
Note that the order of arguments can be seed to be reversed in non-functional style (explained below).
Opcodes marked with ``-`` do not push an item onto the stack, those marked with ``*`` are
special and all others push exactly one item onte the stack.
In the following, ``mem[a...b)`` signifies the bytes of memory starting at position ``a`` up to
(excluding) position ``b`` and ``storage[p]`` signifies the storage contents at position ``p``.
The opcodes ``pushi`` and ``jumpdest`` cannot be used directly.
In the grammar, opcodes are represented as pre-defined identifiers.
+-------------------------+------+-----------------------------------------------------------------+
| stop + `-` | stop execution, identical to return(0,0) |
+-------------------------+------+-----------------------------------------------------------------+
| add(x, y) | | x + y |
+-------------------------+------+-----------------------------------------------------------------+
| sub(x, y) | | x - y |
+-------------------------+------+-----------------------------------------------------------------+
| mul(x, y) | | x * y |
+-------------------------+------+-----------------------------------------------------------------+
| div(x, y) | | x / y |
+-------------------------+------+-----------------------------------------------------------------+
| sdiv(x, y) | | x / y, for signed numbers in two's complement |
+-------------------------+------+-----------------------------------------------------------------+
| mod(x, y) | | x % y |
+-------------------------+------+-----------------------------------------------------------------+
| smod(x, y) | | x % y, for signed numbers in two's complement |
+-------------------------+------+-----------------------------------------------------------------+
| exp(x, y) | | x to the power of y |
+-------------------------+------+-----------------------------------------------------------------+
| not(x) | | ~x, every bit of x is negated |
+-------------------------+------+-----------------------------------------------------------------+
| lt(x, y) | | 1 if x < y, 0 otherwise |
+-------------------------+------+-----------------------------------------------------------------+
| gt(x, y) | | 1 if x > y, 0 otherwise |
+-------------------------+------+-----------------------------------------------------------------+
| slt(x, y) | | 1 if x < y, 0 otherwise, for signed numbers in two's complement |
+-------------------------+------+-----------------------------------------------------------------+
| sgt(x, y) | | 1 if x > y, 0 otherwise, for signed numbers in two's complement |
+-------------------------+------+-----------------------------------------------------------------+
| eq(x, y) | | 1 if x == y, 0 otherwise |
+-------------------------+------+-----------------------------------------------------------------+
| iszero(x) | | 1 if x == 0, 0 otherwise |
+-------------------------+------+-----------------------------------------------------------------+
| and(x, y) | | bitwise and of x and y |
+-------------------------+------+-----------------------------------------------------------------+
| or(x, y) | | bitwise or of x and y |
+-------------------------+------+-----------------------------------------------------------------+
| xor(x, y) | | bitwise xor of x and y |
+-------------------------+------+-----------------------------------------------------------------+
| byte(n, x) | | nth byte of x, where the most significant byte is the 0th byte |
+-------------------------+------+-----------------------------------------------------------------+
| addmod(x, y, m) | | (x + y) % m with arbitrary precision arithmetics |
+-------------------------+------+-----------------------------------------------------------------+
| mulmod(x, y, m) | | (x * y) % m with arbitrary precision arithmetics |
+-------------------------+------+-----------------------------------------------------------------+
| signextend(i, x) | | sign extend from (i*8+7)th bit counting from least significant |
+-------------------------+------+-----------------------------------------------------------------+
| sha3(p, n) | | keccak(mem[p...(p+n))) |
+-------------------------+------+-----------------------------------------------------------------+
| jump(label) | `-` | jump to label / code position |
+-------------------------+------+-----------------------------------------------------------------+
| jumpi(label, cond) | `-` | jump to label if cond is nonzero |
+-------------------------+------+-----------------------------------------------------------------+
| pc | | current position in code |
+-------------------------+------+-----------------------------------------------------------------+
| pop | `*` | remove topmost stack slot |
+-------------------------+------+-----------------------------------------------------------------+
| dup1 ... dup16 | | copy ith stack slot to the top (counting from top) |
+-------------------------+------+-----------------------------------------------------------------+
| swap1 ... swap16 | `*` | swap topmost and ith stack slot below it |
+-------------------------+------+-----------------------------------------------------------------+
| mload(p) | | mem[p..(p+32)) |
+-------------------------+------+-----------------------------------------------------------------+
| mstore(p, v) | `-` | mem[p..(p+32)) := v |
+-------------------------+------+-----------------------------------------------------------------+
| mstore8(p, v) | `-` | mem[p] := v & 0xff - only modifies a single byte |
+-------------------------+------+-----------------------------------------------------------------+
| sload(p) | | storage[p] |
+-------------------------+------+-----------------------------------------------------------------+
| sstore(p, v) | `-` | storage[p] := v |
+-------------------------+------+-----------------------------------------------------------------+
| msize | | size of memory, i.e. largest accessed memory index |
+-------------------------+------+-----------------------------------------------------------------+
| gas | | gas still available to execution |
+-------------------------+------+-----------------------------------------------------------------+
| address | | address of the current contract / execution context |
+-------------------------+------+-----------------------------------------------------------------+
| balance(a) | | wei balance at address a |
+-------------------------+------+-----------------------------------------------------------------+
| caller | | call sender (excluding delegatecall) |
+-------------------------+------+-----------------------------------------------------------------+
| callvalue | | wei sent together with the current call |
+-------------------------+------+-----------------------------------------------------------------+
| calldataload(p) | | call data starting from position p (32 bytes) |
+-------------------------+------+-----------------------------------------------------------------+
| calldatasize | | size of call data in bytes |
+-------------------------+------+-----------------------------------------------------------------+
| calldatacopy(t, f, s) | `-` | copy s bytes from calldata at position f to mem at position t |
+-------------------------+------+-----------------------------------------------------------------+
| codesize | | size of the code of the current contract / execution context |
+-------------------------+------+-----------------------------------------------------------------+
| codecopy(t, f, s) | `-` | copy s bytes from code at position f to mem at position t |
+-------------------------+------+-----------------------------------------------------------------+
| extcodesize(a) | | size of the code at address a |
+-------------------------+------+-----------------------------------------------------------------+
| extcodecopy(a, t, f, s) | `-` | like codecopy(t, f, s) but take code at address a |
+-------------------------+------+-----------------------------------------------------------------+
| create(v, p, s) | | create new contract with code mem[p..(p+s)) and send v wei |
| | | and return the new address |
+-------------------------+------+-----------------------------------------------------------------+
| call(g, a, v, in, | | call contract at address a with input mem[in..(in+insize)] |
| insize, out, outsize) | | providing g gas and v wei and output area |
| | | mem[out..(out+outsize)] returting 1 on error (out of gas) |
+-------------------------+------+-----------------------------------------------------------------+
| callcode(g, a, v, in, | | identical to call but only use the code from a and stay |
| insize, out, outsize) | | in the context of the current contract otherwise |
+-------------------------+------+-----------------------------------------------------------------+
| delegatecall(g, a, in, | | identical to callcode but also keep ``caller`` |
| insize, out, outsize) | | and ``callvalue`` |
+-------------------------+------+-----------------------------------------------------------------+
| return(p, s) | `*` | end execution, return data mem[p..(p+s)) |
+-------------------------+------+-----------------------------------------------------------------+
| selfdestruct(a) | `*` | end execution, destroy current contract and send funds to a |
+-------------------------+------+-----------------------------------------------------------------+
| log0(p, s) | `-` | log without topics and data mem[p..(p+s)) |
+-------------------------+------+-----------------------------------------------------------------+
| log1(p, s, t1) | `-` | log with topic t1 and data mem[p..(p+s)) |
+-------------------------+------+-----------------------------------------------------------------+
| log2(p, s, t1, t2) | `-` | log with topics t1, t2 and data mem[p..(p+s)) |
+-------------------------+------+-----------------------------------------------------------------+
| log3(p, s, t1, t2, t3) | `-` | log with topics t1, t2, t3 and data mem[p..(p+s)) |
+-------------------------+------+-----------------------------------------------------------------+
| log4(p, s, t1, t2, t3, | `-` | log with topics t1, t2, t3, t4 and data mem[p..(p+s)) |
| t4) | | |
+-------------------------+------+-----------------------------------------------------------------+
| origin | | transaction sender |
+-------------------------+------+-----------------------------------------------------------------+
| gasprice | | gas price of the transaction |
+-------------------------+------+-----------------------------------------------------------------+
| blockhash(b) | | hash of block nr b - only for last 256 blocks excluding current |
+-------------------------+------+-----------------------------------------------------------------+
| coinbase | | current mining beneficiary |
+-------------------------+------+-----------------------------------------------------------------+
| timestamp | | timestamp of the current block in seconds since the epoch |
+-------------------------+------+-----------------------------------------------------------------+
| number | | current block number |
+-------------------------+------+-----------------------------------------------------------------+
| difficulty | | difficulty of the current block |
+-------------------------+------+-----------------------------------------------------------------+
| gaslimit | | block gas limit of the current block |
+-------------------------+------+-----------------------------------------------------------------+
Literals
--------
You can use integer constants by typing them in decimal or hexadecimal notation and an
appropriate ``PUSHi`` instruction will automatically be generated. The following creates code
to add 2 and 3 resulting in 5 and then computes the bitwise and with the string "abc".
Strings are stored left-aligned and cannot be longer than 32 bytes.
.. code::
assembly { 2 3 add "abc" and }
Functional Style
-----------------
You can type opcode after opcode in the same way they will end up in bytecode. For example
adding ``3`` to the contents in memory at position ``0x80`` would be
.. code::
3 0x80 mload add 0x80 mstore
As it is often hard to see what the actual arguments for certain opcodes are,
Solidity inline assembly also provides a "functional style" notation where the same code
would be written as follows
.. code::
mstore(0x80, add(mload(0x80), 3))
Functional style and instructional style can be mixed, but any opcode inside a
functional style expression has to return exactly one stack slot (most of the opcodes do).
Note that the order of arguments is reversed in functional-style as opposed to the instruction-style
way. If you use functional-style, the first argument will end up on the stack top.
Access to External Variables and Functions
------------------------------------------
Solidity variables and other identifiers can be accessed by simply using their name.
For storage and memory variables, this will push the address and not the value onto the
stack. Also note that non-struct and non-array storage variable addresses occupy two slots
on the stack: One for the address and one for the byte offset inside the storage slot.
In assignments (see below), we can even use local Solidity variables to assign to.
Functions external to inline assembly can also be accessed: The assembly will
push their entry label (with virtual function resolution applied). The calling semantics
in solidity are:
- the caller pushes return label, arg1, arg2, ..., argn
- the call returns with ret1, ret2, ..., retn
This feature is still a bit cumbersome to use, because the stack offset essentially
changes during the call, and thus references to local variables will be wrong.
It is planned that the stack height changes can be specified in inline assembly.
.. code::
contract C {
uint b;
function f(uint x) returns (uint r) {
assembly {
b pop // remove the offset, we know it is zero
sload
x
mul
=: r // assign to return variable r
}
}
}
Labels
------
Another problem in EVM assembly is that ``jump`` and ``jumpi`` use absolute addresses
which can change easily. Solidity inline assembly provides labels to make the use of
jumps easier. The following code computes an element in the Fibonacci series.
.. code::
{
let n := calldataload(4)
let a := 1
let b := a
loop:
jumpi(loopend, eq(n, 0))
a add swap1
n := sub(n, 1)
jump(loop)
loopend:
mstore(0, a)
return(0, 0x20)
}
Please note that automatically accessing stack variables can only work if the
assembler knows the current stack height. This fails to work if the jump source
and target have different stack heights. It is still fine to use such jumps, but
you should just not access any stack variables (even assembly variables) in that case.
Furthermore, the stack height analyser goes through the code opcode by opcode
(and not according to control flow), so in the following case, the assembler
will have a wrong impression about the stack height at label ``two``:
.. code::
{
jump(two)
one:
// Here the stack height is 1 (because we pushed 7),
// but the assembler thinks it is 0 because it reads
// from top to bottom.
// Accessing stack variables here will lead to errors.
jump(three)
two:
7 // push something onto the stack
jump(one)
three:
}
Declaring Assembly-Local Variables
----------------------------------
You can use the ``let`` keyword to declare variables that are only visible in
inline assembly and actually only in the current ``{...}``-block. What happens
is that the ``let`` instruction will create a new stack slot that is reserved
for the variable and automatically removed again when the end of the block
is reached. You need to provide an initial value for the variable which can
be just ``0``, but it can also be a complex functional-style expression.
.. code::
contract C {
function f(uint x) returns (uint b) {
assembly {
let v := add(x, 1)
mstore(0x80, v)
{
let y := add(sload(v), 1)
b := y
} // y is "deallocated" here
b := add(b, v)
} // v is "deallocated" here
}
}
Assignments
-----------
Assignments are possible to assembly-local variables and to function-local
variables. Take care that when you assign to variables that point to
memory or storage, you will only change the pointer and not the data.
There are two kinds of assignments: functional-style and instruction-style.
For functional-style assignments (``variable := value``), you need to provide a value in a
functional-style expression that results in exactly one stack value
and for instruction-style (``=: variable``), the value is just taken from the stack top.
For both ways, the colon points to the name of the variable. The assignment
is performed by replacing the variable's value on the stack by the new value.
.. code::
assembly {
let v := 0 // functional-style assignment as part of variable declaration
let g := add(v, 2)
sload(10)
=: v // instruction style assignment, puts the result of sload(10) into v
}
Switch
------
You can use a switch statement as a very basic version of "if/else".
It takes the value of an expression and compares it to several constants.
The branch corresponding to the matching constant is taken. Contrary to the
error-prone behaviour of some programming languages, control flow does
not continue from one case to the next. There can be a fallback or default
case called ``default``.
.. code::
assembly {
let x := 0
switch calldataload(4)
case 0: {
x := calldataload(0x24)
}
default: {
x := calldataload(0x44)
}
sstore(0, div(x, 2))
}
The list of cases does not require curly braces, but the body of a
case does require them.
Loops
-----
Assembly supports a simple for-style loop. For-style loops have
a header containing an initializing part, a condition and a post-iteration
part. The condition has to be a functional-style expression, while
the other two can also be blocks. If the initializing part is a block that
declares any variables, the scope of these variables is extended into the
body (including the condition and the post-iteration part).
The following example computes the sum of an area in memory.
.. code::
assembly {
let x := 0
for { let i := 0 } lt(i, 0x100) { i := add(i, 0x20) } {
x := add(x, mload(i))
}
}
Functions
---------
Assembly allows the definition of low-level functions. These take their
arguments (and a return PC) from the stack and also put the results onto the
stack. Calling a function looks the same way as executing a functional-style
opcode.
Functions can be defined anywhere and are visible in the block they are
declared in. Inside a function, you cannot access local variables
defined outside of that function. There is no explicit ``return``
statement.
If you call a function that returns multiple values, you have to assign
them to a tuple using ``(a, b) := f(x)`` or ``let (a, b) := f(x)``.
The following example implements the power function by square-and-multiply.
.. code::
assembly {
function power(base, exponent) -> (result) {
switch exponent
0: { result := 1 }
1: { result := base }
default: {
result := power(mul(base, base), div(exponent, 2))
switch mod(exponent, 2)
1: { result := mul(base, result) }
}
}
}
Things to Avoid
---------------
Inline assembly might have a quite high-level look, but it actually is extremely
low-level. Function calls, loops and switches are converted by simple
rewriting rules and after that, the only thing the assembler does for you is re-arranging
functional-style opcodes, managing jump labels, counting stack height for
variable access and removing stack slots for assembly-local variables when the end
of their block is reached. Especially for those two last cases, it is important
to know that the assembler only counts stack height from top to bottom, not
necessarily following control flow. Furthermore, operations like swap will only
swap the contents of the stack but not the location of variables.
Conventions in Solidity
-----------------------
In contrast to EVM assembly, Solidity knows types which are narrower than 256 bits,
e.g. ``uint24``. In order to make them more efficient, most arithmetic operations just
treat them as 256 bit numbers and the higher-order bits are only cleaned at the
point where it is necessary, i.e. just shortly before they are written to memory
or before comparisons are performed. This means that if you access such a variable
from within inline assembly, you might have to manually clean the higher order bits
first.
Solidity manages memory in a very simple way: There is a "free memory pointer"
at position ``0x40`` in memory. If you want to allocate memory, just use the memory
from that point on and update the pointer accordingly.
Elements in memory arrays in Solidity always occupy multiples of 32 bytes (yes, this is
even true for ``byte[]``, but not for ``bytes`` and ``string``). Multi-dimensional memory
arrays are pointers to memory arrays. The length of a dynamic array is stored at the
first slot of the array and then only the array elements follow.
.. warning::
Statically-sized memory arrays do not have a length field, but it will be added soon
to allow better convertibility between statically- and dynamically-sized arrays, so
please do not rely on that.
Standalone Assembly
===================
The assembly language described as inline assembly above can also be used
standalone and in fact, the plan is to use it as an intermediate language
for the Solidity compiler. In this form, it tries to achieve several goals:
1. Programs written in it should be readable, even if the code is generated by a compiler from Solidity.
2. The translation from assembly to bytecode should contain as few "surprises" as possible.
3. Control flow should be easy to detect to help in formal verification and optimization.
In order to achieve the first and last goal, assembly provides high-level constructs
like ``for`` loops, ``switch`` statements and function calls. It should be possible
to write assembly programs that do not make use of explicit ``SWAP``, ``DUP``,
``JUMP`` and ``JUMPI`` statements, because the first two obfuscate the data flow
and the last two obfuscate control flow. Furthermore, functional statements of
the form ``mul(add(x, y), 7)`` are preferred over pure opcode statements like
``7 y x add mul`` because in the first form, it is much easier to see which
operand is used for which opcode.
The second goal is achieved by introducing a desugaring phase that only removes
the higher level constructs in a very regular way and still allows inspecting
the generated low-level assembly code. The only non-local operation performed
by the assembler is name lookup of user-defined identifiers (functions, variables, ...),
which follow very simple and regular scoping rules and cleanup of local variables from the stack.
Scoping: An identifier that is declared (label, variable, function, assembly)
is only visible in the block where it was declared (including nested blocks
inside the current block). It is not legal to access local variables across
function borders, even if they would be in scope. Shadowing is allowed, but
two identifiers with the same name cannot be declared in the same block.
Local variables cannot be accessed before they were declared, but labels,
functions and assemblies can. Assemblies are special blocks that are used
for e.g. returning runtime code or creating contracts. No identifier from an
outer assembly is visible in a sub-assembly.
If control flow passes over the end of a block, pop instructions are inserted
that match the number of local variables declared in that block, unless the
``}`` is directly preceded by an opcode that does not have a continuing control
flow path. Whenever a local variable is referenced, the code generator needs
to know its current relative position in the stack and thus it needs to
keep track of the current so-called stack height.
At the end of a block, this implicit stack height is always reduced by the number
of local variables whether ther is a continuing control flow or not.
This means that the stack height before and after the block should be the same.
If this is not the case, a warning is issued,
unless the last instruction in the block did not have a continuing control flow path.
Why do we use higher-level constructs like ``switch``, ``for`` and functions:
Using ``switch``, ``for`` and functions, it should be possible to write
complex code without using ``jump`` or ``jumpi`` manually. This makes it much
easier to analyze the control flow, which allows for improved formal
verification and optimization.
Furthermore, if manual jumps are allowed, computing the stack height is rather complicated.
The position of all local variables on the stack needs to be known, otherwise
neither references to local variables nor removing local variables automatically
from the stack at the end of a block will work properly. Because of that,
every label that is preceded by an instruction that ends or diverts control flow
should be annotated with the current stack layout. This annotation is performed
automatically during the desugaring phase.
Example:
We will follow an example compilation from Solidity to desugared assembly.
We consider the runtime bytecode of the following Solidity program::
contract C {
function f(uint x) returns (uint y) {
y = 1;
for (uint i = 0; i < x; i++)
y = 2 * y;
}
}
The following assembly will be generated::
{
mstore(0x40, 0x60) // store the "free memory pointer"
// function dispatcher
switch div(calldataload(0), exp(2, 226))
case 0xb3de648b: {
let (r) = f(calldataload(4))
let ret := $allocate(0x20)
mstore(ret, r)
return(ret, 0x20)
}
default: { jump(invalidJumpLabel) }
// memory allocator
function $allocate(size) -> (pos) {
pos := mload(0x40)
mstore(0x40, add(pos, size))
}
// the contract function
function f(x) -> (y) {
y := 1
for { let i := 0 } lt(i, x) { i := add(i, 1) } {
y := mul(2, y)
}
}
}
After the desugaring phase it looks as follows::
{
mstore(0x40, 0x60)
{
let $0 := div(calldataload(0), exp(2, 226))
jumpi($case1, eq($0, 0xb3de648b))
jump($caseDefault)
$case1:
{
// the function call - we put return label and arguments on the stack
$ret1 calldataload(4) jump($fun_f)
$ret1 [r]: // a label with a [...]-annotation resets the stack height
// to "current block + number of local variables". It also
// introduces a variable, r:
// r is at top of stack, $0 is below (from enclosing block)
$ret2 0x20 jump($fun_allocate)
$ret2 [ret]: // stack here: $0, r, ret (top)
mstore(ret, r)
return(ret, 0x20)
// although it is useless, the jump is automatically inserted,
// since the desugaring process does not analyze control-flow
jump($endswitch)
}
$caseDefault:
{
jump(invalidJumpLabel)
jump($endswitch)
}
$endswitch:
}
jump($afterFunction)
$fun_allocate:
{
$start[$retpos, size]:
// output variables live in the same scope as the arguments.
let pos := 0
{
pos := mload(0x40)
mstore(0x40, add(pos, size))
}
swap1 pop swap1 jump
}
$fun_f:
{
start [$retpos, x]:
let y := 0
{
let i := 0
$for_begin:
jumpi($for_end, iszero(lt(i, x)))
{
y := mul(2, y)
}
$for_continue:
{ i := add(i, 1) }
jump($for_begin)
$for_end:
} // Here, a pop instruction is inserted for i
swap1 pop swap1 jump
}
$afterFunction:
stop
}
Assembly happens in four stages:
1. Parsing
2. Desugaring (removes switch, for and functions)
3. Opcode stream generation
4. Bytecode generation
We will specify steps one to three in a pseudo-formal way. More formal
specifications will follow.
Parsing / Grammar
-----------------
The tasks of the parser are the following:
- Turn the byte stream into a token stream, discarding C++-style comments
(a special comment exists for source references, but we will not explain it here).
- Turn the token stream into an AST according to the grammar below
- Register identifiers with the block they are defined in (annotation to the
AST node) and note from which point on, variables can be accessed.
The assembly lexer follows the one defined by Solidity itself.
Whitespace is used to delimit tokens and it consists of the characters
Space, Tab and Linefeed. Comments are regular JavaScript/C++ comments and
are interpreted in the same way as Whitespace.
Grammar::
AssemblyBlock = '{' AssemblyItem* '}'
AssemblyItem =
Identifier |
AssemblyBlock |
FunctionalAssemblyExpression |
AssemblyLocalDefinition |
FunctionalAssemblyAssignment |
AssemblyAssignment |
LabelDefinition |
AssemblySwitch |
AssemblyFunctionDefinition |
AssemblyFor |
'break' | 'continue' |
SubAssembly | 'dataSize' '(' Identifier ')' |
LinkerSymbol |
'errorLabel' | 'bytecodeSize' |
NumberLiteral | StringLiteral | HexLiteral
Identifier = [a-zA-Z_$] [a-zA-Z_0-9]*
FunctionalAssemblyExpression = Identifier '(' ( AssemblyItem ( ',' AssemblyItem )* )? ')'
AssemblyLocalDefinition = 'let' IdentifierOrList ':=' FunctionalAssemblyExpression
FunctionalAssemblyAssignment = IdentifierOrList ':=' FunctionalAssemblyExpression
IdentifierOrList = Identifier | '(' IdentifierList ')'
IdentifierList = Identifier ( ',' Identifier)*
AssemblyAssignment = '=:' Identifier
LabelDefinition = Identifier ( '[' ( IdentifierList | NumberLiteral ) ']' )? ':'
AssemblySwitch = 'switch' FunctionalAssemblyExpression AssemblyCase*
( 'default' ':' AssemblyBlock )?
AssemblyCase = 'case' FunctionalAssemblyExpression ':' AssemblyBlock
AssemblyFunctionDefinition = 'function' Identifier '(' IdentifierList? ')'
( '->' '(' IdentifierList ')' )? AssemblyBlock
AssemblyFor = 'for' ( AssemblyBlock | FunctionalAssemblyExpression)
FunctionalAssemblyExpression ( AssemblyBlock | FunctionalAssemblyExpression) AssemblyBlock
SubAssembly = 'assembly' Identifier AssemblyBlock
LinkerSymbol = 'linkerSymbol' '(' StringLiteral ')'
NumberLiteral = HexNumber | DecimalNumber
HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
HexNumber = '0x' [0-9a-fA-F]+
DecimalNumber = [0-9]+
Desugaring
----------
An AST transformation removes for, switch and function constructs. The result
is still parseable by the same parser, but it will not use certain constructs.
If jumpdests are added that are only jumped to and not continued at, information
about the stack content is added, unless no local variables of outer scopes are
accessed or the stack height is the same as for the previous instruction.
Pseudocode::
desugar item: AST -> AST =
match item {
AssemblyFunctionDefinition('function' name '(' arg1, ..., argn ')' '->' ( '(' ret1, ..., retm ')' body) ->
<name>:
{
$<name>_start [$retPC, $argn, ..., arg1]:
let ret1 := 0 ... let retm := 0
{ desugar(body) }
swap and pop items so that only ret1, ... retn, $retPC are left on the stack
jump
}
AssemblyFor('for' { init } condition post body) ->
{
init // cannot be its own block because we want variable scope to extend into the body
// find I such that there are no labels $forI_*
$forI_begin:
jumpi($forI_end, iszero(condition))
{ body }
$forI_continue:
{ post }
jump($forI_begin)
$forI_end:
}
'break' ->
{
// find nearest enclosing scope with label $forI_end
pop all local variables that are defined at the current point
but not at $forI_end
jump($forI_end)
}
'continue' ->
{
// find nearest enclosing scope with label $forI_continue
pop all local variables that are defined at the current point
but not at $forI_continue
jump($forI_continue)
}
AssemblySwitch(switch condition cases ( default: defaultBlock )? ) ->
{
// find I such that there is no $switchI* label or variable
let $switchI_value := condition
for each of cases match {
case val: -> jumpi($switchI_caseJ, eq($switchI_value, val))
}
if default block present: ->
{ defaultBlock jump($switchI_end) }
for each of cases match {
case val: { body } -> $switchI_caseJ: { body jump($switchI_end) }
}
$switchI_end:
}
FunctionalAssemblyExpression( identifier(arg1, arg2, ..., argn) ) ->
{
if identifier is function <name> with n args and m ret values ->
{
// find I such that $funcallI_* does not exist
$funcallI_return argn ... arg2 arg1 jump(<name>)
if the current context is `let (id1, ..., idm) := f(...)` ->
$funcallI_return [id1, ..., idm]:
else ->
$funcallI_return[m - n - 1]:
turn the functional expression that leads to the function call
into a statement stream
}
else -> desugar(children of node)
}
default node ->
desugar(children of node)
}
Opcode Stream Generation
------------------------
During opcode stream generation, we keep track of the current stack height,
so that accessing stack variables by name is possible.
Pseudocode::
codegen item: AST -> opcode_stream =
match item {
AssemblyBlock({ items }) ->
join(codegen(item) for item in items)
if last generated opcode has continuing control flow:
POP for all local variables registered at the block (including variables
introduced by labels)
warn if the stack height at this point is not the same as at the start of the block
Identifier(id) ->
lookup id in the syntactic stack of blocks
match type of id
Local Variable ->
DUPi where i = 1 + stack_height - stack_height_of_identifier(id)
Label ->
// reference to be resolved during bytecode generation
PUSH<bytecode position of label>
SubAssembly ->
PUSH<bytecode position of subassembly data>
FunctionalAssemblyExpression(id ( arguments ) ) ->
join(codegen(arg) for arg in arguments.reversed())
id (which has to be an opcode, might be a function name later)
AssemblyLocalDefinition(let (id1, ..., idn) := expr) ->
register identifiers id1, ..., idn as locals in current block at current stack height
codegen(expr) - assert that expr returns n items to the stack
FunctionalAssemblyAssignment((id1, ..., idn) := expr) ->
lookup id1, ..., idn in the syntactic stack of blocks, assert that they are variables
codegen(expr)
for j = n, ..., i:
SWAPi where i = 1 + stack_height - stack_height_of_identifier(idj)
POP
AssemblyAssignment(=: id) ->
look up id in the syntactic stack of blocks, assert that it is a variable
SWAPi where i = 1 + stack_height - stack_height_of_identifier(id)
POP
LabelDefinition(name [id1, ..., idn] :) ->
JUMPDEST
// register new variables id1, ..., idn and set the stack height to
// stack_height_at_block_start + number_of_local_variables
LabelDefinition(name [number] :) ->
JUMPDEST
// adjust stack height by +number (can be negative)
NumberLiteral(num) ->
PUSH<num interpreted as decimal and right-aligned>
HexLiteral(lit) ->
PUSH32<lit interpreted as hex and left-aligned>
StringLiteral(lit) ->
PUSH32<lit utf-8 encoded and left-aligned>
SubAssembly(assembly <name> block) ->
append codegen(block) at the end of the code
dataSize(<name>) ->
assert that <name> is a subassembly ->
PUSH32<size of code generated from subassembly <name>>
linkerSymbol(<lit>) ->
PUSH32<zeros> and append position to linker table
}

View File

@ -56,9 +56,9 @@ copyright = '2016, Ethereum'
# built documents.
#
# The short X.Y version.
version = '0.4.7'
version = '0.4.8'
# The full version, including alpha/beta/rc tags.
release = '0.4.7-develop'
release = '0.4.8-develop'
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.

View File

@ -877,6 +877,13 @@ cannot be resolved.
A simple rule to remember is to specify the base classes in
the order from "most base-like" to "most derived".
Inheriting Different Kinds of Members of the Same Name
======================================================
When the inheritance results in a contract with a function and a modifier of the same name, it is considered as an error.
This error is produced also by an event and a modifier of the same name, and a function and an event of the same name.
As an exception, a state variable accessor can override a public function.
.. index:: ! contract;abstract, ! abstract contract
******************

View File

@ -207,8 +207,8 @@ Creating Contracts via ``new``
==============================
A contract can create a new contract using the ``new`` keyword. The full
code of the contract being created has to be known and, thus, recursive
creation-dependencies are now possible.
code of the contract being created has to be known in advance, so recursive
creation-dependencies are not possible.
::

View File

@ -14,7 +14,7 @@ ContractDefinition = ( 'contract' | 'library' ) Identifier
ContractPart = StateVariableDeclaration | UsingForDeclaration
| StructDefinition | ModifierDefinition | FunctionDefinition | EventDefinition | EnumDefinition
InheritanceSpecifier = Identifier ( '(' Expression ( ',' Expression )* ')' )?
InheritanceSpecifier = UserDefinedTypeName ( '(' Expression ( ',' Expression )* ')' )?
StateVariableDeclaration = TypeName ( 'public' | 'internal' | 'private' )? Identifier ('=' Expression)? ';'
UsingForDeclaration = 'using' Identifier 'for' ('*' | TypeName) ';'
@ -23,7 +23,7 @@ StructDefinition = 'struct' Identifier '{'
ModifierDefinition = 'modifier' Identifier ParameterList? Block
FunctionDefinition = 'function' Identifier? ParameterList
( FunctionCall | Identifier | 'constant' | 'payable' | 'external' | 'public' | 'internal' | 'private' )*
( 'returns' ParameterList )? Block
( 'returns' ParameterList )? ( ';' | Block )
EventDefinition = 'event' Identifier IndexedParameterList 'anonymous'? ';'
EnumValue = Identifier
@ -35,10 +35,18 @@ TypeNameList = '(' ( TypeName (',' TypeName )* )? ')'
// semantic restriction: mappings and structs (recursively) containing mappings
// are not allowed in argument lists
VariableDeclaration = TypeName Identifier
TypeName = ElementaryTypeName | Identifier StorageLocation? | Mapping | ArrayTypeName | FunctionTypeName
VariableDeclaration = TypeName StorageLocation? Identifier
TypeName = ElementaryTypeName
| UserDefinedTypeName
| Mapping
| ArrayTypeName
| FunctionTypeName
UserDefinedTypeName = Identifier ( '.' Identifier )*
Mapping = 'mapping' '(' ElementaryTypeName '=>' TypeName ')'
ArrayTypeName = TypeName StorageLocation? '[' Expression? ']'
ArrayTypeName = TypeName '[' Expression? ']'
FunctionTypeName = 'function' TypeNameList ( 'internal' | 'external' | 'constant' | 'payable' )*
( 'returns' TypeNameList )?
StorageLocation = 'memory' | 'storage'
@ -69,7 +77,7 @@ Expression =
| Expression '**' Expression
| Expression ('*' | '/' | '%') Expression
| Expression ('+' | '-') Expression
| Expression ('<<' | '>>')
| Expression ('<<' | '>>') Expression
| Expression '&' Expression
| Expression '^' Expression
| Expression '|' Expression
@ -82,21 +90,37 @@ Expression =
| Expression? (',' Expression)
| PrimaryExpression
PrimaryExpression = Identifier | BooleanLiteral | NumberLiteral | HexLiteral | StringLiteral
PrimaryExpression = Identifier
| BooleanLiteral
| NumberLiteral
| HexLiteral
| StringLiteral
| ElementaryTypeNameExpression
FunctionCall = ( PrimaryExpression | NewExpression | TypeName ) ( ( '.' Identifier ) | ( '[' Expression ']' ) )* '(' Expression? ( ',' Expression )* ')'
NewExpression = 'new' Identifier
ExpressionList = Expression ( ',' Expression )*
NameValueList = Identifier ':' Expression ( ',' Identifier ':' Expression )*
FunctionCall = ( PrimaryExpression | NewExpression | TypeName ) ( ( '.' Identifier ) | ( '[' Expression ']' ) )* '(' FunctionCallArguments ')'
FunctionCallArguments = '{' NameValueList? '}'
| ExpressionList?
NewExpression = 'new' TypeName
MemberAccess = Expression '.' Identifier
IndexAccess = Expression '[' Expression? ']'
BooleanLiteral = 'true' | 'false'
NumberLiteral = '0x'? [0-9]+ (' ' NumberUnit)?
NumberLiteral = ( HexNumber | DecimalNumber ) (' ' NumberUnit)?
NumberUnit = 'wei' | 'szabo' | 'finney' | 'ether'
| 'seconds' | 'minutes' | 'hours' | 'days' | 'weeks' | 'years'
HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
Identifier = [a-zA-Z_] [a-zA-Z_0-9]*
HexNumber = '0x' [0-9a-fA-F]+
DecimalNumber = [0-9]+
ElementaryTypeNameExpression = ElementaryTypeName
ElementaryTypeName = 'address' | 'bool' | 'string' | 'var'
| Int | Uint | Byte | Fixed | Ufixed

View File

@ -87,6 +87,15 @@ Solidity Tools
* `evmdis <https://github.com/Arachnid/evmdis>`_
EVM Disassembler that performs static analysis on the bytecode to provide a higher level of abstraction than raw EVM operations.
Third-Party Solidity Parsers and Grammars
-----------------------------------------
* `solidity-parser <https://github.com/ConsenSys/solidity-parser>`_
Solidity parser for JavaScript
* `Solidity Grammar for ANTLR 4 <https://github.com/federicobond/solidity-antlr4>`_
Solidity grammar for the ANTLR 4 parser generator
Language Documentation
----------------------

View File

@ -283,8 +283,8 @@ determined at the time the contract is created
(it is derived from the creator address and the number
of transactions sent from that address, the so-called "nonce").
Apart from the fact whether an account stores code or not,
the EVM treats the two types equally, though.
Regardless of whether or not the account stores code, the two types are
treated equally by the EVM.
Every account has a persistent key-value store mapping 256-bit words to 256-bit
words called **storage**.

View File

@ -79,8 +79,9 @@ Paths
-----
In the above, ``filename`` is always treated as a path with ``/`` as directory separator,
``.`` as the current and ``..`` as the parent directory. Path names that do not start
with ``.`` are treated as absolute paths.
``.`` as the current and ``..`` as the parent directory. When ``.`` or ``..`` is followed by a character except ``/``,
it is not considered as the current or the parent directory.
All path names are treated as absolute paths unless they start with the current ``.`` or the parent directory ``..``.
To import a file ``x`` from the same directory as the current file, use ``import "./x" as x;``.
If you use ``import "x" as x;`` instead, a different file could be referenced
@ -96,8 +97,8 @@ Use in Actual Compilers
When the compiler is invoked, it is not only possible to specify how to
discover the first element of a path, but it is possible to specify path prefix
remappings so that e.g. ``github.com/ethereum/dapp-bin/library`` is remapped to
``/usr/local/dapp-bin/library`` and the compiler will read the files from there. If
remapping keys are prefixes of each other, the longest is tried first. This
``/usr/local/dapp-bin/library`` and the compiler will read the files from there.
If multiple remappings can be applied, the one with the longest key is tried first. This
allows for a "fallback-remapping" with e.g. ``""`` maps to
``"/usr/local/include/solidity"``. Furthermore, these remappings can
depend on the context, which allows you to configure packages to

View File

@ -570,3 +570,4 @@ Language Grammar
================
.. literalinclude:: grammar.txt
:language: none

View File

@ -16,4 +16,5 @@ If something is missing here, please contact us on
units-and-global-variables.rst
control-structures.rst
contracts.rst
assembly.rst
miscellaneous.rst

View File

@ -765,7 +765,7 @@ assigning it to a local variable, as in
Mappings
========
Mapping types are declared as ``mapping _KeyType => _ValueType``.
Mapping types are declared as ``mapping(_KeyType => _ValueType)``.
Here ``_KeyType`` can be almost any type except for a mapping, a dynamically sized array, a contract, an enum and a struct.
``_ValueType`` can actually be any type, including mappings.

View File

@ -73,27 +73,19 @@ inline bool assertEqualAux(A const& _a, B const& _b, char const* _aStr, char con
/// Use it as assertThrow(1 == 1, ExceptionType, "Mathematics is wrong.");
/// Do NOT supply an exception object as the second parameter.
#define assertThrow(_condition, _ExceptionType, _description) \
::dev::assertThrowAux<_ExceptionType>(!!(_condition), _description, __LINE__, __FILE__, ETH_FUNC)
do \
{ \
if (!(_condition)) \
::boost::throw_exception( \
_ExceptionType() << \
::dev::errinfo_comment(_description) << \
::boost::throw_function(ETH_FUNC) << \
::boost::throw_file(__FILE__) << \
::boost::throw_line(__LINE__) \
); \
} \
while (false)
using errinfo_comment = boost::error_info<struct tag_comment, std::string>;
template <class _ExceptionType>
inline void assertThrowAux(
bool _condition,
::std::string const& _errorDescription,
unsigned _line,
char const* _file,
char const* _function
)
{
if (!_condition)
::boost::throw_exception(
_ExceptionType() <<
::dev::errinfo_comment(_errorDescription) <<
::boost::throw_function(_function) <<
::boost::throw_file(_file) <<
::boost::throw_line(_line)
);
}
}

View File

@ -117,69 +117,36 @@ string Assembly::locationFromSources(StringMap const& _sourceCodes, SourceLocati
ostream& Assembly::streamAsm(ostream& _out, string const& _prefix, StringMap const& _sourceCodes) const
{
_out << _prefix << ".code:" << endl;
for (AssemblyItem const& i: m_items)
for (size_t i = 0; i < m_items.size(); ++i)
{
_out << _prefix;
switch (i.type())
AssemblyItem const& item = m_items[i];
if (!item.location().isEmpty() && (i == 0 || m_items[i - 1].location() != item.location()))
{
case Operation:
_out << " " << instructionInfo(i.instruction()).name << "\t" << i.getJumpTypeAsString();
break;
case Push:
_out << " PUSH" << dec << max<unsigned>(1, dev::bytesRequired(i.data())) << " 0x" << hex << i.data();
break;
case PushString:
_out << " PUSH \"" << m_strings.at((h256)i.data()) << "\"";
break;
case PushTag:
if (i.data() == 0)
_out << " PUSH [ErrorTag]";
else
{
size_t subId = i.splitForeignPushTag().first;
if (subId == size_t(-1))
_out << " PUSH [tag" << dec << i.splitForeignPushTag().second << "]";
else
_out << " PUSH [tag" << dec << subId << ":" << i.splitForeignPushTag().second << "]";
}
break;
case PushSub:
_out << " PUSH [$" << size_t(i.data()) << "]";
break;
case PushSubSize:
_out << " PUSH #[$" << size_t(i.data()) << "]";
break;
case PushProgramSize:
_out << " PUSHSIZE";
break;
case PushLibraryAddress:
_out << " PUSHLIB \"" << m_libraries.at(h256(i.data())) << "\"";
break;
case Tag:
_out << "tag" << dec << i.data() << ": " << endl << _prefix << " JUMPDEST";
break;
case PushData:
_out << " PUSH [" << hex << (unsigned)i.data() << "]";
break;
default:
BOOST_THROW_EXCEPTION(InvalidOpcode());
_out << _prefix << " /*";
if (item.location().sourceName)
_out << " \"" + *item.location().sourceName + "\"";
if (!item.location().isEmpty())
_out << ":" << to_string(item.location().start) + ":" + to_string(item.location().end);
_out << " */" << endl;
}
_out << "\t\t" << locationFromSources(_sourceCodes, i.location()) << endl;
_out << _prefix << (item.type() == Tag ? "" : " ") << item.toAssemblyText() << endl;
}
if (!m_data.empty() || !m_subs.empty())
{
_out << _prefix << ".data:" << endl;
_out << _prefix << "stop" << endl;
Json::Value data;
for (auto const& i: m_data)
if (u256(i.first) >= m_subs.size())
_out << _prefix << " " << hex << (unsigned)(u256)i.first << ": " << dev::toHex(i.second) << endl;
assertThrow(u256(i.first) < m_subs.size(), AssemblyException, "Data not yet implemented.");
for (size_t i = 0; i < m_subs.size(); ++i)
{
_out << _prefix << " " << hex << i << ": " << endl;
m_subs[i]->stream(_out, _prefix + " ", _sourceCodes);
_out << endl << _prefix << "sub_" << i << ": assembly {\n";
m_subs[i]->streamAsm(_out, _prefix + " ", _sourceCodes);
_out << _prefix << "}" << endl;
}
}
return _out;
}
@ -449,7 +416,7 @@ LinkerObject const& Assembly::assemble() const
switch (i.type())
{
case Operation:
ret.bytecode.push_back((byte)i.data());
ret.bytecode.push_back((byte)i.instruction());
break;
case PushString:
{

View File

@ -20,6 +20,7 @@
*/
#include "AssemblyItem.h"
#include <libevmasm/SemanticInformation.h>
#include <fstream>
using namespace std;
@ -28,19 +29,19 @@ using namespace dev::eth;
AssemblyItem AssemblyItem::toSubAssemblyTag(size_t _subId) const
{
assertThrow(m_data < (u256(1) << 64), Exception, "Tag already has subassembly set.");
assertThrow(data() < (u256(1) << 64), Exception, "Tag already has subassembly set.");
assertThrow(m_type == PushTag || m_type == Tag, Exception, "");
AssemblyItem r = *this;
r.m_type = PushTag;
r.setPushTagSubIdAndTag(_subId, size_t(m_data));
r.setPushTagSubIdAndTag(_subId, size_t(data()));
return r;
}
pair<size_t, size_t> AssemblyItem::splitForeignPushTag() const
{
assertThrow(m_type == PushTag || m_type == Tag, Exception, "");
return make_pair(size_t(m_data / (u256(1) << 64)) - 1, size_t(m_data));
return make_pair(size_t((data()) / (u256(1) << 64)) - 1, size_t(data()));
}
void AssemblyItem::setPushTagSubIdAndTag(size_t _subId, size_t _tag)
@ -59,7 +60,7 @@ unsigned AssemblyItem::bytesRequired(unsigned _addressLength) const
case PushString:
return 33;
case Push:
return 1 + max<unsigned>(1, dev::bytesRequired(m_data));
return 1 + max<unsigned>(1, dev::bytesRequired(data()));
case PushSubSize:
case PushProgramSize:
return 4; // worst case: a 16MB program
@ -97,6 +98,28 @@ int AssemblyItem::deposit() const
return 0;
}
bool AssemblyItem::canBeFunctional() const
{
switch (m_type)
{
case Operation:
return !SemanticInformation::isDupInstruction(*this) && !SemanticInformation::isSwapInstruction(*this);
case Push:
case PushString:
case PushTag:
case PushData:
case PushSub:
case PushSubSize:
case PushProgramSize:
case PushLibraryAddress:
return true;
case Tag:
return false;
default:;
}
return 0;
}
string AssemblyItem::getJumpTypeAsString() const
{
switch (m_jumpType)
@ -111,6 +134,65 @@ string AssemblyItem::getJumpTypeAsString() const
}
}
string AssemblyItem::toAssemblyText() const
{
string text;
switch (type())
{
case Operation:
{
assertThrow(isValidInstruction(instruction()), AssemblyException, "Invalid instruction.");
string name = instructionInfo(instruction()).name;
transform(name.begin(), name.end(), name.begin(), [](unsigned char _c) { return tolower(_c); });
text = name;
break;
}
case Push:
text = toHex(toCompactBigEndian(data(), 1), 1, HexPrefix::Add);
break;
case PushString:
assertThrow(false, AssemblyException, "Push string assembly output not implemented.");
break;
case PushTag:
assertThrow(data() < 0x10000, AssemblyException, "Sub-assembly tags not yet implemented.");
text = string("tag_") + to_string(size_t(data()));
break;
case Tag:
assertThrow(data() < 0x10000, AssemblyException, "Sub-assembly tags not yet implemented.");
text = string("tag_") + to_string(size_t(data())) + ":";
break;
case PushData:
assertThrow(false, AssemblyException, "Push data not implemented.");
break;
case PushSub:
text = string("dataOffset(sub_") + to_string(size_t(data())) + ")";
break;
case PushSubSize:
text = string("dataSize(sub_") + to_string(size_t(data())) + ")";
break;
case PushProgramSize:
text = string("bytecodeSize");
break;
case PushLibraryAddress:
text = string("linkerSymbol(\"") + toHex(data()) + string("\")");
break;
case UndefinedItem:
assertThrow(false, AssemblyException, "Invalid assembly item.");
break;
default:
BOOST_THROW_EXCEPTION(InvalidOpcode());
}
if (m_jumpType == JumpType::IntoFunction || m_jumpType == JumpType::OutOfFunction)
{
text += "\t//";
if (m_jumpType == JumpType::IntoFunction)
text += " in";
else
text += " out";
}
return text;
}
ostream& dev::eth::operator<<(ostream& _out, AssemblyItem const& _item)
{
switch (_item.type())

View File

@ -59,16 +59,22 @@ public:
AssemblyItem(u256 _push, SourceLocation const& _location = SourceLocation()):
AssemblyItem(Push, _push, _location) { }
AssemblyItem(solidity::Instruction _i, SourceLocation const& _location = SourceLocation()):
AssemblyItem(Operation, byte(_i), _location) { }
m_type(Operation),
m_instruction(_i),
m_location(_location)
{}
AssemblyItem(AssemblyItemType _type, u256 _data = 0, SourceLocation const& _location = SourceLocation()):
m_type(_type),
m_data(_data),
m_location(_location)
{
if (m_type == Operation)
m_instruction = Instruction(byte(_data));
else
m_data = std::make_shared<u256>(_data);
}
AssemblyItem tag() const { assertThrow(m_type == PushTag || m_type == Tag, Exception, ""); return AssemblyItem(Tag, m_data); }
AssemblyItem pushTag() const { assertThrow(m_type == PushTag || m_type == Tag, Exception, ""); return AssemblyItem(PushTag, m_data); }
AssemblyItem tag() const { assertThrow(m_type == PushTag || m_type == Tag, Exception, ""); return AssemblyItem(Tag, data()); }
AssemblyItem pushTag() const { assertThrow(m_type == PushTag || m_type == Tag, Exception, ""); return AssemblyItem(PushTag, data()); }
/// Converts the tag to a subassembly tag. This has to be called in order to move a tag across assemblies.
/// @param _subId the identifier of the subassembly the tag is taken from.
AssemblyItem toSubAssemblyTag(size_t _subId) const;
@ -79,25 +85,42 @@ public:
void setPushTagSubIdAndTag(size_t _subId, size_t _tag);
AssemblyItemType type() const { return m_type; }
u256 const& data() const { return m_data; }
void setType(AssemblyItemType const _type) { m_type = _type; }
void setData(u256 const& _data) { m_data = _data; }
u256 const& data() const { assertThrow(m_type != Operation, Exception, ""); return *m_data; }
void setData(u256 const& _data) { assertThrow(m_type != Operation, Exception, ""); m_data = std::make_shared<u256>(_data); }
/// @returns the instruction of this item (only valid if type() == Operation)
Instruction instruction() const { return Instruction(byte(m_data)); }
Instruction instruction() const { assertThrow(m_type == Operation, Exception, ""); return m_instruction; }
/// @returns true if the type and data of the items are equal.
bool operator==(AssemblyItem const& _other) const { return m_type == _other.m_type && m_data == _other.m_data; }
bool operator==(AssemblyItem const& _other) const
{
if (type() != _other.type())
return false;
if (type() == Operation)
return instruction() == _other.instruction();
else
return data() == _other.data();
}
bool operator!=(AssemblyItem const& _other) const { return !operator==(_other); }
/// Less-than operator compatible with operator==.
bool operator<(AssemblyItem const& _other) const { return std::tie(m_type, m_data) < std::tie(_other.m_type, _other.m_data); }
bool operator<(AssemblyItem const& _other) const
{
if (type() != _other.type())
return type() < _other.type();
else if (type() == Operation)
return instruction() < _other.instruction();
else
return data() < _other.data();
}
/// @returns an upper bound for the number of bytes required by this item, assuming that
/// the value of a jump tag takes @a _addressLength bytes.
unsigned bytesRequired(unsigned _addressLength) const;
int deposit() const;
bool match(AssemblyItem const& _i) const { return _i.m_type == UndefinedItem || (m_type == _i.m_type && (m_type != Operation || m_data == _i.m_data)); }
/// @returns true if the assembly item can be used in a functional context.
bool canBeFunctional() const;
void setLocation(SourceLocation const& _location) { m_location = _location; }
SourceLocation const& location() const { return m_location; }
@ -108,9 +131,12 @@ public:
void setPushedValue(u256 const& _value) const { m_pushedValue = std::make_shared<u256>(_value); }
u256 const* pushedValue() const { return m_pushedValue.get(); }
std::string toAssemblyText() const;
private:
AssemblyItemType m_type;
u256 m_data;
Instruction m_instruction; ///< Only valid if m_type == Operation
std::shared_ptr<u256> m_data; ///< Only valid if m_type != Operation
SourceLocation m_location;
JumpType m_jumpType = JumpType::Ordinary;
/// Pushed value for operations with data to be determined during assembly stage,

View File

@ -303,7 +303,9 @@ void CSECodeGenerator::generateClassElement(Id _c, bool _allowSequenced)
for (auto it: m_classPositions)
for (auto p: it.second)
if (p > m_stackHeight)
{
assertThrow(false, OptimizerException, "");
}
// do some cleanup
removeStackTopIfPossible();

View File

@ -38,6 +38,7 @@ unsigned ConstantOptimisationMethod::optimiseConstants(
for (AssemblyItem const& item: _items)
if (item.type() == Push)
pushes[item]++;
map<u256, AssemblyItems> pendingReplacements;
for (auto it: pushes)
{
AssemblyItem const& item = it.first;
@ -53,17 +54,22 @@ unsigned ConstantOptimisationMethod::optimiseConstants(
bigint copyGas = copy.gasNeeded();
ComputeMethod compute(params, item.data());
bigint computeGas = compute.gasNeeded();
AssemblyItems replacement;
if (copyGas < literalGas && copyGas < computeGas)
{
copy.execute(_assembly, _items);
replacement = copy.execute(_assembly);
optimisations++;
}
else if (computeGas < literalGas && computeGas < copyGas)
else if (computeGas < literalGas && computeGas <= copyGas)
{
compute.execute(_assembly, _items);
replacement = compute.execute(_assembly);
optimisations++;
}
if (!replacement.empty())
pendingReplacements[item.data()] = replacement;
}
if (!pendingReplacements.empty())
replaceConstants(_items, pendingReplacements);
return optimisations;
}
@ -101,18 +107,24 @@ size_t ConstantOptimisationMethod::bytesRequired(AssemblyItems const& _items)
void ConstantOptimisationMethod::replaceConstants(
AssemblyItems& _items,
AssemblyItems const& _replacement
) const
map<u256, AssemblyItems> const& _replacements
)
{
assertThrow(_items.size() > 0, OptimizerException, "");
for (size_t i = 0; i < _items.size(); ++i)
AssemblyItems replaced;
for (AssemblyItem const& item: _items)
{
if (_items.at(i) != AssemblyItem(m_value))
continue;
_items[i] = _replacement[0];
_items.insert(_items.begin() + i + 1, _replacement.begin() + 1, _replacement.end());
i += _replacement.size() - 1;
if (item.type() == Push)
{
auto it = _replacements.find(item.data());
if (it != _replacements.end())
{
replaced += it->second;
continue;
}
}
replaced.push_back(item);
}
_items = std::move(replaced);
}
bigint LiteralMethod::gasNeeded()
@ -128,7 +140,31 @@ bigint LiteralMethod::gasNeeded()
CodeCopyMethod::CodeCopyMethod(Params const& _params, u256 const& _value):
ConstantOptimisationMethod(_params, _value)
{
m_copyRoutine = AssemblyItems{
}
bigint CodeCopyMethod::gasNeeded()
{
return combineGas(
// Run gas: we ignore memory increase costs
simpleRunGas(copyRoutine()) + GasCosts::copyGas,
// Data gas for copy routines: Some bytes are zero, but we ignore them.
bytesRequired(copyRoutine()) * (m_params.isCreation ? GasCosts::txDataNonZeroGas : GasCosts::createDataGas),
// Data gas for data itself
dataGas(toBigEndian(m_value))
);
}
AssemblyItems CodeCopyMethod::execute(Assembly& _assembly)
{
bytes data = toBigEndian(m_value);
AssemblyItems actualCopyRoutine = copyRoutine();
actualCopyRoutine[4] = _assembly.newData(data);
return actualCopyRoutine;
}
AssemblyItems const& CodeCopyMethod::copyRoutine() const
{
AssemblyItems static copyRoutine{
u256(0),
Instruction::DUP1,
Instruction::MLOAD, // back up memory
@ -141,25 +177,7 @@ CodeCopyMethod::CodeCopyMethod(Params const& _params, u256 const& _value):
Instruction::SWAP2,
Instruction::MSTORE
};
}
bigint CodeCopyMethod::gasNeeded()
{
return combineGas(
// Run gas: we ignore memory increase costs
simpleRunGas(m_copyRoutine) + GasCosts::copyGas,
// Data gas for copy routines: Some bytes are zero, but we ignore them.
bytesRequired(m_copyRoutine) * (m_params.isCreation ? GasCosts::txDataNonZeroGas : GasCosts::createDataGas),
// Data gas for data itself
dataGas(toBigEndian(m_value))
);
}
void CodeCopyMethod::execute(Assembly& _assembly, AssemblyItems& _items)
{
bytes data = toBigEndian(m_value);
m_copyRoutine[4] = _assembly.newData(data);
replaceConstants(_items, m_copyRoutine);
return copyRoutine;
}
AssemblyItems ComputeMethod::findRepresentation(u256 const& _value)

View File

@ -60,7 +60,10 @@ public:
explicit ConstantOptimisationMethod(Params const& _params, u256 const& _value):
m_params(_params), m_value(_value) {}
virtual bigint gasNeeded() = 0;
virtual void execute(Assembly& _assembly, AssemblyItems& _items) = 0;
/// Executes the method, potentially appending to the assembly and returns a vector of
/// assembly items the constant should be relpaced with in one sweep.
/// If the vector is empty, the constants will not be deleted.
virtual AssemblyItems execute(Assembly& _assembly) = 0;
protected:
size_t dataSize() const { return std::max<size_t>(1, dev::bytesRequired(m_value)); }
@ -83,8 +86,8 @@ protected:
return m_params.runs * _runGas + m_params.multiplicity * _repeatedDataGas + _uniqueDataGas;
}
/// Replaces the constant by the code given in @a _replacement.
void replaceConstants(AssemblyItems& _items, AssemblyItems const& _replacement) const;
/// Replaces all constants i by the code given in @a _replacement[i].
static void replaceConstants(AssemblyItems& _items, std::map<u256, AssemblyItems> const& _replacement);
Params m_params;
u256 const& m_value;
@ -100,7 +103,7 @@ public:
explicit LiteralMethod(Params const& _params, u256 const& _value):
ConstantOptimisationMethod(_params, _value) {}
virtual bigint gasNeeded() override;
virtual void execute(Assembly&, AssemblyItems&) override {}
virtual AssemblyItems execute(Assembly&) override { return AssemblyItems{}; }
};
/**
@ -111,10 +114,10 @@ class CodeCopyMethod: public ConstantOptimisationMethod
public:
explicit CodeCopyMethod(Params const& _params, u256 const& _value);
virtual bigint gasNeeded() override;
virtual void execute(Assembly& _assembly, AssemblyItems& _items) override;
virtual AssemblyItems execute(Assembly& _assembly) override;
protected:
AssemblyItems m_copyRoutine;
AssemblyItems const& copyRoutine() const;
};
/**
@ -130,9 +133,9 @@ public:
}
virtual bigint gasNeeded() override { return gasNeeded(m_routine); }
virtual void execute(Assembly&, AssemblyItems& _items) override
virtual AssemblyItems execute(Assembly&) override
{
replaceConstants(_items, m_routine);
return m_routine;
}
protected:

View File

@ -29,6 +29,7 @@
#include <boost/noncopyable.hpp>
#include <libevmasm/Assembly.h>
#include <libevmasm/CommonSubexpressionEliminator.h>
#include <libevmasm/SimplificationRules.h>
using namespace std;
using namespace dev;
@ -40,8 +41,18 @@ bool ExpressionClasses::Expression::operator<(ExpressionClasses::Expression cons
assertThrow(!!item && !!_other.item, OptimizerException, "");
auto type = item->type();
auto otherType = _other.item->type();
return std::tie(type, item->data(), arguments, sequenceNumber) <
std::tie(otherType, _other.item->data(), _other.arguments, _other.sequenceNumber);
if (type != otherType)
return type < otherType;
else if (type == Operation)
{
auto instr = item->instruction();
auto otherInstr = _other.item->instruction();
return std::tie(instr, arguments, sequenceNumber) <
std::tie(otherInstr, _other.arguments, _other.sequenceNumber);
}
else
return std::tie(item->data(), arguments, sequenceNumber) <
std::tie(_other.item->data(), _other.arguments, _other.sequenceNumber);
}
ExpressionClasses::Id ExpressionClasses::find(
@ -170,191 +181,6 @@ string ExpressionClasses::fullDAGToString(ExpressionClasses::Id _id) const
return str.str();
}
class Rules: public boost::noncopyable
{
public:
Rules();
void resetMatchGroups() { m_matchGroups.clear(); }
vector<pair<Pattern, function<Pattern()>>> rules() const { return m_rules; }
private:
using Expression = ExpressionClasses::Expression;
map<unsigned, Expression const*> m_matchGroups;
vector<pair<Pattern, function<Pattern()>>> m_rules;
};
template <class S> S divWorkaround(S const& _a, S const& _b)
{
return (S)(bigint(_a) / bigint(_b));
}
template <class S> S modWorkaround(S const& _a, S const& _b)
{
return (S)(bigint(_a) % bigint(_b));
}
Rules::Rules()
{
// Multiple occurences of one of these inside one rule must match the same equivalence class.
// Constants.
Pattern A(Push);
Pattern B(Push);
Pattern C(Push);
// Anything.
Pattern X;
Pattern Y;
Pattern Z;
A.setMatchGroup(1, m_matchGroups);
B.setMatchGroup(2, m_matchGroups);
C.setMatchGroup(3, m_matchGroups);
X.setMatchGroup(4, m_matchGroups);
Y.setMatchGroup(5, m_matchGroups);
Z.setMatchGroup(6, m_matchGroups);
m_rules = vector<pair<Pattern, function<Pattern()>>>{
// arithmetics on constants
{{Instruction::ADD, {A, B}}, [=]{ return A.d() + B.d(); }},
{{Instruction::MUL, {A, B}}, [=]{ return A.d() * B.d(); }},
{{Instruction::SUB, {A, B}}, [=]{ return A.d() - B.d(); }},
{{Instruction::DIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : divWorkaround(A.d(), B.d()); }},
{{Instruction::SDIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(divWorkaround(u2s(A.d()), u2s(B.d()))); }},
{{Instruction::MOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : modWorkaround(A.d(), B.d()); }},
{{Instruction::SMOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(modWorkaround(u2s(A.d()), u2s(B.d()))); }},
{{Instruction::EXP, {A, B}}, [=]{ return u256(boost::multiprecision::powm(bigint(A.d()), bigint(B.d()), bigint(1) << 256)); }},
{{Instruction::NOT, {A}}, [=]{ return ~A.d(); }},
{{Instruction::LT, {A, B}}, [=]() { return A.d() < B.d() ? u256(1) : 0; }},
{{Instruction::GT, {A, B}}, [=]() -> u256 { return A.d() > B.d() ? 1 : 0; }},
{{Instruction::SLT, {A, B}}, [=]() -> u256 { return u2s(A.d()) < u2s(B.d()) ? 1 : 0; }},
{{Instruction::SGT, {A, B}}, [=]() -> u256 { return u2s(A.d()) > u2s(B.d()) ? 1 : 0; }},
{{Instruction::EQ, {A, B}}, [=]() -> u256 { return A.d() == B.d() ? 1 : 0; }},
{{Instruction::ISZERO, {A}}, [=]() -> u256 { return A.d() == 0 ? 1 : 0; }},
{{Instruction::AND, {A, B}}, [=]{ return A.d() & B.d(); }},
{{Instruction::OR, {A, B}}, [=]{ return A.d() | B.d(); }},
{{Instruction::XOR, {A, B}}, [=]{ return A.d() ^ B.d(); }},
{{Instruction::BYTE, {A, B}}, [=]{ return A.d() >= 32 ? 0 : (B.d() >> unsigned(8 * (31 - A.d()))) & 0xff; }},
{{Instruction::ADDMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) + bigint(B.d())) % C.d()); }},
{{Instruction::MULMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) * bigint(B.d())) % C.d()); }},
{{Instruction::MULMOD, {A, B, C}}, [=]{ return A.d() * B.d(); }},
{{Instruction::SIGNEXTEND, {A, B}}, [=]() -> u256 {
if (A.d() >= 31)
return B.d();
unsigned testBit = unsigned(A.d()) * 8 + 7;
u256 mask = (u256(1) << testBit) - 1;
return u256(boost::multiprecision::bit_test(B.d(), testBit) ? B.d() | ~mask : B.d() & mask);
}},
// invariants involving known constants
{{Instruction::ADD, {X, 0}}, [=]{ return X; }},
{{Instruction::SUB, {X, 0}}, [=]{ return X; }},
{{Instruction::MUL, {X, 1}}, [=]{ return X; }},
{{Instruction::DIV, {X, 1}}, [=]{ return X; }},
{{Instruction::SDIV, {X, 1}}, [=]{ return X; }},
{{Instruction::OR, {X, 0}}, [=]{ return X; }},
{{Instruction::XOR, {X, 0}}, [=]{ return X; }},
{{Instruction::AND, {X, ~u256(0)}}, [=]{ return X; }},
{{Instruction::AND, {X, 0}}, [=]{ return u256(0); }},
{{Instruction::MUL, {X, 0}}, [=]{ return u256(0); }},
{{Instruction::DIV, {X, 0}}, [=]{ return u256(0); }},
{{Instruction::DIV, {0, X}}, [=]{ return u256(0); }},
{{Instruction::MOD, {X, 0}}, [=]{ return u256(0); }},
{{Instruction::MOD, {0, X}}, [=]{ return u256(0); }},
{{Instruction::OR, {X, ~u256(0)}}, [=]{ return ~u256(0); }},
{{Instruction::EQ, {X, 0}}, [=]() -> Pattern { return {Instruction::ISZERO, {X}}; } },
// operations involving an expression and itself
{{Instruction::AND, {X, X}}, [=]{ return X; }},
{{Instruction::OR, {X, X}}, [=]{ return X; }},
{{Instruction::XOR, {X, X}}, [=]{ return u256(0); }},
{{Instruction::SUB, {X, X}}, [=]{ return u256(0); }},
{{Instruction::EQ, {X, X}}, [=]{ return u256(1); }},
{{Instruction::LT, {X, X}}, [=]{ return u256(0); }},
{{Instruction::SLT, {X, X}}, [=]{ return u256(0); }},
{{Instruction::GT, {X, X}}, [=]{ return u256(0); }},
{{Instruction::SGT, {X, X}}, [=]{ return u256(0); }},
{{Instruction::MOD, {X, X}}, [=]{ return u256(0); }},
{{Instruction::NOT, {{Instruction::NOT, {X}}}}, [=]{ return X; }},
{{Instruction::XOR, {{{X}, {Instruction::XOR, {X, Y}}}}}, [=]{ return Y; }},
{{Instruction::OR, {{{X}, {Instruction::AND, {X, Y}}}}}, [=]{ return X; }},
{{Instruction::AND, {{{X}, {Instruction::OR, {X, Y}}}}}, [=]{ return X; }},
{{Instruction::AND, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return u256(0); }},
{{Instruction::OR, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return ~u256(0); }},
};
// Double negation of opcodes with binary result
for (auto const& op: vector<Instruction>{
Instruction::EQ,
Instruction::LT,
Instruction::SLT,
Instruction::GT,
Instruction::SGT
})
m_rules.push_back({
{Instruction::ISZERO, {{Instruction::ISZERO, {{op, {X, Y}}}}}},
[=]() -> Pattern { return {op, {X, Y}}; }
});
m_rules.push_back({
{Instruction::ISZERO, {{Instruction::ISZERO, {{Instruction::ISZERO, {X}}}}}},
[=]() -> Pattern { return {Instruction::ISZERO, {X}}; }
});
m_rules.push_back({
{Instruction::ISZERO, {{Instruction::XOR, {X, Y}}}},
[=]() -> Pattern { return { Instruction::EQ, {X, Y} }; }
});
// Associative operations
for (auto const& opFun: vector<pair<Instruction,function<u256(u256 const&,u256 const&)>>>{
{Instruction::ADD, plus<u256>()},
{Instruction::MUL, multiplies<u256>()},
{Instruction::AND, bit_and<u256>()},
{Instruction::OR, bit_or<u256>()},
{Instruction::XOR, bit_xor<u256>()}
})
{
auto op = opFun.first;
auto fun = opFun.second;
// Moving constants to the outside, order matters here!
// we need actions that return expressions (or patterns?) here, and we need also reversed rules
// (X+A)+B -> X+(A+B)
m_rules += vector<pair<Pattern, function<Pattern()>>>{{
{op, {{op, {X, A}}, B}},
[=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }
}, {
// X+(Y+A) -> (X+Y)+A
{op, {{op, {X, A}}, Y}},
[=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }
}, {
// For now, we still need explicit commutativity for the inner pattern
{op, {{op, {A, X}}, B}},
[=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }
}, {
{op, {{op, {A, X}}, Y}},
[=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }
}};
}
// move constants across subtractions
m_rules += vector<pair<Pattern, function<Pattern()>>>{
{
// X - A -> X + (-A)
{Instruction::SUB, {X, A}},
[=]() -> Pattern { return {Instruction::ADD, {X, 0 - A.d()}}; }
}, {
// (X + A) - Y -> (X - Y) + A
{Instruction::SUB, {{Instruction::ADD, {X, A}}, Y}},
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }
}, {
// (A + X) - Y -> (X - Y) + A
{Instruction::SUB, {{Instruction::ADD, {A, X}}, Y}},
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }
}, {
// X - (Y + A) -> (X - Y) + (-A)
{Instruction::SUB, {X, {Instruction::ADD, {Y, A}}}},
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }
}, {
// X - (A + Y) -> (X - Y) + (-A)
{Instruction::SUB, {X, {Instruction::ADD, {A, Y}}}},
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }
}
};
}
ExpressionClasses::Id ExpressionClasses::tryToSimplify(Expression const& _expr, bool _secondRun)
{
static Rules rules;
@ -366,21 +192,17 @@ ExpressionClasses::Id ExpressionClasses::tryToSimplify(Expression const& _expr,
)
return -1;
for (auto const& rule: rules.rules())
if (auto match = rules.findFirstMatch(_expr, *this))
{
rules.resetMatchGroups();
if (rule.first.matches(_expr, *this))
{
// Debug info
//cout << "Simplifying " << *_expr.item << "(";
//for (Id arg: _expr.arguments)
// cout << fullDAGToString(arg) << ", ";
//cout << ")" << endl;
//cout << "with rule " << rule.first.toString() << endl;
//ExpressionTemplate t(rule.second());
//cout << "to " << rule.second().toString() << endl;
return rebuildExpression(ExpressionTemplate(rule.second(), _expr.item->location()));
}
// Debug info
//cout << "Simplifying " << *_expr.item << "(";
//for (Id arg: _expr.arguments)
// cout << fullDAGToString(arg) << ", ";
//cout << ")" << endl;
//cout << "with rule " << match->first.toString() << endl;
//ExpressionTemplate t(match->second());
//cout << "to " << match->second().toString() << endl;
return rebuildExpression(ExpressionTemplate(match->second(), _expr.item->location()));
}
if (!_secondRun && _expr.arguments.size() == 2 && SemanticInformation::isCommutativeOperation(*_expr.item))
@ -403,122 +225,3 @@ ExpressionClasses::Id ExpressionClasses::rebuildExpression(ExpressionTemplate co
arguments.push_back(rebuildExpression(t));
return find(_template.item, arguments);
}
Pattern::Pattern(Instruction _instruction, std::vector<Pattern> const& _arguments):
m_type(Operation),
m_requireDataMatch(true),
m_data(_instruction),
m_arguments(_arguments)
{
}
void Pattern::setMatchGroup(unsigned _group, map<unsigned, Expression const*>& _matchGroups)
{
m_matchGroup = _group;
m_matchGroups = &_matchGroups;
}
bool Pattern::matches(Expression const& _expr, ExpressionClasses const& _classes) const
{
if (!matchesBaseItem(_expr.item))
return false;
if (m_matchGroup)
{
if (!m_matchGroups->count(m_matchGroup))
(*m_matchGroups)[m_matchGroup] = &_expr;
else if ((*m_matchGroups)[m_matchGroup]->id != _expr.id)
return false;
}
assertThrow(m_arguments.size() == 0 || _expr.arguments.size() == m_arguments.size(), OptimizerException, "");
for (size_t i = 0; i < m_arguments.size(); ++i)
if (!m_arguments[i].matches(_classes.representative(_expr.arguments[i]), _classes))
return false;
return true;
}
AssemblyItem Pattern::toAssemblyItem(SourceLocation const& _location) const
{
return AssemblyItem(m_type, m_data, _location);
}
string Pattern::toString() const
{
stringstream s;
switch (m_type)
{
case Operation:
s << instructionInfo(Instruction(unsigned(m_data))).name;
break;
case Push:
s << "PUSH " << hex << m_data;
break;
case UndefinedItem:
s << "ANY";
break;
default:
s << "t=" << dec << m_type << " d=" << hex << m_data;
break;
}
if (!m_requireDataMatch)
s << " ~";
if (m_matchGroup)
s << "[" << dec << m_matchGroup << "]";
s << "(";
for (Pattern const& p: m_arguments)
s << p.toString() << ", ";
s << ")";
return s.str();
}
bool Pattern::matchesBaseItem(AssemblyItem const* _item) const
{
if (m_type == UndefinedItem)
return true;
if (!_item)
return false;
if (m_type != _item->type())
return false;
if (m_requireDataMatch && m_data != _item->data())
return false;
return true;
}
Pattern::Expression const& Pattern::matchGroupValue() const
{
assertThrow(m_matchGroup > 0, OptimizerException, "");
assertThrow(!!m_matchGroups, OptimizerException, "");
assertThrow((*m_matchGroups)[m_matchGroup], OptimizerException, "");
return *(*m_matchGroups)[m_matchGroup];
}
ExpressionTemplate::ExpressionTemplate(Pattern const& _pattern, SourceLocation const& _location)
{
if (_pattern.matchGroup())
{
hasId = true;
id = _pattern.id();
}
else
{
hasId = false;
item = _pattern.toAssemblyItem(_location);
}
for (auto const& arg: _pattern.arguments())
arguments.push_back(ExpressionTemplate(arg, _location));
}
string ExpressionTemplate::toString() const
{
stringstream s;
if (hasId)
s << id;
else
s << item;
s << "(";
for (auto const& arg: arguments)
s << arg.toString();
s << ")";
return s.str();
}

View File

@ -121,70 +121,5 @@ private:
std::vector<std::shared_ptr<AssemblyItem>> m_spareAssemblyItems;
};
/**
* Pattern to match against an expression.
* Also stores matched expressions to retrieve them later, for constructing new expressions using
* ExpressionTemplate.
*/
class Pattern
{
public:
using Expression = ExpressionClasses::Expression;
using Id = ExpressionClasses::Id;
// Matches a specific constant value.
Pattern(unsigned _value): Pattern(u256(_value)) {}
// Matches a specific constant value.
Pattern(u256 const& _value): m_type(Push), m_requireDataMatch(true), m_data(_value) {}
// Matches a specific assembly item type or anything if not given.
Pattern(AssemblyItemType _type = UndefinedItem): m_type(_type) {}
// Matches a given instruction with given arguments
Pattern(Instruction _instruction, std::vector<Pattern> const& _arguments = {});
/// Sets this pattern to be part of the match group with the identifier @a _group.
/// Inside one rule, all patterns in the same match group have to match expressions from the
/// same expression equivalence class.
void setMatchGroup(unsigned _group, std::map<unsigned, Expression const*>& _matchGroups);
unsigned matchGroup() const { return m_matchGroup; }
bool matches(Expression const& _expr, ExpressionClasses const& _classes) const;
AssemblyItem toAssemblyItem(SourceLocation const& _location) const;
std::vector<Pattern> arguments() const { return m_arguments; }
/// @returns the id of the matched expression if this pattern is part of a match group.
Id id() const { return matchGroupValue().id; }
/// @returns the data of the matched expression if this pattern is part of a match group.
u256 const& d() const { return matchGroupValue().item->data(); }
std::string toString() const;
private:
bool matchesBaseItem(AssemblyItem const* _item) const;
Expression const& matchGroupValue() const;
AssemblyItemType m_type;
bool m_requireDataMatch = false;
u256 m_data = 0;
std::vector<Pattern> m_arguments;
unsigned m_matchGroup = 0;
std::map<unsigned, Expression const*>* m_matchGroups = nullptr;
};
/**
* Template for a new expression that can be built from matched patterns.
*/
struct ExpressionTemplate
{
using Expression = ExpressionClasses::Expression;
using Id = ExpressionClasses::Id;
explicit ExpressionTemplate(Pattern const& _pattern, SourceLocation const& _location);
std::string toString() const;
bool hasId = false;
/// Id of the matched expression, if available.
Id id = Id(-1);
// Otherwise, assembly item.
AssemblyItem item = UndefinedItem;
std::vector<ExpressionTemplate> arguments;
};
}
}

View File

@ -120,7 +120,7 @@ struct OpPop: SimplePeepholeOptimizerMethod<OpPop, 2>
if (instructionInfo(instr).ret == 1 && !instructionInfo(instr).sideEffects)
{
for (int j = 0; j < instructionInfo(instr).args; j++)
*_out = Instruction::POP;
*_out = {Instruction::POP, _op.location()};
return true;
}
}

View File

@ -0,0 +1,370 @@
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file ExpressionClasses.cpp
* @author Christian <c@ethdev.com>
* @date 2015
* Container for equivalence classes of expressions for use in common subexpression elimination.
*/
#include <libevmasm/ExpressionClasses.h>
#include <utility>
#include <tuple>
#include <functional>
#include <boost/range/adaptor/reversed.hpp>
#include <boost/noncopyable.hpp>
#include <libevmasm/Assembly.h>
#include <libevmasm/CommonSubexpressionEliminator.h>
#include <libevmasm/SimplificationRules.h>
using namespace std;
using namespace dev;
using namespace dev::eth;
pair<Pattern, function<Pattern()> > const* Rules::findFirstMatch(
Expression const& _expr,
ExpressionClasses const& _classes
)
{
resetMatchGroups();
assertThrow(_expr.item, OptimizerException, "");
for (auto const& rule: m_rules[byte(_expr.item->instruction())])
{
if (rule.first.matches(_expr, _classes))
return &rule;
resetMatchGroups();
}
return nullptr;
}
void Rules::addRules(std::vector<std::pair<Pattern, std::function<Pattern ()> > > const& _rules)
{
for (auto const& r: _rules)
addRule(r);
}
void Rules::addRule(std::pair<Pattern, std::function<Pattern()> > const& _rule)
{
m_rules[byte(_rule.first.instruction())].push_back(_rule);
}
template <class S> S divWorkaround(S const& _a, S const& _b)
{
return (S)(bigint(_a) / bigint(_b));
}
template <class S> S modWorkaround(S const& _a, S const& _b)
{
return (S)(bigint(_a) % bigint(_b));
}
Rules::Rules()
{
// Multiple occurences of one of these inside one rule must match the same equivalence class.
// Constants.
Pattern A(Push);
Pattern B(Push);
Pattern C(Push);
// Anything.
Pattern X;
Pattern Y;
Pattern Z;
A.setMatchGroup(1, m_matchGroups);
B.setMatchGroup(2, m_matchGroups);
C.setMatchGroup(3, m_matchGroups);
X.setMatchGroup(4, m_matchGroups);
Y.setMatchGroup(5, m_matchGroups);
Z.setMatchGroup(6, m_matchGroups);
addRules(vector<pair<Pattern, function<Pattern()>>>{
// arithmetics on constants
{{Instruction::ADD, {A, B}}, [=]{ return A.d() + B.d(); }},
{{Instruction::MUL, {A, B}}, [=]{ return A.d() * B.d(); }},
{{Instruction::SUB, {A, B}}, [=]{ return A.d() - B.d(); }},
{{Instruction::DIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : divWorkaround(A.d(), B.d()); }},
{{Instruction::SDIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(divWorkaround(u2s(A.d()), u2s(B.d()))); }},
{{Instruction::MOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : modWorkaround(A.d(), B.d()); }},
{{Instruction::SMOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(modWorkaround(u2s(A.d()), u2s(B.d()))); }},
{{Instruction::EXP, {A, B}}, [=]{ return u256(boost::multiprecision::powm(bigint(A.d()), bigint(B.d()), bigint(1) << 256)); }},
{{Instruction::NOT, {A}}, [=]{ return ~A.d(); }},
{{Instruction::LT, {A, B}}, [=]() { return A.d() < B.d() ? u256(1) : 0; }},
{{Instruction::GT, {A, B}}, [=]() -> u256 { return A.d() > B.d() ? 1 : 0; }},
{{Instruction::SLT, {A, B}}, [=]() -> u256 { return u2s(A.d()) < u2s(B.d()) ? 1 : 0; }},
{{Instruction::SGT, {A, B}}, [=]() -> u256 { return u2s(A.d()) > u2s(B.d()) ? 1 : 0; }},
{{Instruction::EQ, {A, B}}, [=]() -> u256 { return A.d() == B.d() ? 1 : 0; }},
{{Instruction::ISZERO, {A}}, [=]() -> u256 { return A.d() == 0 ? 1 : 0; }},
{{Instruction::AND, {A, B}}, [=]{ return A.d() & B.d(); }},
{{Instruction::OR, {A, B}}, [=]{ return A.d() | B.d(); }},
{{Instruction::XOR, {A, B}}, [=]{ return A.d() ^ B.d(); }},
{{Instruction::BYTE, {A, B}}, [=]{ return A.d() >= 32 ? 0 : (B.d() >> unsigned(8 * (31 - A.d()))) & 0xff; }},
{{Instruction::ADDMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) + bigint(B.d())) % C.d()); }},
{{Instruction::MULMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) * bigint(B.d())) % C.d()); }},
{{Instruction::MULMOD, {A, B, C}}, [=]{ return A.d() * B.d(); }},
{{Instruction::SIGNEXTEND, {A, B}}, [=]() -> u256 {
if (A.d() >= 31)
return B.d();
unsigned testBit = unsigned(A.d()) * 8 + 7;
u256 mask = (u256(1) << testBit) - 1;
return u256(boost::multiprecision::bit_test(B.d(), testBit) ? B.d() | ~mask : B.d() & mask);
}},
// invariants involving known constants
{{Instruction::ADD, {X, 0}}, [=]{ return X; }},
{{Instruction::SUB, {X, 0}}, [=]{ return X; }},
{{Instruction::MUL, {X, 1}}, [=]{ return X; }},
{{Instruction::DIV, {X, 1}}, [=]{ return X; }},
{{Instruction::SDIV, {X, 1}}, [=]{ return X; }},
{{Instruction::OR, {X, 0}}, [=]{ return X; }},
{{Instruction::XOR, {X, 0}}, [=]{ return X; }},
{{Instruction::AND, {X, ~u256(0)}}, [=]{ return X; }},
{{Instruction::AND, {X, 0}}, [=]{ return u256(0); }},
{{Instruction::MUL, {X, 0}}, [=]{ return u256(0); }},
{{Instruction::DIV, {X, 0}}, [=]{ return u256(0); }},
{{Instruction::DIV, {0, X}}, [=]{ return u256(0); }},
{{Instruction::MOD, {X, 0}}, [=]{ return u256(0); }},
{{Instruction::MOD, {0, X}}, [=]{ return u256(0); }},
{{Instruction::OR, {X, ~u256(0)}}, [=]{ return ~u256(0); }},
{{Instruction::EQ, {X, 0}}, [=]() -> Pattern { return {Instruction::ISZERO, {X}}; } },
// operations involving an expression and itself
{{Instruction::AND, {X, X}}, [=]{ return X; }},
{{Instruction::OR, {X, X}}, [=]{ return X; }},
{{Instruction::XOR, {X, X}}, [=]{ return u256(0); }},
{{Instruction::SUB, {X, X}}, [=]{ return u256(0); }},
{{Instruction::EQ, {X, X}}, [=]{ return u256(1); }},
{{Instruction::LT, {X, X}}, [=]{ return u256(0); }},
{{Instruction::SLT, {X, X}}, [=]{ return u256(0); }},
{{Instruction::GT, {X, X}}, [=]{ return u256(0); }},
{{Instruction::SGT, {X, X}}, [=]{ return u256(0); }},
{{Instruction::MOD, {X, X}}, [=]{ return u256(0); }},
{{Instruction::NOT, {{Instruction::NOT, {X}}}}, [=]{ return X; }},
{{Instruction::XOR, {{{X}, {Instruction::XOR, {X, Y}}}}}, [=]{ return Y; }},
{{Instruction::OR, {{{X}, {Instruction::AND, {X, Y}}}}}, [=]{ return X; }},
{{Instruction::AND, {{{X}, {Instruction::OR, {X, Y}}}}}, [=]{ return X; }},
{{Instruction::AND, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return u256(0); }},
{{Instruction::OR, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return ~u256(0); }},
});
// Double negation of opcodes with binary result
for (auto const& op: vector<Instruction>{
Instruction::EQ,
Instruction::LT,
Instruction::SLT,
Instruction::GT,
Instruction::SGT
})
addRule({
{Instruction::ISZERO, {{Instruction::ISZERO, {{op, {X, Y}}}}}},
[=]() -> Pattern { return {op, {X, Y}}; }
});
addRule({
{Instruction::ISZERO, {{Instruction::ISZERO, {{Instruction::ISZERO, {X}}}}}},
[=]() -> Pattern { return {Instruction::ISZERO, {X}}; }
});
addRule({
{Instruction::ISZERO, {{Instruction::XOR, {X, Y}}}},
[=]() -> Pattern { return { Instruction::EQ, {X, Y} }; }
});
// Associative operations
for (auto const& opFun: vector<pair<Instruction,function<u256(u256 const&,u256 const&)>>>{
{Instruction::ADD, plus<u256>()},
{Instruction::MUL, multiplies<u256>()},
{Instruction::AND, bit_and<u256>()},
{Instruction::OR, bit_or<u256>()},
{Instruction::XOR, bit_xor<u256>()}
})
{
auto op = opFun.first;
auto fun = opFun.second;
// Moving constants to the outside, order matters here!
// we need actions that return expressions (or patterns?) here, and we need also reversed rules
// (X+A)+B -> X+(A+B)
addRules(vector<pair<Pattern, function<Pattern()>>>{{
{op, {{op, {X, A}}, B}},
[=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }
}, {
// X+(Y+A) -> (X+Y)+A
{op, {{op, {X, A}}, Y}},
[=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }
}, {
// For now, we still need explicit commutativity for the inner pattern
{op, {{op, {A, X}}, B}},
[=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }
}, {
{op, {{op, {A, X}}, Y}},
[=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }
}});
}
// move constants across subtractions
addRules(vector<pair<Pattern, function<Pattern()>>>{
{
// X - A -> X + (-A)
{Instruction::SUB, {X, A}},
[=]() -> Pattern { return {Instruction::ADD, {X, 0 - A.d()}}; }
}, {
// (X + A) - Y -> (X - Y) + A
{Instruction::SUB, {{Instruction::ADD, {X, A}}, Y}},
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }
}, {
// (A + X) - Y -> (X - Y) + A
{Instruction::SUB, {{Instruction::ADD, {A, X}}, Y}},
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }
}, {
// X - (Y + A) -> (X - Y) + (-A)
{Instruction::SUB, {X, {Instruction::ADD, {Y, A}}}},
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }
}, {
// X - (A + Y) -> (X - Y) + (-A)
{Instruction::SUB, {X, {Instruction::ADD, {A, Y}}}},
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }
}
});
}
Pattern::Pattern(Instruction _instruction, std::vector<Pattern> const& _arguments):
m_type(Operation),
m_instruction(_instruction),
m_arguments(_arguments)
{
}
void Pattern::setMatchGroup(unsigned _group, map<unsigned, Expression const*>& _matchGroups)
{
m_matchGroup = _group;
m_matchGroups = &_matchGroups;
}
bool Pattern::matches(Expression const& _expr, ExpressionClasses const& _classes) const
{
if (!matchesBaseItem(_expr.item))
return false;
if (m_matchGroup)
{
if (!m_matchGroups->count(m_matchGroup))
(*m_matchGroups)[m_matchGroup] = &_expr;
else if ((*m_matchGroups)[m_matchGroup]->id != _expr.id)
return false;
}
assertThrow(m_arguments.size() == 0 || _expr.arguments.size() == m_arguments.size(), OptimizerException, "");
for (size_t i = 0; i < m_arguments.size(); ++i)
if (!m_arguments[i].matches(_classes.representative(_expr.arguments[i]), _classes))
return false;
return true;
}
AssemblyItem Pattern::toAssemblyItem(SourceLocation const& _location) const
{
if (m_type == Operation)
return AssemblyItem(m_instruction, _location);
else
return AssemblyItem(m_type, data(), _location);
}
string Pattern::toString() const
{
stringstream s;
switch (m_type)
{
case Operation:
s << instructionInfo(m_instruction).name;
break;
case Push:
if (m_data)
s << "PUSH " << hex << data();
else
s << "PUSH ";
break;
case UndefinedItem:
s << "ANY";
break;
default:
if (m_data)
s << "t=" << dec << m_type << " d=" << hex << data();
else
s << "t=" << dec << m_type << " d: nullptr";
break;
}
if (!m_requireDataMatch)
s << " ~";
if (m_matchGroup)
s << "[" << dec << m_matchGroup << "]";
s << "(";
for (Pattern const& p: m_arguments)
s << p.toString() << ", ";
s << ")";
return s.str();
}
bool Pattern::matchesBaseItem(AssemblyItem const* _item) const
{
if (m_type == UndefinedItem)
return true;
if (!_item)
return false;
if (m_type != _item->type())
return false;
else if (m_type == Operation)
return m_instruction == _item->instruction();
else if (m_requireDataMatch)
return data() == _item->data();
return true;
}
Pattern::Expression const& Pattern::matchGroupValue() const
{
assertThrow(m_matchGroup > 0, OptimizerException, "");
assertThrow(!!m_matchGroups, OptimizerException, "");
assertThrow((*m_matchGroups)[m_matchGroup], OptimizerException, "");
return *(*m_matchGroups)[m_matchGroup];
}
u256 const& Pattern::data() const
{
assertThrow(m_data, OptimizerException, "");
return *m_data;
}
ExpressionTemplate::ExpressionTemplate(Pattern const& _pattern, SourceLocation const& _location)
{
if (_pattern.matchGroup())
{
hasId = true;
id = _pattern.id();
}
else
{
hasId = false;
item = _pattern.toAssemblyItem(_location);
}
for (auto const& arg: _pattern.arguments())
arguments.push_back(ExpressionTemplate(arg, _location));
}
string ExpressionTemplate::toString() const
{
stringstream s;
if (hasId)
s << id;
else
s << item;
s << "(";
for (auto const& arg: arguments)
s << arg.toString();
s << ")";
return s.str();
}

View File

@ -0,0 +1,140 @@
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file SimplificationRules
* @author Christian <chris@ethereum.org>
* @date 2017
* Module for applying replacement rules against Expressions.
*/
#pragma once
#include <libevmasm/ExpressionClasses.h>
#include <functional>
#include <vector>
namespace dev
{
namespace eth
{
class Pattern;
/**
* Container for all simplification rules.
*/
class Rules: public boost::noncopyable
{
public:
using Expression = ExpressionClasses::Expression;
Rules();
/// @returns a pointer to the first matching pattern and sets the match
/// groups accordingly.
std::pair<Pattern, std::function<Pattern()>> const* findFirstMatch(
Expression const& _expr,
ExpressionClasses const& _classes
);
private:
void addRules(std::vector<std::pair<Pattern, std::function<Pattern()>>> const& _rules);
void addRule(std::pair<Pattern, std::function<Pattern()>> const& _rule);
void resetMatchGroups() { m_matchGroups.clear(); }
std::map<unsigned, Expression const*> m_matchGroups;
std::vector<std::pair<Pattern, std::function<Pattern()>>> m_rules[256];
};
/**
* Pattern to match against an expression.
* Also stores matched expressions to retrieve them later, for constructing new expressions using
* ExpressionTemplate.
*/
class Pattern
{
public:
using Expression = ExpressionClasses::Expression;
using Id = ExpressionClasses::Id;
// Matches a specific constant value.
Pattern(unsigned _value): Pattern(u256(_value)) {}
// Matches a specific constant value.
Pattern(u256 const& _value): m_type(Push), m_requireDataMatch(true), m_data(std::make_shared<u256>(_value)) {}
// Matches a specific assembly item type or anything if not given.
Pattern(AssemblyItemType _type = UndefinedItem): m_type(_type) {}
// Matches a given instruction with given arguments
Pattern(Instruction _instruction, std::vector<Pattern> const& _arguments = {});
/// Sets this pattern to be part of the match group with the identifier @a _group.
/// Inside one rule, all patterns in the same match group have to match expressions from the
/// same expression equivalence class.
void setMatchGroup(unsigned _group, std::map<unsigned, Expression const*>& _matchGroups);
unsigned matchGroup() const { return m_matchGroup; }
bool matches(Expression const& _expr, ExpressionClasses const& _classes) const;
AssemblyItem toAssemblyItem(SourceLocation const& _location) const;
std::vector<Pattern> arguments() const { return m_arguments; }
/// @returns the id of the matched expression if this pattern is part of a match group.
Id id() const { return matchGroupValue().id; }
/// @returns the data of the matched expression if this pattern is part of a match group.
u256 const& d() const { return matchGroupValue().item->data(); }
std::string toString() const;
AssemblyItemType type() const { return m_type; }
Instruction instruction() const
{
assertThrow(type() == Operation, OptimizerException, "");
return m_instruction;
}
private:
bool matchesBaseItem(AssemblyItem const* _item) const;
Expression const& matchGroupValue() const;
u256 const& data() const;
AssemblyItemType m_type;
bool m_requireDataMatch = false;
Instruction m_instruction; ///< Only valid if m_type is Operation
std::shared_ptr<u256> m_data; ///< Only valid if m_type is not Operation
std::vector<Pattern> m_arguments;
unsigned m_matchGroup = 0;
std::map<unsigned, Expression const*>* m_matchGroups = nullptr;
};
/**
* Template for a new expression that can be built from matched patterns.
*/
struct ExpressionTemplate
{
using Expression = ExpressionClasses::Expression;
using Id = ExpressionClasses::Id;
explicit ExpressionTemplate(Pattern const& _pattern, SourceLocation const& _location);
std::string toString() const;
bool hasId = false;
/// Id of the matched expression, if available.
Id id = Id(-1);
// Otherwise, assembly item.
AssemblyItem item = UndefinedItem;
std::vector<ExpressionTemplate> arguments;
};
}
}

View File

@ -44,10 +44,19 @@ Declaration const* DeclarationContainer::conflictingDeclaration(
if (dynamic_cast<FunctionDefinition const*>(&_declaration))
{
// check that all other declarations with the same name are functions
// check that all other declarations with the same name are functions or a public state variable
for (Declaration const* declaration: declarations)
if (!dynamic_cast<FunctionDefinition const*>(declaration))
{
if (dynamic_cast<FunctionDefinition const*>(declaration))
continue;
if (auto variableDeclaration = dynamic_cast<VariableDeclaration const*>(declaration))
{
if (variableDeclaration->isStateVariable() && !variableDeclaration->isConstant() && variableDeclaration->isPublic())
continue;
return declaration;
}
return declaration;
}
}
else if (declarations.size() == 1 && declarations.front() == &_declaration)
return nullptr;

View File

@ -260,10 +260,16 @@ vector<Declaration const*> NameAndTypeResolver::cleanedDeclarations(
for (auto it = _declarations.begin(); it != _declarations.end(); ++it)
{
solAssert(*it, "");
// the declaration is functionDefinition while declarations > 1
FunctionDefinition const& functionDefinition = dynamic_cast<FunctionDefinition const&>(**it);
FunctionType functionType(functionDefinition);
for (auto parameter: functionType.parameterTypes() + functionType.returnParameterTypes())
// the declaration is functionDefinition or a VariableDeclaration while declarations > 1
solAssert(dynamic_cast<FunctionDefinition const*>(*it) || dynamic_cast<VariableDeclaration const*>(*it),
"Found overloading involving something not a function or a variable");
shared_ptr<FunctionType const> functionType { (*it)->functionType(false) };
if (!functionType)
functionType = (*it)->functionType(true);
solAssert(functionType, "failed to determine the function type of the overloaded");
for (auto parameter: functionType->parameterTypes() + functionType->returnParameterTypes())
if (!parameter)
reportFatalDeclarationError(_identifier.location(), "Function type can not be used in this context");
@ -272,8 +278,10 @@ vector<Declaration const*> NameAndTypeResolver::cleanedDeclarations(
uniqueFunctions.end(),
[&](Declaration const* d)
{
FunctionType newFunctionType(dynamic_cast<FunctionDefinition const&>(*d));
return functionType.hasEqualArgumentTypes(newFunctionType);
shared_ptr<FunctionType const> newFunctionType { d->functionType(false) };
if (!newFunctionType)
newFunctionType = d->functionType(true);
return newFunctionType && functionType->hasEqualArgumentTypes(*newFunctionType);
}
))
uniqueFunctions.push_back(*it);
@ -289,7 +297,39 @@ void NameAndTypeResolver::importInheritedScope(ContractDefinition const& _base)
for (auto const& declaration: nameAndDeclaration.second)
// Import if it was declared in the base, is not the constructor and is visible in derived classes
if (declaration->scope() == &_base && declaration->isVisibleInDerivedContracts())
m_currentScope->registerDeclaration(*declaration);
if (!m_currentScope->registerDeclaration(*declaration))
{
SourceLocation firstDeclarationLocation;
SourceLocation secondDeclarationLocation;
Declaration const* conflictingDeclaration = m_currentScope->conflictingDeclaration(*declaration);
solAssert(conflictingDeclaration, "");
// Usual shadowing is not an error
if (dynamic_cast<VariableDeclaration const*>(declaration) && dynamic_cast<VariableDeclaration const*>(conflictingDeclaration))
continue;
// Usual shadowing is not an error
if (dynamic_cast<ModifierDefinition const*>(declaration) && dynamic_cast<ModifierDefinition const*>(conflictingDeclaration))
continue;
if (declaration->location().start < conflictingDeclaration->location().start)
{
firstDeclarationLocation = declaration->location();
secondDeclarationLocation = conflictingDeclaration->location();
}
else
{
firstDeclarationLocation = conflictingDeclaration->location();
secondDeclarationLocation = declaration->location();
}
reportDeclarationError(
secondDeclarationLocation,
"Identifier already declared.",
firstDeclarationLocation,
"The previous declaration is here:"
);
}
}
void NameAndTypeResolver::linearizeBaseContracts(ContractDefinition& _contract)

View File

@ -1500,8 +1500,23 @@ bool TypeChecker::visit(Identifier const& _identifier)
if (!annotation.referencedDeclaration)
{
if (!annotation.argumentTypes)
fatalTypeError(_identifier.location(), "Unable to determine overloaded type.");
if (annotation.overloadedDeclarations.empty())
{
// The identifier should be a public state variable shadowing other functions
vector<Declaration const*> candidates;
for (Declaration const* declaration: annotation.overloadedDeclarations)
{
if (VariableDeclaration const* variableDeclaration = dynamic_cast<decltype(variableDeclaration)>(declaration))
candidates.push_back(declaration);
}
if (candidates.empty())
fatalTypeError(_identifier.location(), "No matching declaration found after variable lookup.");
else if (candidates.size() == 1)
annotation.referencedDeclaration = candidates.front();
else
fatalTypeError(_identifier.location(), "No unique declaration found after variable lookup.");
}
else if (annotation.overloadedDeclarations.empty())
fatalTypeError(_identifier.location(), "No candidates for overload resolution found.");
else if (annotation.overloadedDeclarations.size() == 1)
annotation.referencedDeclaration = *annotation.overloadedDeclarations.begin();

View File

@ -217,6 +217,9 @@ vector<Declaration const*> const& ContractDefinition::inheritableMembers() const
for (EnumDefinition const* e: definedEnums())
addInheritableMember(e);
for (EventDefinition const* e: events())
addInheritableMember(e);
}
return *m_inheritableMembers;
}
@ -271,6 +274,45 @@ TypeDeclarationAnnotation& EnumDefinition::annotation() const
return static_cast<TypeDeclarationAnnotation&>(*m_annotation);
}
shared_ptr<FunctionType> FunctionDefinition::functionType(bool _internal) const
{
if (_internal)
{
switch (visibility())
{
case Declaration::Visibility::Default:
solAssert(false, "visibility() should not return Default");
case Declaration::Visibility::Private:
case Declaration::Visibility::Internal:
case Declaration::Visibility::Public:
return make_shared<FunctionType>(*this, _internal);
case Declaration::Visibility::External:
return {};
default:
solAssert(false, "visibility() should not return a Visibility");
}
}
else
{
switch (visibility())
{
case Declaration::Visibility::Default:
solAssert(false, "visibility() should not return Default");
case Declaration::Visibility::Private:
case Declaration::Visibility::Internal:
return {};
case Declaration::Visibility::Public:
case Declaration::Visibility::External:
return make_shared<FunctionType>(*this, _internal);
default:
solAssert(false, "visibility() should not return a Visibility");
}
}
// To make the compiler happy
return {};
}
TypePointer FunctionDefinition::type() const
{
return make_shared<FunctionType>(*this);
@ -305,6 +347,14 @@ TypePointer EventDefinition::type() const
return make_shared<FunctionType>(*this);
}
std::shared_ptr<FunctionType> EventDefinition::functionType(bool _internal) const
{
if (_internal)
return make_shared<FunctionType>(*this);
else
return {};
}
EventDefinitionAnnotation& EventDefinition::annotation() const
{
if (!m_annotation)
@ -362,6 +412,28 @@ TypePointer VariableDeclaration::type() const
return annotation().type;
}
shared_ptr<FunctionType> VariableDeclaration::functionType(bool _internal) const
{
if (_internal)
return {};
switch (visibility())
{
case Declaration::Visibility::Default:
solAssert(false, "visibility() should not return Default");
case Declaration::Visibility::Private:
case Declaration::Visibility::Internal:
return {};
case Declaration::Visibility::Public:
case Declaration::Visibility::External:
return make_shared<FunctionType>(*this);
default:
solAssert(false, "visibility() should not return a Visibility");
}
// To make the compiler happy
return {};
}
VariableDeclarationAnnotation& VariableDeclaration::annotation() const
{
if (!m_annotation)

View File

@ -171,6 +171,10 @@ public:
/// This can only be called once types of variable declarations have already been resolved.
virtual TypePointer type() const = 0;
/// @param _internal false indicates external interface is concerned, true indicates internal interface is concerned.
/// @returns null when it is not accessible as a function.
virtual std::shared_ptr<FunctionType> functionType(bool /*_internal*/) const { return {}; }
protected:
virtual Visibility defaultVisibility() const { return Visibility::Public; }
@ -581,6 +585,10 @@ public:
virtual TypePointer type() const override;
/// @param _internal false indicates external interface is concerned, true indicates internal interface is concerned.
/// @returns null when it is not accessible as a function.
virtual std::shared_ptr<FunctionType> functionType(bool /*_internal*/) const override;
virtual FunctionDefinitionAnnotation& annotation() const override;
private:
@ -643,6 +651,10 @@ public:
virtual TypePointer type() const override;
/// @param _internal false indicates external interface is concerned, true indicates internal interface is concerned.
/// @returns null when it is not accessible as a function.
virtual std::shared_ptr<FunctionType> functionType(bool /*_internal*/) const override;
virtual VariableDeclarationAnnotation& annotation() const override;
protected:
@ -740,6 +752,7 @@ public:
bool isAnonymous() const { return m_anonymous; }
virtual TypePointer type() const override;
virtual std::shared_ptr<FunctionType> functionType(bool /*_internal*/) const override;
virtual EventDefinitionAnnotation& annotation() const override;

View File

@ -908,19 +908,43 @@ bool ExpressionCompiler::visit(MemberAccess const& _memberAccess)
solAssert(_memberAccess.annotation().type, "_memberAccess has no type");
if (auto funType = dynamic_cast<FunctionType const*>(_memberAccess.annotation().type.get()))
{
if (funType->location() != FunctionType::Location::Internal)
{
_memberAccess.expression().accept(*this);
m_context << funType->externalIdentifier();
}
else
switch (funType->location())
{
case FunctionType::Location::Internal:
// We do not visit the expression here on purpose, because in the case of an
// internal library function call, this would push the library address forcing
// us to link against it although we actually do not need it.
auto const* function = dynamic_cast<FunctionDefinition const*>(_memberAccess.annotation().referencedDeclaration);
solAssert(!!function, "Function not found in member access");
utils().pushCombinedFunctionEntryLabel(*function);
if (auto const* function = dynamic_cast<FunctionDefinition const*>(_memberAccess.annotation().referencedDeclaration))
utils().pushCombinedFunctionEntryLabel(*function);
else
solAssert(false, "Function not found in member access");
break;
case FunctionType::Location::Event:
if (!dynamic_cast<EventDefinition const*>(_memberAccess.annotation().referencedDeclaration))
solAssert(false, "event not found");
// no-op, because the parent node will do the job
break;
case FunctionType::Location::External:
case FunctionType::Location::Creation:
case FunctionType::Location::DelegateCall:
case FunctionType::Location::CallCode:
case FunctionType::Location::Send:
case FunctionType::Location::Bare:
case FunctionType::Location::BareCallCode:
case FunctionType::Location::BareDelegateCall:
_memberAccess.expression().accept(*this);
m_context << funType->externalIdentifier();
break;
case FunctionType::Location::Log0:
case FunctionType::Location::Log1:
case FunctionType::Location::Log2:
case FunctionType::Location::Log3:
case FunctionType::Location::Log4:
case FunctionType::Location::ECRecover:
case FunctionType::Location::SHA256:
case FunctionType::Location::RIPEMD160:
default:
solAssert(false, "unsupported member function");
}
}
else if (dynamic_cast<TypeType const*>(_memberAccess.annotation().type.get()))

View File

@ -509,23 +509,32 @@ string CompilerStack::applyRemapping(string const& _path, string const& _context
};
size_t longestPrefix = 0;
string longestPrefixTarget;
size_t longestContext = 0;
string bestMatchTarget;
for (auto const& redir: m_remappings)
{
// Skip if we already have a closer match.
if (longestPrefix > 0 && redir.prefix.length() <= longestPrefix)
string context = sanitizePath(redir.context);
string prefix = sanitizePath(redir.prefix);
// Skip if current context is closer
if (context.length() < longestContext)
continue;
// Skip if redir.context is not a prefix of _context
if (!isPrefixOf(redir.context, _context))
if (!isPrefixOf(context, _context))
continue;
// Skip if we already have a closer prefix match.
if (prefix.length() < longestPrefix && context.length() == longestContext)
continue;
// Skip if the prefix does not match.
if (!isPrefixOf(redir.prefix, _path))
if (!isPrefixOf(prefix, _path))
continue;
longestPrefix = redir.prefix.length();
longestPrefixTarget = redir.target;
longestContext = context.length();
longestPrefix = prefix.length();
bestMatchTarget = sanitizePath(redir.target);
}
string path = longestPrefixTarget;
string path = bestMatchTarget;
path.append(_path.begin() + longestPrefix, _path.end());
return path;
}
@ -593,11 +602,11 @@ bool CompilerStack::checkLibraryNameClashes()
string CompilerStack::absolutePath(string const& _path, string const& _reference) const
{
// Anything that does not start with `.` is an absolute path.
if (_path.empty() || _path.front() != '.')
return _path;
using path = boost::filesystem::path;
path p(_path);
// Anything that does not start with `.` is an absolute path.
if (p.begin() == p.end() || (*p.begin() != "." && *p.begin() != ".."))
return _path;
path result(_reference);
result.remove_filename();
for (path::iterator it = p.begin(); it != p.end(); ++it)

View File

@ -29,6 +29,7 @@
#include <vector>
#include <functional>
#include <boost/noncopyable.hpp>
#include <boost/filesystem.hpp>
#include <json/json.h>
#include <libdevcore/Common.h>
#include <libdevcore/FixedHash.h>
@ -234,12 +235,14 @@ private:
bool checkLibraryNameClashes();
/// @returns the absolute path corresponding to @a _path relative to @a _reference.
std::string absolutePath(std::string const& _path, std::string const& _reference) const;
/// Helper function to return path converted strings.
std::string sanitizePath(std::string const& _path) const { return boost::filesystem::path(_path).generic_string(); }
/// Compile a single contract and put the result in @a _compiledContracts.
void compileContract(
ContractDefinition const& _contract,
std::map<ContractDefinition const*, eth::Assembly const*>& _compiledContracts
);
void link();
Contract const& contract(std::string const& _contractName = "") const;

View File

@ -1153,9 +1153,9 @@ ASTPointer<Expression> Parser::parseLeftHandSideExpression(
else if (m_scanner->currentToken() == Token::New)
{
expectToken(Token::New);
ASTPointer<TypeName> contractName(parseTypeName(false));
nodeFactory.setEndPositionFromNode(contractName);
expression = nodeFactory.createNode<NewExpression>(contractName);
ASTPointer<TypeName> typeName(parseTypeName(false));
nodeFactory.setEndPositionFromNode(typeName);
expression = nodeFactory.createNode<NewExpression>(typeName);
}
else
expression = parsePrimaryExpression();

View File

@ -0,0 +1,34 @@
#!/usr/bin/env sh
#
set -e
REPO_ROOT="$(dirname "$0")"/..
(
cd "$REPO_ROOT"
version=$(grep -oP "PROJECT_VERSION \"?\K[0-9.]+(?=\")"? CMakeLists.txt)
commithash=$(git rev-parse --short=8 HEAD)
commitdate=$(git show --format=%ci HEAD | head -n 1 | cut - -b1-10 | sed -e 's/-0?/./' | sed -e 's/-0?/./')
# file exists and has zero size -> not a prerelease
if [ -e prerelease.txt -a ! -s prerelease.txt ]
then
versionstring="$version"
else
versionstring="$version-develop-$commitdate-$commithash"
fi
TEMPDIR=$(mktemp -d)
SOLDIR="$TEMPDIR/solidity_$versionstring/"
mkdir "$SOLDIR"
# Store the current source
git checkout-index -a --prefix="$SOLDIR"
git submodule foreach 'git checkout-index -a --prefix="'"$SOLDIR"'/$path/"'
# Store the commit hash
echo "$commithash" > "$SOLDIR/commit_hash.txt"
# Add dependencies
mkdir -p "$SOLDIR/deps/downloads/" 2>/dev/null || true
wget -O "$SOLDIR/deps/downloads/jsoncpp-1.7.7.tar.gz" https://github.com/open-source-parsers/jsoncpp/archive/1.7.7.tar.gz
tar czf "$REPO_ROOT/solidity_$versionstring.tar.gz" -C "$TEMPDIR" "solidity_$versionstring"
rm -r "$TEMPDIR"
)

37
scripts/install_cmake.sh Executable file
View File

@ -0,0 +1,37 @@
#!/usr/bin/env sh
# This script downloads the CMake binary and installs it in ~/.local directory
# (the cmake executable will be in ~/.local/bin).
# This is mostly suitable for CIs, not end users.
set -e
VERSION=3.7.1
PREFIX=~/.local
OS=$(uname -s)
case $OS in
Linux) SHA256=7b4b7a1d9f314f45722899c0521c261e4bfab4a6b532609e37fef391da6bade2;;
Darwin) SHA256=1851d1448964893fdc5a8c05863326119f397a3790e0c84c40b83499c7960267;;
esac
BIN=$PREFIX/bin
if test -f $BIN/cmake && ($BIN/cmake --version | grep -q "$VERSION"); then
echo "CMake $VERSION already installed in $BIN"
else
FILE=cmake-$VERSION-$OS-x86_64.tar.gz
URL=https://cmake.org/files/v3.7/$FILE
ERROR=0
TMPFILE=$(mktemp --tmpdir cmake-$VERSION-$OS-x86_64.XXXXXXXX.tar.gz)
echo "Downloading CMake ($URL)..."
wget "$URL" -O "$TMPFILE" -nv
if ! (shasum -a256 "$TMPFILE" | grep -q "$SHA256"); then
echo "Checksum mismatch ($TMPFILE)"
exit 1
fi
mkdir -p "$PREFIX"
tar xzf "$TMPFILE" -C "$PREFIX" --strip 1
rm $TMPFILE
fi

View File

@ -164,6 +164,43 @@ BOOST_AUTO_TEST_CASE(context_dependent_remappings)
BOOST_CHECK(c.compile());
}
BOOST_AUTO_TEST_CASE(filename_with_period)
{
CompilerStack c;
c.addSource("a/a.sol", "import \".b.sol\"; contract A is B {} pragma solidity >=0.0;");
c.addSource("a/.b.sol", "contract B {} pragma solidity >=0.0;");
BOOST_CHECK(!c.compile());
}
BOOST_AUTO_TEST_CASE(context_dependent_remappings_ensure_default_and_module_preserved)
{
CompilerStack c;
c.setRemappings(vector<string>{"foo=vendor/foo_2.0.0", "vendor/bar:foo=vendor/foo_1.0.0", "bar=vendor/bar"});
c.addSource("main.sol", "import \"foo/foo.sol\"; import {Bar} from \"bar/bar.sol\"; contract Main is Foo2, Bar {} pragma solidity >=0.0;");
c.addSource("vendor/bar/bar.sol", "import \"foo/foo.sol\"; contract Bar {Foo1 foo;} pragma solidity >=0.0;");
c.addSource("vendor/foo_1.0.0/foo.sol", "contract Foo1 {} pragma solidity >=0.0;");
c.addSource("vendor/foo_2.0.0/foo.sol", "contract Foo2 {} pragma solidity >=0.0;");
BOOST_CHECK(c.compile());
}
BOOST_AUTO_TEST_CASE(context_dependent_remappings_order_independent)
{
CompilerStack c;
c.setRemappings(vector<string>{"a:x/y/z=d", "a/b:x=e"});
c.addSource("a/main.sol", "import \"x/y/z/z.sol\"; contract Main is D {} pragma solidity >=0.0;");
c.addSource("a/b/main.sol", "import \"x/y/z/z.sol\"; contract Main is E {} pragma solidity >=0.0;");
c.addSource("d/z.sol", "contract D {} pragma solidity >=0.0;");
c.addSource("e/y/z/z.sol", "contract E {} pragma solidity >=0.0;");
BOOST_CHECK(c.compile());
CompilerStack d;
d.setRemappings(vector<string>{"a/b:x=e", "a:x/y/z=d"});
d.addSource("a/main.sol", "import \"x/y/z/z.sol\"; contract Main is D {} pragma solidity >=0.0;");
d.addSource("a/b/main.sol", "import \"x/y/z/z.sol\"; contract Main is E {} pragma solidity >=0.0;");
d.addSource("d/z.sol", "contract D {} pragma solidity >=0.0;");
d.addSource("e/y/z/z.sol", "contract E {} pragma solidity >=0.0;");
BOOST_CHECK(d.compile());
}
BOOST_AUTO_TEST_SUITE_END()
}

View File

@ -2770,6 +2770,28 @@ BOOST_AUTO_TEST_CASE(event_no_arguments)
BOOST_CHECK_EQUAL(m_logs[0].topics[0], dev::keccak256(string("Deposit()")));
}
BOOST_AUTO_TEST_CASE(event_access_through_base_name)
{
char const* sourceCode = R"(
contract A {
event x();
}
contract B is A {
function f() returns (uint) {
A.x();
return 1;
}
}
)";
compileAndRun(sourceCode);
callContractFunction("f()");
BOOST_REQUIRE_EQUAL(m_logs.size(), 1);
BOOST_CHECK_EQUAL(m_logs[0].address, m_contractAddress);
BOOST_CHECK(m_logs[0].data.empty());
BOOST_REQUIRE_EQUAL(m_logs[0].topics.size(), 1);
BOOST_CHECK_EQUAL(m_logs[0].topics[0], dev::keccak256(string("x()")));
}
BOOST_AUTO_TEST_CASE(event_anonymous)
{
char const* sourceCode = R"(
@ -4847,60 +4869,6 @@ BOOST_AUTO_TEST_CASE(proper_order_of_overwriting_of_attributes)
BOOST_CHECK(callContractFunction("ok()") == encodeArgs(false));
}
BOOST_AUTO_TEST_CASE(proper_overwriting_accessor_by_function)
{
// bug #1798
char const* sourceCode = R"(
contract attribute {
bool ok = false;
}
contract func {
function ok() returns (bool) { return true; }
}
contract attr_func is attribute, func {
function checkOk() returns (bool) { return ok(); }
}
contract func_attr is func, attribute {
function checkOk() returns (bool) { return ok; }
}
)";
compileAndRun(sourceCode, 0, "attr_func");
BOOST_CHECK(callContractFunction("ok()") == encodeArgs(true));
compileAndRun(sourceCode, 0, "func_attr");
BOOST_CHECK(callContractFunction("checkOk()") == encodeArgs(false));
}
BOOST_AUTO_TEST_CASE(overwriting_inheritance)
{
// bug #1798
char const* sourceCode = R"(
contract A {
function ok() returns (uint) { return 1; }
}
contract B {
function ok() returns (uint) { return 2; }
}
contract C {
uint ok = 6;
}
contract AB is A, B {
function ok() returns (uint) { return 4; }
}
contract reversedE is C, AB {
function checkOk() returns (uint) { return ok(); }
}
contract E is AB, C {
function checkOk() returns (uint) { return ok; }
}
)";
compileAndRun(sourceCode, 0, "reversedE");
BOOST_CHECK(callContractFunction("checkOk()") == encodeArgs(4));
compileAndRun(sourceCode, 0, "E");
BOOST_CHECK(callContractFunction("checkOk()") == encodeArgs(6));
}
BOOST_AUTO_TEST_CASE(struct_assign_reference_to_struct)
{
char const* sourceCode = R"(

View File

@ -1056,7 +1056,9 @@ BOOST_AUTO_TEST_CASE(modifier_overrides_function)
contract A { modifier mod(uint a) { _; } }
contract B is A { function mod(uint a) { } }
)";
CHECK_ERROR(text, TypeError, "");
// Error: Identifier already declared.
// Error: Override changes modifier to function.
CHECK_ERROR_ALLOW_MULTI(text, DeclarationError, "");
}
BOOST_AUTO_TEST_CASE(function_overrides_modifier)
@ -1065,7 +1067,9 @@ BOOST_AUTO_TEST_CASE(function_overrides_modifier)
contract A { function mod(uint a) { } }
contract B is A { modifier mod(uint a) { _; } }
)";
CHECK_ERROR(text, TypeError, "");
// Error: Identifier already declared.
// Error: Override changes function to modifier.
CHECK_ERROR_ALLOW_MULTI(text, DeclarationError, "");
}
BOOST_AUTO_TEST_CASE(modifier_returns_value)
@ -4304,6 +4308,25 @@ BOOST_AUTO_TEST_CASE(illegal_override_payable_nonpayable)
CHECK_ERROR(text, TypeError, "");
}
BOOST_AUTO_TEST_CASE(function_variable_mixin)
{
// bug #1798 (cpp-ethereum), related to #1286 (solidity)
char const* text = R"(
contract attribute {
bool ok = false;
}
contract func {
function ok() returns (bool) { return true; }
}
contract attr_func is attribute, func {
function checkOk() returns (bool) { return ok(); }
}
)";
CHECK_ERROR(text, DeclarationError, "");
}
BOOST_AUTO_TEST_CASE(payable_constant_conflict)
{
char const* text = R"(