mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
Merge pull request #1561 from ethereum/develop
Merge develop into release for 0.4.8
This commit is contained in:
commit
60cc166851
54
.travis.yml
54
.travis.yml
@ -26,11 +26,13 @@
|
||||
|
||||
language: cpp
|
||||
branches:
|
||||
# We need to whitelist the branches which we want to have "push" automation.
|
||||
# We need to whitelist the branches which we want to have "push" automation,
|
||||
# this includes tags (which are treated as branches by travis).
|
||||
# Pull request automation is not constrained to this set of branches.
|
||||
only:
|
||||
- develop
|
||||
- release
|
||||
- /^v[0-9]/
|
||||
matrix:
|
||||
include:
|
||||
# Ubuntu 14.04 LTS "Trusty Tahr"
|
||||
@ -71,6 +73,7 @@ matrix:
|
||||
dist: trusty
|
||||
sudo: required
|
||||
compiler: gcc
|
||||
node_js: stable
|
||||
services:
|
||||
- docker
|
||||
before_install:
|
||||
@ -137,11 +140,12 @@ cache:
|
||||
directories:
|
||||
- boost_1_57_0
|
||||
- build
|
||||
- $HOME/.local
|
||||
|
||||
install:
|
||||
- test $TRAVIS_INSTALL_DEPS != On || ./scripts/install_deps.sh
|
||||
- test "$TRAVIS_OS_NAME" != "linux" || ./scripts/install_cmake.sh
|
||||
- echo -n "$TRAVIS_COMMIT" > commit_hash.txt
|
||||
- test "$TRAVIS_PULL_REQUESTS" != "false" || test "$TRAVIS_BRANCH" != release || echo -n > prerelease.txt # this is a proper release
|
||||
before_script:
|
||||
- test $TRAVIS_EMSCRIPTEN != On || ./scripts/build_emscripten.sh
|
||||
- test $TRAVIS_RELEASE != On || (mkdir -p build
|
||||
@ -149,7 +153,8 @@ before_script:
|
||||
&& cmake .. -DCMAKE_BUILD_TYPE=$TRAVIS_BUILD_TYPE
|
||||
&& make -j2
|
||||
&& cd ..
|
||||
&& ./scripts/release.sh $ZIP_SUFFIX )
|
||||
&& ./scripts/release.sh $ZIP_SUFFIX
|
||||
&& ./scripts/create_source_tarball.sh )
|
||||
script:
|
||||
- test $TRAVIS_DOCS != On || ./scripts/docs.sh
|
||||
|
||||
@ -190,43 +195,20 @@ deploy:
|
||||
- release
|
||||
|
||||
# This is the deploy target for the native build (Linux and macOS)
|
||||
# which generates ZIPs per commit. We are in agreement that
|
||||
# generating ZIPs per commit for the develop branch is probably
|
||||
# just noise, so we only run this deployment target on 'release'.
|
||||
#
|
||||
# Unlike the Appveyor GitHub Releases target, the support in TravisCI
|
||||
# seemingly doesn't provide a means for passing a description, tag, etc.
|
||||
# In practice, we are letting the Appveyor CI do all that stuff, and
|
||||
# then this deployment flow just seems to find that most recent tag,
|
||||
# and just add our Linux and macOS ZIPs into the same tag, which is
|
||||
# what we want to happen. But is very accidental and brittle-looking.
|
||||
#
|
||||
# The 'skip_cleanup' stops the workspace being cleaned out prior to
|
||||
# generation of the artifacts. Strange that we should explicitly
|
||||
# need to do that, but we do.
|
||||
#
|
||||
# Tokens in TravisCI can be generated a few different ways. Bob had
|
||||
# success using the 'travis' gem, and then using that gem to
|
||||
# create/edit this .travis.yml file, and then cut-and-pasting the
|
||||
# good bits back out of what it generated. The gem changes all the
|
||||
# whitespace and deletes comments, so cannot be used as-is. But
|
||||
# it does generate an appropriate auth token.
|
||||
#
|
||||
# TODO - I do not know if the api_key below which work correctly
|
||||
# for ethereum/solidity. I suspect not, for the same reason as
|
||||
# my auth token does not work for Appveyor. I don't have enough
|
||||
# permissions to enable this myself. Christian should be able to.
|
||||
#
|
||||
# See https://docs.travis-ci.com/user/deployment/releases
|
||||
# See https://blog.travis-ci.com/2013-01-28-token-token-token/
|
||||
# See https://github.com/ethereum/webthree-umbrella/issues/658
|
||||
# which generates ZIPs per commit and the source tarball.
|
||||
#
|
||||
# This runs for each tag that is created and adds the corresponding files.
|
||||
- provider: releases
|
||||
api_key:
|
||||
secure: PWH37xVBCF0XiSjl+eH7XIdkrfxZXjzvqF4PiBOnD3VnFz+odrdnIwBmCeBYTHTWF8efpp8fmzWJk2UVq1JcpyZiC+SVxO8dx91W2ia1a+wKrEQuDgkUrZBkl5IQNCv0QS81DDQhliyZEaYh8wHO/7RReyMpGpw2U2u85WkFiZ+LdlHEZPfzUeh9lxQ9n8qwFL8Rja+Q05d4cQ8zaVEtofJJT4T6DUWhc3TzuxDYxOmjwg37rC9CkGSLn6VadSh8b3j5R0SZupFsAEvBL/imBLP9r9ewoo7o4p6By3jwiIgH9yNg7LM618xbffcNaYF/KtLBi9uPHfqF7hRD4PlECz+D0PR78nQItOX5HKm1QMg5kCnghRVCA0IVjpV5fiYQnMLM7dCRv34I5b3zLpa69wQ/GLYB2FViqNUfvPeiZTEeIJ2OmATlFx8AH2JoqpY1XJknWb35+vMfa8LSiJJW++SLWeV+ncC92hrvyZ1cy3trepRRZIfyYepxHifnfdWMkddQUJk5b2WS5Fy/TJLZNPeombnpvRhUC38dsYItarKeXTc6k4oADCEDZ2rgGIcEiqRxXV11Y5xHJekLDWzUs+YJNcCuL4pnAP//LOnbnH2w9rLpwhQYSl0anCd097NivAXQJXO2JI/byIYz1kiCVQWnW6EM8+72mLOklf/Qr8k=
|
||||
file: $TRAVIS_BUILD_DIR/solidity-$ZIP_SUFFIX.zip
|
||||
|
||||
overwrite: true
|
||||
file_glob: true
|
||||
file:
|
||||
- $TRAVIS_BUILD_DIR/solidity*.zip
|
||||
- $TRAVIS_BUILD_DIR/solidity*tar.gz
|
||||
skip_cleanup: true
|
||||
on:
|
||||
repo: ethereum/solidity
|
||||
branch: release
|
||||
all_branches: true
|
||||
tags: true
|
||||
condition: $TRAVIS_RELEASE == On
|
||||
|
@ -8,7 +8,7 @@ include(EthPolicy)
|
||||
eth_policy()
|
||||
|
||||
# project name and version should be set after cmake_policy CMP0048
|
||||
set(PROJECT_VERSION "0.4.7")
|
||||
set(PROJECT_VERSION "0.4.8")
|
||||
project(solidity VERSION ${PROJECT_VERSION})
|
||||
|
||||
# Let's find our dependencies
|
||||
|
12
Changelog.md
12
Changelog.md
@ -1,3 +1,15 @@
|
||||
### 0.4.8 (2017-01-13)
|
||||
|
||||
Features:
|
||||
* Optimiser: Performance improvements.
|
||||
* Output: Print assembly in new standardized Solidity assembly format.
|
||||
|
||||
Bugfixes:
|
||||
* Remappings: Prefer longer context over longer prefix.
|
||||
* Type checker, code generator: enable access to events of base contracts' names.
|
||||
* Imports: ``import ".dir/a"`` is not a relative path. Relative paths begin with directory ``.`` or ``..``.
|
||||
* Type checker, disallow inheritances of different kinds (e.g. a function and a modifier) of members of the same name
|
||||
|
||||
### 0.4.7 (2016-12-15)
|
||||
|
||||
Features:
|
||||
|
950
docs/assembly.rst
Normal file
950
docs/assembly.rst
Normal file
@ -0,0 +1,950 @@
|
||||
#################
|
||||
Solidity Assembly
|
||||
#################
|
||||
|
||||
.. index:: ! assembly, ! asm, ! evmasm
|
||||
|
||||
Solidity defines an assembly language that can also be used without Solidity.
|
||||
This assembly language can also be used as "inline assembly" inside Solidity
|
||||
source code. We start with describing how to use inline assembly and how it
|
||||
differs from standalone assembly and then specify assembly itself.
|
||||
|
||||
TODO: Write about how scoping rules of inline assembly are a bit different
|
||||
and the complications that arise when for example using internal functions
|
||||
of libraries. Furhermore, write about the symbols defined by the compiler.
|
||||
|
||||
Inline Assembly
|
||||
===============
|
||||
|
||||
For more fine-grained control especially in order to enhance the language by writing libraries,
|
||||
it is possible to interleave Solidity statements with inline assembly in a language close
|
||||
to the one of the virtual machine. Due to the fact that the EVM is a stack machine, it is
|
||||
often hard to address the correct stack slot and provide arguments to opcodes at the correct
|
||||
point on the stack. Solidity's inline assembly tries to facilitate that and other issues
|
||||
arising when writing manual assembly by the following features:
|
||||
|
||||
* functional-style opcodes: ``mul(1, add(2, 3))`` instead of ``push1 3 push1 2 add push1 1 mul``
|
||||
* assembly-local variables: ``let x := add(2, 3) let y := mload(0x40) x := add(x, y)``
|
||||
* access to external variables: ``function f(uint x) { assembly { x := sub(x, 1) } }``
|
||||
* labels: ``let x := 10 repeat: x := sub(x, 1) jumpi(repeat, eq(x, 0))``
|
||||
* loops: ``for { let i := 0 } lt(i, x) { i := add(i, 1) } { y := mul(2, y) }``
|
||||
* switch statements: ``switch x case 0: { y := mul(x, 2) } default: { y := 0 }``
|
||||
* function calls: ``function f(x) -> (y) { switch x case 0: { y := 1 } default: { y := mul(x, f(sub(x, 1))) } }``
|
||||
|
||||
.. note::
|
||||
Of the above, loops, function calls and switch statements are not yet implemented.
|
||||
|
||||
We now want to describe the inline assembly language in detail.
|
||||
|
||||
.. warning::
|
||||
Inline assembly is still a relatively new feature and might change if it does not prove useful,
|
||||
so please try to keep up to date.
|
||||
|
||||
Example
|
||||
-------
|
||||
|
||||
The following example provides library code to access the code of another contract and
|
||||
load it into a ``bytes`` variable. This is not possible at all with "plain Solidity" and the
|
||||
idea is that assembly libraries will be used to enhance the language in such ways.
|
||||
|
||||
.. code::
|
||||
|
||||
library GetCode {
|
||||
function at(address _addr) returns (bytes o_code) {
|
||||
assembly {
|
||||
// retrieve the size of the code, this needs assembly
|
||||
let size := extcodesize(_addr)
|
||||
// allocate output byte array - this could also be done without assembly
|
||||
// by using o_code = new bytes(size)
|
||||
o_code := mload(0x40)
|
||||
// new "memory end" including padding
|
||||
mstore(0x40, add(o_code, and(add(add(size, 0x20), 0x1f), not(0x1f))))
|
||||
// store length in memory
|
||||
mstore(o_code, size)
|
||||
// actually retrieve the code, this needs assembly
|
||||
extcodecopy(_addr, add(o_code, 0x20), 0, size)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Inline assembly could also be beneficial in cases where the optimizer fails to produce
|
||||
efficient code. Please be aware that assembly is much more difficult to write because
|
||||
the compiler does not perform checks, so you should use it only if
|
||||
you really know what you are doing.
|
||||
|
||||
.. code::
|
||||
|
||||
library VectorSum {
|
||||
// This function is less efficient because the optimizer currently fails to
|
||||
// remove the bounds checks in array access.
|
||||
function sumSolidity(uint[] _data) returns (uint o_sum) {
|
||||
for (uint i = 0; i < _data.length; ++i)
|
||||
o_sum += _data[i];
|
||||
}
|
||||
|
||||
// We know that we only access the array in bounds, so we can avoid the check.
|
||||
// 0x20 needs to be added to an array because the first slot contains the
|
||||
// array length.
|
||||
function sumAsm(uint[] _data) returns (uint o_sum) {
|
||||
for (uint i = 0; i < _data.length; ++i) {
|
||||
assembly {
|
||||
o_sum := mload(add(add(_data, 0x20), mul(i, 0x20)))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Syntax
|
||||
------
|
||||
|
||||
Assembly parses comments, literals and identifiers exactly as Solidity, so you can use the
|
||||
usual ``//`` and ``/* */`` comments. Inline assembly is marked by ``assembly { ... }`` and inside
|
||||
these curly braces, the following can be used (see the later sections for more details)
|
||||
|
||||
- literals, i.e. ``0x123``, ``42`` or ``"abc"`` (strings up to 32 characters)
|
||||
- opcodes (in "instruction style"), e.g. ``mload sload dup1 sstore``, for a list see below
|
||||
- opcode in functional style, e.g. ``add(1, mlod(0))``
|
||||
- labels, e.g. ``name:``
|
||||
- variable declarations, e.g. ``let x := 7`` or ``let x := add(y, 3)``
|
||||
- identifiers (labels or assembly-local variables and externals if used as inline assembly), e.g. ``jump(name)``, ``3 x add``
|
||||
- assignments (in "instruction style"), e.g. ``3 =: x``
|
||||
- assignments in functional style, e.g. ``x := add(y, 3)``
|
||||
- blocks where local variables are scoped inside, e.g. ``{ let x := 3 { let y := add(x, 1) } }``
|
||||
|
||||
Opcodes
|
||||
-------
|
||||
|
||||
This document does not want to be a full description of the Ethereum virtual machine, but the
|
||||
following list can be used as a reference of its opcodes.
|
||||
|
||||
If an opcode takes arguments (always from the top of the stack), they are given in parentheses.
|
||||
Note that the order of arguments can be seed to be reversed in non-functional style (explained below).
|
||||
Opcodes marked with ``-`` do not push an item onto the stack, those marked with ``*`` are
|
||||
special and all others push exactly one item onte the stack.
|
||||
|
||||
In the following, ``mem[a...b)`` signifies the bytes of memory starting at position ``a`` up to
|
||||
(excluding) position ``b`` and ``storage[p]`` signifies the storage contents at position ``p``.
|
||||
|
||||
The opcodes ``pushi`` and ``jumpdest`` cannot be used directly.
|
||||
|
||||
In the grammar, opcodes are represented as pre-defined identifiers.
|
||||
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| stop + `-` | stop execution, identical to return(0,0) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| add(x, y) | | x + y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| sub(x, y) | | x - y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| mul(x, y) | | x * y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| div(x, y) | | x / y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| sdiv(x, y) | | x / y, for signed numbers in two's complement |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| mod(x, y) | | x % y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| smod(x, y) | | x % y, for signed numbers in two's complement |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| exp(x, y) | | x to the power of y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| not(x) | | ~x, every bit of x is negated |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| lt(x, y) | | 1 if x < y, 0 otherwise |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| gt(x, y) | | 1 if x > y, 0 otherwise |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| slt(x, y) | | 1 if x < y, 0 otherwise, for signed numbers in two's complement |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| sgt(x, y) | | 1 if x > y, 0 otherwise, for signed numbers in two's complement |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| eq(x, y) | | 1 if x == y, 0 otherwise |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| iszero(x) | | 1 if x == 0, 0 otherwise |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| and(x, y) | | bitwise and of x and y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| or(x, y) | | bitwise or of x and y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| xor(x, y) | | bitwise xor of x and y |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| byte(n, x) | | nth byte of x, where the most significant byte is the 0th byte |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| addmod(x, y, m) | | (x + y) % m with arbitrary precision arithmetics |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| mulmod(x, y, m) | | (x * y) % m with arbitrary precision arithmetics |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| signextend(i, x) | | sign extend from (i*8+7)th bit counting from least significant |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| sha3(p, n) | | keccak(mem[p...(p+n))) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| jump(label) | `-` | jump to label / code position |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| jumpi(label, cond) | `-` | jump to label if cond is nonzero |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| pc | | current position in code |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| pop | `*` | remove topmost stack slot |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| dup1 ... dup16 | | copy ith stack slot to the top (counting from top) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| swap1 ... swap16 | `*` | swap topmost and ith stack slot below it |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| mload(p) | | mem[p..(p+32)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| mstore(p, v) | `-` | mem[p..(p+32)) := v |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| mstore8(p, v) | `-` | mem[p] := v & 0xff - only modifies a single byte |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| sload(p) | | storage[p] |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| sstore(p, v) | `-` | storage[p] := v |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| msize | | size of memory, i.e. largest accessed memory index |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| gas | | gas still available to execution |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| address | | address of the current contract / execution context |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| balance(a) | | wei balance at address a |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| caller | | call sender (excluding delegatecall) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| callvalue | | wei sent together with the current call |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| calldataload(p) | | call data starting from position p (32 bytes) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| calldatasize | | size of call data in bytes |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| calldatacopy(t, f, s) | `-` | copy s bytes from calldata at position f to mem at position t |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| codesize | | size of the code of the current contract / execution context |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| codecopy(t, f, s) | `-` | copy s bytes from code at position f to mem at position t |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| extcodesize(a) | | size of the code at address a |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| extcodecopy(a, t, f, s) | `-` | like codecopy(t, f, s) but take code at address a |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| create(v, p, s) | | create new contract with code mem[p..(p+s)) and send v wei |
|
||||
| | | and return the new address |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| call(g, a, v, in, | | call contract at address a with input mem[in..(in+insize)] |
|
||||
| insize, out, outsize) | | providing g gas and v wei and output area |
|
||||
| | | mem[out..(out+outsize)] returting 1 on error (out of gas) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| callcode(g, a, v, in, | | identical to call but only use the code from a and stay |
|
||||
| insize, out, outsize) | | in the context of the current contract otherwise |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| delegatecall(g, a, in, | | identical to callcode but also keep ``caller`` |
|
||||
| insize, out, outsize) | | and ``callvalue`` |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| return(p, s) | `*` | end execution, return data mem[p..(p+s)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| selfdestruct(a) | `*` | end execution, destroy current contract and send funds to a |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| log0(p, s) | `-` | log without topics and data mem[p..(p+s)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| log1(p, s, t1) | `-` | log with topic t1 and data mem[p..(p+s)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| log2(p, s, t1, t2) | `-` | log with topics t1, t2 and data mem[p..(p+s)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| log3(p, s, t1, t2, t3) | `-` | log with topics t1, t2, t3 and data mem[p..(p+s)) |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| log4(p, s, t1, t2, t3, | `-` | log with topics t1, t2, t3, t4 and data mem[p..(p+s)) |
|
||||
| t4) | | |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| origin | | transaction sender |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| gasprice | | gas price of the transaction |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| blockhash(b) | | hash of block nr b - only for last 256 blocks excluding current |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| coinbase | | current mining beneficiary |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| timestamp | | timestamp of the current block in seconds since the epoch |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| number | | current block number |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| difficulty | | difficulty of the current block |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
| gaslimit | | block gas limit of the current block |
|
||||
+-------------------------+------+-----------------------------------------------------------------+
|
||||
|
||||
Literals
|
||||
--------
|
||||
|
||||
You can use integer constants by typing them in decimal or hexadecimal notation and an
|
||||
appropriate ``PUSHi`` instruction will automatically be generated. The following creates code
|
||||
to add 2 and 3 resulting in 5 and then computes the bitwise and with the string "abc".
|
||||
Strings are stored left-aligned and cannot be longer than 32 bytes.
|
||||
|
||||
.. code::
|
||||
|
||||
assembly { 2 3 add "abc" and }
|
||||
|
||||
Functional Style
|
||||
-----------------
|
||||
|
||||
You can type opcode after opcode in the same way they will end up in bytecode. For example
|
||||
adding ``3`` to the contents in memory at position ``0x80`` would be
|
||||
|
||||
.. code::
|
||||
|
||||
3 0x80 mload add 0x80 mstore
|
||||
|
||||
As it is often hard to see what the actual arguments for certain opcodes are,
|
||||
Solidity inline assembly also provides a "functional style" notation where the same code
|
||||
would be written as follows
|
||||
|
||||
.. code::
|
||||
|
||||
mstore(0x80, add(mload(0x80), 3))
|
||||
|
||||
Functional style and instructional style can be mixed, but any opcode inside a
|
||||
functional style expression has to return exactly one stack slot (most of the opcodes do).
|
||||
|
||||
Note that the order of arguments is reversed in functional-style as opposed to the instruction-style
|
||||
way. If you use functional-style, the first argument will end up on the stack top.
|
||||
|
||||
|
||||
Access to External Variables and Functions
|
||||
------------------------------------------
|
||||
|
||||
Solidity variables and other identifiers can be accessed by simply using their name.
|
||||
For storage and memory variables, this will push the address and not the value onto the
|
||||
stack. Also note that non-struct and non-array storage variable addresses occupy two slots
|
||||
on the stack: One for the address and one for the byte offset inside the storage slot.
|
||||
In assignments (see below), we can even use local Solidity variables to assign to.
|
||||
|
||||
Functions external to inline assembly can also be accessed: The assembly will
|
||||
push their entry label (with virtual function resolution applied). The calling semantics
|
||||
in solidity are:
|
||||
|
||||
- the caller pushes return label, arg1, arg2, ..., argn
|
||||
- the call returns with ret1, ret2, ..., retn
|
||||
|
||||
This feature is still a bit cumbersome to use, because the stack offset essentially
|
||||
changes during the call, and thus references to local variables will be wrong.
|
||||
It is planned that the stack height changes can be specified in inline assembly.
|
||||
|
||||
.. code::
|
||||
|
||||
contract C {
|
||||
uint b;
|
||||
function f(uint x) returns (uint r) {
|
||||
assembly {
|
||||
b pop // remove the offset, we know it is zero
|
||||
sload
|
||||
x
|
||||
mul
|
||||
=: r // assign to return variable r
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Labels
|
||||
------
|
||||
|
||||
Another problem in EVM assembly is that ``jump`` and ``jumpi`` use absolute addresses
|
||||
which can change easily. Solidity inline assembly provides labels to make the use of
|
||||
jumps easier. The following code computes an element in the Fibonacci series.
|
||||
|
||||
.. code::
|
||||
|
||||
{
|
||||
let n := calldataload(4)
|
||||
let a := 1
|
||||
let b := a
|
||||
loop:
|
||||
jumpi(loopend, eq(n, 0))
|
||||
a add swap1
|
||||
n := sub(n, 1)
|
||||
jump(loop)
|
||||
loopend:
|
||||
mstore(0, a)
|
||||
return(0, 0x20)
|
||||
}
|
||||
|
||||
Please note that automatically accessing stack variables can only work if the
|
||||
assembler knows the current stack height. This fails to work if the jump source
|
||||
and target have different stack heights. It is still fine to use such jumps, but
|
||||
you should just not access any stack variables (even assembly variables) in that case.
|
||||
|
||||
Furthermore, the stack height analyser goes through the code opcode by opcode
|
||||
(and not according to control flow), so in the following case, the assembler
|
||||
will have a wrong impression about the stack height at label ``two``:
|
||||
|
||||
.. code::
|
||||
|
||||
{
|
||||
jump(two)
|
||||
one:
|
||||
// Here the stack height is 1 (because we pushed 7),
|
||||
// but the assembler thinks it is 0 because it reads
|
||||
// from top to bottom.
|
||||
// Accessing stack variables here will lead to errors.
|
||||
jump(three)
|
||||
two:
|
||||
7 // push something onto the stack
|
||||
jump(one)
|
||||
three:
|
||||
}
|
||||
|
||||
|
||||
Declaring Assembly-Local Variables
|
||||
----------------------------------
|
||||
|
||||
You can use the ``let`` keyword to declare variables that are only visible in
|
||||
inline assembly and actually only in the current ``{...}``-block. What happens
|
||||
is that the ``let`` instruction will create a new stack slot that is reserved
|
||||
for the variable and automatically removed again when the end of the block
|
||||
is reached. You need to provide an initial value for the variable which can
|
||||
be just ``0``, but it can also be a complex functional-style expression.
|
||||
|
||||
.. code::
|
||||
|
||||
contract C {
|
||||
function f(uint x) returns (uint b) {
|
||||
assembly {
|
||||
let v := add(x, 1)
|
||||
mstore(0x80, v)
|
||||
{
|
||||
let y := add(sload(v), 1)
|
||||
b := y
|
||||
} // y is "deallocated" here
|
||||
b := add(b, v)
|
||||
} // v is "deallocated" here
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Assignments
|
||||
-----------
|
||||
|
||||
Assignments are possible to assembly-local variables and to function-local
|
||||
variables. Take care that when you assign to variables that point to
|
||||
memory or storage, you will only change the pointer and not the data.
|
||||
|
||||
There are two kinds of assignments: functional-style and instruction-style.
|
||||
For functional-style assignments (``variable := value``), you need to provide a value in a
|
||||
functional-style expression that results in exactly one stack value
|
||||
and for instruction-style (``=: variable``), the value is just taken from the stack top.
|
||||
For both ways, the colon points to the name of the variable. The assignment
|
||||
is performed by replacing the variable's value on the stack by the new value.
|
||||
|
||||
.. code::
|
||||
|
||||
assembly {
|
||||
let v := 0 // functional-style assignment as part of variable declaration
|
||||
let g := add(v, 2)
|
||||
sload(10)
|
||||
=: v // instruction style assignment, puts the result of sload(10) into v
|
||||
}
|
||||
|
||||
Switch
|
||||
------
|
||||
|
||||
You can use a switch statement as a very basic version of "if/else".
|
||||
It takes the value of an expression and compares it to several constants.
|
||||
The branch corresponding to the matching constant is taken. Contrary to the
|
||||
error-prone behaviour of some programming languages, control flow does
|
||||
not continue from one case to the next. There can be a fallback or default
|
||||
case called ``default``.
|
||||
|
||||
.. code::
|
||||
|
||||
assembly {
|
||||
let x := 0
|
||||
switch calldataload(4)
|
||||
case 0: {
|
||||
x := calldataload(0x24)
|
||||
}
|
||||
default: {
|
||||
x := calldataload(0x44)
|
||||
}
|
||||
sstore(0, div(x, 2))
|
||||
}
|
||||
|
||||
The list of cases does not require curly braces, but the body of a
|
||||
case does require them.
|
||||
|
||||
Loops
|
||||
-----
|
||||
|
||||
Assembly supports a simple for-style loop. For-style loops have
|
||||
a header containing an initializing part, a condition and a post-iteration
|
||||
part. The condition has to be a functional-style expression, while
|
||||
the other two can also be blocks. If the initializing part is a block that
|
||||
declares any variables, the scope of these variables is extended into the
|
||||
body (including the condition and the post-iteration part).
|
||||
|
||||
The following example computes the sum of an area in memory.
|
||||
|
||||
.. code::
|
||||
|
||||
assembly {
|
||||
let x := 0
|
||||
for { let i := 0 } lt(i, 0x100) { i := add(i, 0x20) } {
|
||||
x := add(x, mload(i))
|
||||
}
|
||||
}
|
||||
|
||||
Functions
|
||||
---------
|
||||
|
||||
Assembly allows the definition of low-level functions. These take their
|
||||
arguments (and a return PC) from the stack and also put the results onto the
|
||||
stack. Calling a function looks the same way as executing a functional-style
|
||||
opcode.
|
||||
|
||||
Functions can be defined anywhere and are visible in the block they are
|
||||
declared in. Inside a function, you cannot access local variables
|
||||
defined outside of that function. There is no explicit ``return``
|
||||
statement.
|
||||
|
||||
If you call a function that returns multiple values, you have to assign
|
||||
them to a tuple using ``(a, b) := f(x)`` or ``let (a, b) := f(x)``.
|
||||
|
||||
The following example implements the power function by square-and-multiply.
|
||||
|
||||
.. code::
|
||||
|
||||
assembly {
|
||||
function power(base, exponent) -> (result) {
|
||||
switch exponent
|
||||
0: { result := 1 }
|
||||
1: { result := base }
|
||||
default: {
|
||||
result := power(mul(base, base), div(exponent, 2))
|
||||
switch mod(exponent, 2)
|
||||
1: { result := mul(base, result) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Things to Avoid
|
||||
---------------
|
||||
|
||||
Inline assembly might have a quite high-level look, but it actually is extremely
|
||||
low-level. Function calls, loops and switches are converted by simple
|
||||
rewriting rules and after that, the only thing the assembler does for you is re-arranging
|
||||
functional-style opcodes, managing jump labels, counting stack height for
|
||||
variable access and removing stack slots for assembly-local variables when the end
|
||||
of their block is reached. Especially for those two last cases, it is important
|
||||
to know that the assembler only counts stack height from top to bottom, not
|
||||
necessarily following control flow. Furthermore, operations like swap will only
|
||||
swap the contents of the stack but not the location of variables.
|
||||
|
||||
Conventions in Solidity
|
||||
-----------------------
|
||||
|
||||
In contrast to EVM assembly, Solidity knows types which are narrower than 256 bits,
|
||||
e.g. ``uint24``. In order to make them more efficient, most arithmetic operations just
|
||||
treat them as 256 bit numbers and the higher-order bits are only cleaned at the
|
||||
point where it is necessary, i.e. just shortly before they are written to memory
|
||||
or before comparisons are performed. This means that if you access such a variable
|
||||
from within inline assembly, you might have to manually clean the higher order bits
|
||||
first.
|
||||
|
||||
Solidity manages memory in a very simple way: There is a "free memory pointer"
|
||||
at position ``0x40`` in memory. If you want to allocate memory, just use the memory
|
||||
from that point on and update the pointer accordingly.
|
||||
|
||||
Elements in memory arrays in Solidity always occupy multiples of 32 bytes (yes, this is
|
||||
even true for ``byte[]``, but not for ``bytes`` and ``string``). Multi-dimensional memory
|
||||
arrays are pointers to memory arrays. The length of a dynamic array is stored at the
|
||||
first slot of the array and then only the array elements follow.
|
||||
|
||||
.. warning::
|
||||
Statically-sized memory arrays do not have a length field, but it will be added soon
|
||||
to allow better convertibility between statically- and dynamically-sized arrays, so
|
||||
please do not rely on that.
|
||||
|
||||
|
||||
Standalone Assembly
|
||||
===================
|
||||
|
||||
The assembly language described as inline assembly above can also be used
|
||||
standalone and in fact, the plan is to use it as an intermediate language
|
||||
for the Solidity compiler. In this form, it tries to achieve several goals:
|
||||
|
||||
1. Programs written in it should be readable, even if the code is generated by a compiler from Solidity.
|
||||
2. The translation from assembly to bytecode should contain as few "surprises" as possible.
|
||||
3. Control flow should be easy to detect to help in formal verification and optimization.
|
||||
|
||||
In order to achieve the first and last goal, assembly provides high-level constructs
|
||||
like ``for`` loops, ``switch`` statements and function calls. It should be possible
|
||||
to write assembly programs that do not make use of explicit ``SWAP``, ``DUP``,
|
||||
``JUMP`` and ``JUMPI`` statements, because the first two obfuscate the data flow
|
||||
and the last two obfuscate control flow. Furthermore, functional statements of
|
||||
the form ``mul(add(x, y), 7)`` are preferred over pure opcode statements like
|
||||
``7 y x add mul`` because in the first form, it is much easier to see which
|
||||
operand is used for which opcode.
|
||||
|
||||
The second goal is achieved by introducing a desugaring phase that only removes
|
||||
the higher level constructs in a very regular way and still allows inspecting
|
||||
the generated low-level assembly code. The only non-local operation performed
|
||||
by the assembler is name lookup of user-defined identifiers (functions, variables, ...),
|
||||
which follow very simple and regular scoping rules and cleanup of local variables from the stack.
|
||||
|
||||
Scoping: An identifier that is declared (label, variable, function, assembly)
|
||||
is only visible in the block where it was declared (including nested blocks
|
||||
inside the current block). It is not legal to access local variables across
|
||||
function borders, even if they would be in scope. Shadowing is allowed, but
|
||||
two identifiers with the same name cannot be declared in the same block.
|
||||
Local variables cannot be accessed before they were declared, but labels,
|
||||
functions and assemblies can. Assemblies are special blocks that are used
|
||||
for e.g. returning runtime code or creating contracts. No identifier from an
|
||||
outer assembly is visible in a sub-assembly.
|
||||
|
||||
If control flow passes over the end of a block, pop instructions are inserted
|
||||
that match the number of local variables declared in that block, unless the
|
||||
``}`` is directly preceded by an opcode that does not have a continuing control
|
||||
flow path. Whenever a local variable is referenced, the code generator needs
|
||||
to know its current relative position in the stack and thus it needs to
|
||||
keep track of the current so-called stack height.
|
||||
At the end of a block, this implicit stack height is always reduced by the number
|
||||
of local variables whether ther is a continuing control flow or not.
|
||||
|
||||
This means that the stack height before and after the block should be the same.
|
||||
If this is not the case, a warning is issued,
|
||||
unless the last instruction in the block did not have a continuing control flow path.
|
||||
|
||||
Why do we use higher-level constructs like ``switch``, ``for`` and functions:
|
||||
|
||||
Using ``switch``, ``for`` and functions, it should be possible to write
|
||||
complex code without using ``jump`` or ``jumpi`` manually. This makes it much
|
||||
easier to analyze the control flow, which allows for improved formal
|
||||
verification and optimization.
|
||||
|
||||
Furthermore, if manual jumps are allowed, computing the stack height is rather complicated.
|
||||
The position of all local variables on the stack needs to be known, otherwise
|
||||
neither references to local variables nor removing local variables automatically
|
||||
from the stack at the end of a block will work properly. Because of that,
|
||||
every label that is preceded by an instruction that ends or diverts control flow
|
||||
should be annotated with the current stack layout. This annotation is performed
|
||||
automatically during the desugaring phase.
|
||||
|
||||
Example:
|
||||
|
||||
We will follow an example compilation from Solidity to desugared assembly.
|
||||
We consider the runtime bytecode of the following Solidity program::
|
||||
|
||||
contract C {
|
||||
function f(uint x) returns (uint y) {
|
||||
y = 1;
|
||||
for (uint i = 0; i < x; i++)
|
||||
y = 2 * y;
|
||||
}
|
||||
}
|
||||
|
||||
The following assembly will be generated::
|
||||
|
||||
{
|
||||
mstore(0x40, 0x60) // store the "free memory pointer"
|
||||
// function dispatcher
|
||||
switch div(calldataload(0), exp(2, 226))
|
||||
case 0xb3de648b: {
|
||||
let (r) = f(calldataload(4))
|
||||
let ret := $allocate(0x20)
|
||||
mstore(ret, r)
|
||||
return(ret, 0x20)
|
||||
}
|
||||
default: { jump(invalidJumpLabel) }
|
||||
// memory allocator
|
||||
function $allocate(size) -> (pos) {
|
||||
pos := mload(0x40)
|
||||
mstore(0x40, add(pos, size))
|
||||
}
|
||||
// the contract function
|
||||
function f(x) -> (y) {
|
||||
y := 1
|
||||
for { let i := 0 } lt(i, x) { i := add(i, 1) } {
|
||||
y := mul(2, y)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
After the desugaring phase it looks as follows::
|
||||
|
||||
{
|
||||
mstore(0x40, 0x60)
|
||||
{
|
||||
let $0 := div(calldataload(0), exp(2, 226))
|
||||
jumpi($case1, eq($0, 0xb3de648b))
|
||||
jump($caseDefault)
|
||||
$case1:
|
||||
{
|
||||
// the function call - we put return label and arguments on the stack
|
||||
$ret1 calldataload(4) jump($fun_f)
|
||||
$ret1 [r]: // a label with a [...]-annotation resets the stack height
|
||||
// to "current block + number of local variables". It also
|
||||
// introduces a variable, r:
|
||||
// r is at top of stack, $0 is below (from enclosing block)
|
||||
$ret2 0x20 jump($fun_allocate)
|
||||
$ret2 [ret]: // stack here: $0, r, ret (top)
|
||||
mstore(ret, r)
|
||||
return(ret, 0x20)
|
||||
// although it is useless, the jump is automatically inserted,
|
||||
// since the desugaring process does not analyze control-flow
|
||||
jump($endswitch)
|
||||
}
|
||||
$caseDefault:
|
||||
{
|
||||
jump(invalidJumpLabel)
|
||||
jump($endswitch)
|
||||
}
|
||||
$endswitch:
|
||||
}
|
||||
jump($afterFunction)
|
||||
$fun_allocate:
|
||||
{
|
||||
$start[$retpos, size]:
|
||||
// output variables live in the same scope as the arguments.
|
||||
let pos := 0
|
||||
{
|
||||
pos := mload(0x40)
|
||||
mstore(0x40, add(pos, size))
|
||||
}
|
||||
swap1 pop swap1 jump
|
||||
}
|
||||
$fun_f:
|
||||
{
|
||||
start [$retpos, x]:
|
||||
let y := 0
|
||||
{
|
||||
let i := 0
|
||||
$for_begin:
|
||||
jumpi($for_end, iszero(lt(i, x)))
|
||||
{
|
||||
y := mul(2, y)
|
||||
}
|
||||
$for_continue:
|
||||
{ i := add(i, 1) }
|
||||
jump($for_begin)
|
||||
$for_end:
|
||||
} // Here, a pop instruction is inserted for i
|
||||
swap1 pop swap1 jump
|
||||
}
|
||||
$afterFunction:
|
||||
stop
|
||||
}
|
||||
|
||||
|
||||
Assembly happens in four stages:
|
||||
|
||||
1. Parsing
|
||||
2. Desugaring (removes switch, for and functions)
|
||||
3. Opcode stream generation
|
||||
4. Bytecode generation
|
||||
|
||||
We will specify steps one to three in a pseudo-formal way. More formal
|
||||
specifications will follow.
|
||||
|
||||
|
||||
Parsing / Grammar
|
||||
-----------------
|
||||
|
||||
The tasks of the parser are the following:
|
||||
|
||||
- Turn the byte stream into a token stream, discarding C++-style comments
|
||||
(a special comment exists for source references, but we will not explain it here).
|
||||
- Turn the token stream into an AST according to the grammar below
|
||||
- Register identifiers with the block they are defined in (annotation to the
|
||||
AST node) and note from which point on, variables can be accessed.
|
||||
|
||||
The assembly lexer follows the one defined by Solidity itself.
|
||||
|
||||
Whitespace is used to delimit tokens and it consists of the characters
|
||||
Space, Tab and Linefeed. Comments are regular JavaScript/C++ comments and
|
||||
are interpreted in the same way as Whitespace.
|
||||
|
||||
Grammar::
|
||||
|
||||
AssemblyBlock = '{' AssemblyItem* '}'
|
||||
AssemblyItem =
|
||||
Identifier |
|
||||
AssemblyBlock |
|
||||
FunctionalAssemblyExpression |
|
||||
AssemblyLocalDefinition |
|
||||
FunctionalAssemblyAssignment |
|
||||
AssemblyAssignment |
|
||||
LabelDefinition |
|
||||
AssemblySwitch |
|
||||
AssemblyFunctionDefinition |
|
||||
AssemblyFor |
|
||||
'break' | 'continue' |
|
||||
SubAssembly | 'dataSize' '(' Identifier ')' |
|
||||
LinkerSymbol |
|
||||
'errorLabel' | 'bytecodeSize' |
|
||||
NumberLiteral | StringLiteral | HexLiteral
|
||||
Identifier = [a-zA-Z_$] [a-zA-Z_0-9]*
|
||||
FunctionalAssemblyExpression = Identifier '(' ( AssemblyItem ( ',' AssemblyItem )* )? ')'
|
||||
AssemblyLocalDefinition = 'let' IdentifierOrList ':=' FunctionalAssemblyExpression
|
||||
FunctionalAssemblyAssignment = IdentifierOrList ':=' FunctionalAssemblyExpression
|
||||
IdentifierOrList = Identifier | '(' IdentifierList ')'
|
||||
IdentifierList = Identifier ( ',' Identifier)*
|
||||
AssemblyAssignment = '=:' Identifier
|
||||
LabelDefinition = Identifier ( '[' ( IdentifierList | NumberLiteral ) ']' )? ':'
|
||||
AssemblySwitch = 'switch' FunctionalAssemblyExpression AssemblyCase*
|
||||
( 'default' ':' AssemblyBlock )?
|
||||
AssemblyCase = 'case' FunctionalAssemblyExpression ':' AssemblyBlock
|
||||
AssemblyFunctionDefinition = 'function' Identifier '(' IdentifierList? ')'
|
||||
( '->' '(' IdentifierList ')' )? AssemblyBlock
|
||||
AssemblyFor = 'for' ( AssemblyBlock | FunctionalAssemblyExpression)
|
||||
FunctionalAssemblyExpression ( AssemblyBlock | FunctionalAssemblyExpression) AssemblyBlock
|
||||
SubAssembly = 'assembly' Identifier AssemblyBlock
|
||||
LinkerSymbol = 'linkerSymbol' '(' StringLiteral ')'
|
||||
NumberLiteral = HexNumber | DecimalNumber
|
||||
HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
|
||||
StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
|
||||
HexNumber = '0x' [0-9a-fA-F]+
|
||||
DecimalNumber = [0-9]+
|
||||
|
||||
|
||||
Desugaring
|
||||
----------
|
||||
|
||||
An AST transformation removes for, switch and function constructs. The result
|
||||
is still parseable by the same parser, but it will not use certain constructs.
|
||||
If jumpdests are added that are only jumped to and not continued at, information
|
||||
about the stack content is added, unless no local variables of outer scopes are
|
||||
accessed or the stack height is the same as for the previous instruction.
|
||||
|
||||
Pseudocode::
|
||||
|
||||
desugar item: AST -> AST =
|
||||
match item {
|
||||
AssemblyFunctionDefinition('function' name '(' arg1, ..., argn ')' '->' ( '(' ret1, ..., retm ')' body) ->
|
||||
<name>:
|
||||
{
|
||||
$<name>_start [$retPC, $argn, ..., arg1]:
|
||||
let ret1 := 0 ... let retm := 0
|
||||
{ desugar(body) }
|
||||
swap and pop items so that only ret1, ... retn, $retPC are left on the stack
|
||||
jump
|
||||
}
|
||||
AssemblyFor('for' { init } condition post body) ->
|
||||
{
|
||||
init // cannot be its own block because we want variable scope to extend into the body
|
||||
// find I such that there are no labels $forI_*
|
||||
$forI_begin:
|
||||
jumpi($forI_end, iszero(condition))
|
||||
{ body }
|
||||
$forI_continue:
|
||||
{ post }
|
||||
jump($forI_begin)
|
||||
$forI_end:
|
||||
}
|
||||
'break' ->
|
||||
{
|
||||
// find nearest enclosing scope with label $forI_end
|
||||
pop all local variables that are defined at the current point
|
||||
but not at $forI_end
|
||||
jump($forI_end)
|
||||
}
|
||||
'continue' ->
|
||||
{
|
||||
// find nearest enclosing scope with label $forI_continue
|
||||
pop all local variables that are defined at the current point
|
||||
but not at $forI_continue
|
||||
jump($forI_continue)
|
||||
}
|
||||
AssemblySwitch(switch condition cases ( default: defaultBlock )? ) ->
|
||||
{
|
||||
// find I such that there is no $switchI* label or variable
|
||||
let $switchI_value := condition
|
||||
for each of cases match {
|
||||
case val: -> jumpi($switchI_caseJ, eq($switchI_value, val))
|
||||
}
|
||||
if default block present: ->
|
||||
{ defaultBlock jump($switchI_end) }
|
||||
for each of cases match {
|
||||
case val: { body } -> $switchI_caseJ: { body jump($switchI_end) }
|
||||
}
|
||||
$switchI_end:
|
||||
}
|
||||
FunctionalAssemblyExpression( identifier(arg1, arg2, ..., argn) ) ->
|
||||
{
|
||||
if identifier is function <name> with n args and m ret values ->
|
||||
{
|
||||
// find I such that $funcallI_* does not exist
|
||||
$funcallI_return argn ... arg2 arg1 jump(<name>)
|
||||
if the current context is `let (id1, ..., idm) := f(...)` ->
|
||||
$funcallI_return [id1, ..., idm]:
|
||||
else ->
|
||||
$funcallI_return[m - n - 1]:
|
||||
turn the functional expression that leads to the function call
|
||||
into a statement stream
|
||||
}
|
||||
else -> desugar(children of node)
|
||||
}
|
||||
default node ->
|
||||
desugar(children of node)
|
||||
}
|
||||
|
||||
Opcode Stream Generation
|
||||
------------------------
|
||||
|
||||
During opcode stream generation, we keep track of the current stack height,
|
||||
so that accessing stack variables by name is possible.
|
||||
|
||||
Pseudocode::
|
||||
|
||||
codegen item: AST -> opcode_stream =
|
||||
match item {
|
||||
AssemblyBlock({ items }) ->
|
||||
join(codegen(item) for item in items)
|
||||
if last generated opcode has continuing control flow:
|
||||
POP for all local variables registered at the block (including variables
|
||||
introduced by labels)
|
||||
warn if the stack height at this point is not the same as at the start of the block
|
||||
Identifier(id) ->
|
||||
lookup id in the syntactic stack of blocks
|
||||
match type of id
|
||||
Local Variable ->
|
||||
DUPi where i = 1 + stack_height - stack_height_of_identifier(id)
|
||||
Label ->
|
||||
// reference to be resolved during bytecode generation
|
||||
PUSH<bytecode position of label>
|
||||
SubAssembly ->
|
||||
PUSH<bytecode position of subassembly data>
|
||||
FunctionalAssemblyExpression(id ( arguments ) ) ->
|
||||
join(codegen(arg) for arg in arguments.reversed())
|
||||
id (which has to be an opcode, might be a function name later)
|
||||
AssemblyLocalDefinition(let (id1, ..., idn) := expr) ->
|
||||
register identifiers id1, ..., idn as locals in current block at current stack height
|
||||
codegen(expr) - assert that expr returns n items to the stack
|
||||
FunctionalAssemblyAssignment((id1, ..., idn) := expr) ->
|
||||
lookup id1, ..., idn in the syntactic stack of blocks, assert that they are variables
|
||||
codegen(expr)
|
||||
for j = n, ..., i:
|
||||
SWAPi where i = 1 + stack_height - stack_height_of_identifier(idj)
|
||||
POP
|
||||
AssemblyAssignment(=: id) ->
|
||||
look up id in the syntactic stack of blocks, assert that it is a variable
|
||||
SWAPi where i = 1 + stack_height - stack_height_of_identifier(id)
|
||||
POP
|
||||
LabelDefinition(name [id1, ..., idn] :) ->
|
||||
JUMPDEST
|
||||
// register new variables id1, ..., idn and set the stack height to
|
||||
// stack_height_at_block_start + number_of_local_variables
|
||||
LabelDefinition(name [number] :) ->
|
||||
JUMPDEST
|
||||
// adjust stack height by +number (can be negative)
|
||||
NumberLiteral(num) ->
|
||||
PUSH<num interpreted as decimal and right-aligned>
|
||||
HexLiteral(lit) ->
|
||||
PUSH32<lit interpreted as hex and left-aligned>
|
||||
StringLiteral(lit) ->
|
||||
PUSH32<lit utf-8 encoded and left-aligned>
|
||||
SubAssembly(assembly <name> block) ->
|
||||
append codegen(block) at the end of the code
|
||||
dataSize(<name>) ->
|
||||
assert that <name> is a subassembly ->
|
||||
PUSH32<size of code generated from subassembly <name>>
|
||||
linkerSymbol(<lit>) ->
|
||||
PUSH32<zeros> and append position to linker table
|
||||
}
|
@ -56,9 +56,9 @@ copyright = '2016, Ethereum'
|
||||
# built documents.
|
||||
#
|
||||
# The short X.Y version.
|
||||
version = '0.4.7'
|
||||
version = '0.4.8'
|
||||
# The full version, including alpha/beta/rc tags.
|
||||
release = '0.4.7-develop'
|
||||
release = '0.4.8-develop'
|
||||
|
||||
# The language for content autogenerated by Sphinx. Refer to documentation
|
||||
# for a list of supported languages.
|
||||
|
@ -877,6 +877,13 @@ cannot be resolved.
|
||||
A simple rule to remember is to specify the base classes in
|
||||
the order from "most base-like" to "most derived".
|
||||
|
||||
Inheriting Different Kinds of Members of the Same Name
|
||||
======================================================
|
||||
|
||||
When the inheritance results in a contract with a function and a modifier of the same name, it is considered as an error.
|
||||
This error is produced also by an event and a modifier of the same name, and a function and an event of the same name.
|
||||
As an exception, a state variable accessor can override a public function.
|
||||
|
||||
.. index:: ! contract;abstract, ! abstract contract
|
||||
|
||||
******************
|
||||
|
@ -207,8 +207,8 @@ Creating Contracts via ``new``
|
||||
==============================
|
||||
|
||||
A contract can create a new contract using the ``new`` keyword. The full
|
||||
code of the contract being created has to be known and, thus, recursive
|
||||
creation-dependencies are now possible.
|
||||
code of the contract being created has to be known in advance, so recursive
|
||||
creation-dependencies are not possible.
|
||||
|
||||
::
|
||||
|
||||
|
@ -14,7 +14,7 @@ ContractDefinition = ( 'contract' | 'library' ) Identifier
|
||||
ContractPart = StateVariableDeclaration | UsingForDeclaration
|
||||
| StructDefinition | ModifierDefinition | FunctionDefinition | EventDefinition | EnumDefinition
|
||||
|
||||
InheritanceSpecifier = Identifier ( '(' Expression ( ',' Expression )* ')' )?
|
||||
InheritanceSpecifier = UserDefinedTypeName ( '(' Expression ( ',' Expression )* ')' )?
|
||||
|
||||
StateVariableDeclaration = TypeName ( 'public' | 'internal' | 'private' )? Identifier ('=' Expression)? ';'
|
||||
UsingForDeclaration = 'using' Identifier 'for' ('*' | TypeName) ';'
|
||||
@ -23,7 +23,7 @@ StructDefinition = 'struct' Identifier '{'
|
||||
ModifierDefinition = 'modifier' Identifier ParameterList? Block
|
||||
FunctionDefinition = 'function' Identifier? ParameterList
|
||||
( FunctionCall | Identifier | 'constant' | 'payable' | 'external' | 'public' | 'internal' | 'private' )*
|
||||
( 'returns' ParameterList )? Block
|
||||
( 'returns' ParameterList )? ( ';' | Block )
|
||||
EventDefinition = 'event' Identifier IndexedParameterList 'anonymous'? ';'
|
||||
|
||||
EnumValue = Identifier
|
||||
@ -35,10 +35,18 @@ TypeNameList = '(' ( TypeName (',' TypeName )* )? ')'
|
||||
|
||||
// semantic restriction: mappings and structs (recursively) containing mappings
|
||||
// are not allowed in argument lists
|
||||
VariableDeclaration = TypeName Identifier
|
||||
TypeName = ElementaryTypeName | Identifier StorageLocation? | Mapping | ArrayTypeName | FunctionTypeName
|
||||
VariableDeclaration = TypeName StorageLocation? Identifier
|
||||
|
||||
TypeName = ElementaryTypeName
|
||||
| UserDefinedTypeName
|
||||
| Mapping
|
||||
| ArrayTypeName
|
||||
| FunctionTypeName
|
||||
|
||||
UserDefinedTypeName = Identifier ( '.' Identifier )*
|
||||
|
||||
Mapping = 'mapping' '(' ElementaryTypeName '=>' TypeName ')'
|
||||
ArrayTypeName = TypeName StorageLocation? '[' Expression? ']'
|
||||
ArrayTypeName = TypeName '[' Expression? ']'
|
||||
FunctionTypeName = 'function' TypeNameList ( 'internal' | 'external' | 'constant' | 'payable' )*
|
||||
( 'returns' TypeNameList )?
|
||||
StorageLocation = 'memory' | 'storage'
|
||||
@ -69,7 +77,7 @@ Expression =
|
||||
| Expression '**' Expression
|
||||
| Expression ('*' | '/' | '%') Expression
|
||||
| Expression ('+' | '-') Expression
|
||||
| Expression ('<<' | '>>')
|
||||
| Expression ('<<' | '>>') Expression
|
||||
| Expression '&' Expression
|
||||
| Expression '^' Expression
|
||||
| Expression '|' Expression
|
||||
@ -82,21 +90,37 @@ Expression =
|
||||
| Expression? (',' Expression)
|
||||
| PrimaryExpression
|
||||
|
||||
PrimaryExpression = Identifier | BooleanLiteral | NumberLiteral | HexLiteral | StringLiteral
|
||||
PrimaryExpression = Identifier
|
||||
| BooleanLiteral
|
||||
| NumberLiteral
|
||||
| HexLiteral
|
||||
| StringLiteral
|
||||
| ElementaryTypeNameExpression
|
||||
|
||||
FunctionCall = ( PrimaryExpression | NewExpression | TypeName ) ( ( '.' Identifier ) | ( '[' Expression ']' ) )* '(' Expression? ( ',' Expression )* ')'
|
||||
NewExpression = 'new' Identifier
|
||||
ExpressionList = Expression ( ',' Expression )*
|
||||
NameValueList = Identifier ':' Expression ( ',' Identifier ':' Expression )*
|
||||
|
||||
FunctionCall = ( PrimaryExpression | NewExpression | TypeName ) ( ( '.' Identifier ) | ( '[' Expression ']' ) )* '(' FunctionCallArguments ')'
|
||||
FunctionCallArguments = '{' NameValueList? '}'
|
||||
| ExpressionList?
|
||||
|
||||
NewExpression = 'new' TypeName
|
||||
MemberAccess = Expression '.' Identifier
|
||||
IndexAccess = Expression '[' Expression? ']'
|
||||
|
||||
BooleanLiteral = 'true' | 'false'
|
||||
NumberLiteral = '0x'? [0-9]+ (' ' NumberUnit)?
|
||||
NumberLiteral = ( HexNumber | DecimalNumber ) (' ' NumberUnit)?
|
||||
NumberUnit = 'wei' | 'szabo' | 'finney' | 'ether'
|
||||
| 'seconds' | 'minutes' | 'hours' | 'days' | 'weeks' | 'years'
|
||||
HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
|
||||
StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
|
||||
Identifier = [a-zA-Z_] [a-zA-Z_0-9]*
|
||||
|
||||
HexNumber = '0x' [0-9a-fA-F]+
|
||||
DecimalNumber = [0-9]+
|
||||
|
||||
ElementaryTypeNameExpression = ElementaryTypeName
|
||||
|
||||
ElementaryTypeName = 'address' | 'bool' | 'string' | 'var'
|
||||
| Int | Uint | Byte | Fixed | Ufixed
|
||||
|
||||
|
@ -87,6 +87,15 @@ Solidity Tools
|
||||
* `evmdis <https://github.com/Arachnid/evmdis>`_
|
||||
EVM Disassembler that performs static analysis on the bytecode to provide a higher level of abstraction than raw EVM operations.
|
||||
|
||||
Third-Party Solidity Parsers and Grammars
|
||||
-----------------------------------------
|
||||
|
||||
* `solidity-parser <https://github.com/ConsenSys/solidity-parser>`_
|
||||
Solidity parser for JavaScript
|
||||
|
||||
* `Solidity Grammar for ANTLR 4 <https://github.com/federicobond/solidity-antlr4>`_
|
||||
Solidity grammar for the ANTLR 4 parser generator
|
||||
|
||||
Language Documentation
|
||||
----------------------
|
||||
|
||||
|
@ -283,8 +283,8 @@ determined at the time the contract is created
|
||||
(it is derived from the creator address and the number
|
||||
of transactions sent from that address, the so-called "nonce").
|
||||
|
||||
Apart from the fact whether an account stores code or not,
|
||||
the EVM treats the two types equally, though.
|
||||
Regardless of whether or not the account stores code, the two types are
|
||||
treated equally by the EVM.
|
||||
|
||||
Every account has a persistent key-value store mapping 256-bit words to 256-bit
|
||||
words called **storage**.
|
||||
|
@ -79,8 +79,9 @@ Paths
|
||||
-----
|
||||
|
||||
In the above, ``filename`` is always treated as a path with ``/`` as directory separator,
|
||||
``.`` as the current and ``..`` as the parent directory. Path names that do not start
|
||||
with ``.`` are treated as absolute paths.
|
||||
``.`` as the current and ``..`` as the parent directory. When ``.`` or ``..`` is followed by a character except ``/``,
|
||||
it is not considered as the current or the parent directory.
|
||||
All path names are treated as absolute paths unless they start with the current ``.`` or the parent directory ``..``.
|
||||
|
||||
To import a file ``x`` from the same directory as the current file, use ``import "./x" as x;``.
|
||||
If you use ``import "x" as x;`` instead, a different file could be referenced
|
||||
@ -96,8 +97,8 @@ Use in Actual Compilers
|
||||
When the compiler is invoked, it is not only possible to specify how to
|
||||
discover the first element of a path, but it is possible to specify path prefix
|
||||
remappings so that e.g. ``github.com/ethereum/dapp-bin/library`` is remapped to
|
||||
``/usr/local/dapp-bin/library`` and the compiler will read the files from there. If
|
||||
remapping keys are prefixes of each other, the longest is tried first. This
|
||||
``/usr/local/dapp-bin/library`` and the compiler will read the files from there.
|
||||
If multiple remappings can be applied, the one with the longest key is tried first. This
|
||||
allows for a "fallback-remapping" with e.g. ``""`` maps to
|
||||
``"/usr/local/include/solidity"``. Furthermore, these remappings can
|
||||
depend on the context, which allows you to configure packages to
|
||||
|
@ -570,3 +570,4 @@ Language Grammar
|
||||
================
|
||||
|
||||
.. literalinclude:: grammar.txt
|
||||
:language: none
|
||||
|
@ -16,4 +16,5 @@ If something is missing here, please contact us on
|
||||
units-and-global-variables.rst
|
||||
control-structures.rst
|
||||
contracts.rst
|
||||
assembly.rst
|
||||
miscellaneous.rst
|
||||
|
@ -765,7 +765,7 @@ assigning it to a local variable, as in
|
||||
Mappings
|
||||
========
|
||||
|
||||
Mapping types are declared as ``mapping _KeyType => _ValueType``.
|
||||
Mapping types are declared as ``mapping(_KeyType => _ValueType)``.
|
||||
Here ``_KeyType`` can be almost any type except for a mapping, a dynamically sized array, a contract, an enum and a struct.
|
||||
``_ValueType`` can actually be any type, including mappings.
|
||||
|
||||
|
@ -73,27 +73,19 @@ inline bool assertEqualAux(A const& _a, B const& _b, char const* _aStr, char con
|
||||
/// Use it as assertThrow(1 == 1, ExceptionType, "Mathematics is wrong.");
|
||||
/// Do NOT supply an exception object as the second parameter.
|
||||
#define assertThrow(_condition, _ExceptionType, _description) \
|
||||
::dev::assertThrowAux<_ExceptionType>(!!(_condition), _description, __LINE__, __FILE__, ETH_FUNC)
|
||||
do \
|
||||
{ \
|
||||
if (!(_condition)) \
|
||||
::boost::throw_exception( \
|
||||
_ExceptionType() << \
|
||||
::dev::errinfo_comment(_description) << \
|
||||
::boost::throw_function(ETH_FUNC) << \
|
||||
::boost::throw_file(__FILE__) << \
|
||||
::boost::throw_line(__LINE__) \
|
||||
); \
|
||||
} \
|
||||
while (false)
|
||||
|
||||
using errinfo_comment = boost::error_info<struct tag_comment, std::string>;
|
||||
|
||||
template <class _ExceptionType>
|
||||
inline void assertThrowAux(
|
||||
bool _condition,
|
||||
::std::string const& _errorDescription,
|
||||
unsigned _line,
|
||||
char const* _file,
|
||||
char const* _function
|
||||
)
|
||||
{
|
||||
if (!_condition)
|
||||
::boost::throw_exception(
|
||||
_ExceptionType() <<
|
||||
::dev::errinfo_comment(_errorDescription) <<
|
||||
::boost::throw_function(_function) <<
|
||||
::boost::throw_file(_file) <<
|
||||
::boost::throw_line(_line)
|
||||
);
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -117,69 +117,36 @@ string Assembly::locationFromSources(StringMap const& _sourceCodes, SourceLocati
|
||||
|
||||
ostream& Assembly::streamAsm(ostream& _out, string const& _prefix, StringMap const& _sourceCodes) const
|
||||
{
|
||||
_out << _prefix << ".code:" << endl;
|
||||
for (AssemblyItem const& i: m_items)
|
||||
for (size_t i = 0; i < m_items.size(); ++i)
|
||||
{
|
||||
_out << _prefix;
|
||||
switch (i.type())
|
||||
AssemblyItem const& item = m_items[i];
|
||||
if (!item.location().isEmpty() && (i == 0 || m_items[i - 1].location() != item.location()))
|
||||
{
|
||||
case Operation:
|
||||
_out << " " << instructionInfo(i.instruction()).name << "\t" << i.getJumpTypeAsString();
|
||||
break;
|
||||
case Push:
|
||||
_out << " PUSH" << dec << max<unsigned>(1, dev::bytesRequired(i.data())) << " 0x" << hex << i.data();
|
||||
break;
|
||||
case PushString:
|
||||
_out << " PUSH \"" << m_strings.at((h256)i.data()) << "\"";
|
||||
break;
|
||||
case PushTag:
|
||||
if (i.data() == 0)
|
||||
_out << " PUSH [ErrorTag]";
|
||||
else
|
||||
{
|
||||
size_t subId = i.splitForeignPushTag().first;
|
||||
if (subId == size_t(-1))
|
||||
_out << " PUSH [tag" << dec << i.splitForeignPushTag().second << "]";
|
||||
else
|
||||
_out << " PUSH [tag" << dec << subId << ":" << i.splitForeignPushTag().second << "]";
|
||||
}
|
||||
break;
|
||||
case PushSub:
|
||||
_out << " PUSH [$" << size_t(i.data()) << "]";
|
||||
break;
|
||||
case PushSubSize:
|
||||
_out << " PUSH #[$" << size_t(i.data()) << "]";
|
||||
break;
|
||||
case PushProgramSize:
|
||||
_out << " PUSHSIZE";
|
||||
break;
|
||||
case PushLibraryAddress:
|
||||
_out << " PUSHLIB \"" << m_libraries.at(h256(i.data())) << "\"";
|
||||
break;
|
||||
case Tag:
|
||||
_out << "tag" << dec << i.data() << ": " << endl << _prefix << " JUMPDEST";
|
||||
break;
|
||||
case PushData:
|
||||
_out << " PUSH [" << hex << (unsigned)i.data() << "]";
|
||||
break;
|
||||
default:
|
||||
BOOST_THROW_EXCEPTION(InvalidOpcode());
|
||||
_out << _prefix << " /*";
|
||||
if (item.location().sourceName)
|
||||
_out << " \"" + *item.location().sourceName + "\"";
|
||||
if (!item.location().isEmpty())
|
||||
_out << ":" << to_string(item.location().start) + ":" + to_string(item.location().end);
|
||||
_out << " */" << endl;
|
||||
}
|
||||
_out << "\t\t" << locationFromSources(_sourceCodes, i.location()) << endl;
|
||||
_out << _prefix << (item.type() == Tag ? "" : " ") << item.toAssemblyText() << endl;
|
||||
}
|
||||
|
||||
if (!m_data.empty() || !m_subs.empty())
|
||||
{
|
||||
_out << _prefix << ".data:" << endl;
|
||||
_out << _prefix << "stop" << endl;
|
||||
Json::Value data;
|
||||
for (auto const& i: m_data)
|
||||
if (u256(i.first) >= m_subs.size())
|
||||
_out << _prefix << " " << hex << (unsigned)(u256)i.first << ": " << dev::toHex(i.second) << endl;
|
||||
assertThrow(u256(i.first) < m_subs.size(), AssemblyException, "Data not yet implemented.");
|
||||
|
||||
for (size_t i = 0; i < m_subs.size(); ++i)
|
||||
{
|
||||
_out << _prefix << " " << hex << i << ": " << endl;
|
||||
m_subs[i]->stream(_out, _prefix + " ", _sourceCodes);
|
||||
_out << endl << _prefix << "sub_" << i << ": assembly {\n";
|
||||
m_subs[i]->streamAsm(_out, _prefix + " ", _sourceCodes);
|
||||
_out << _prefix << "}" << endl;
|
||||
}
|
||||
}
|
||||
|
||||
return _out;
|
||||
}
|
||||
|
||||
@ -449,7 +416,7 @@ LinkerObject const& Assembly::assemble() const
|
||||
switch (i.type())
|
||||
{
|
||||
case Operation:
|
||||
ret.bytecode.push_back((byte)i.data());
|
||||
ret.bytecode.push_back((byte)i.instruction());
|
||||
break;
|
||||
case PushString:
|
||||
{
|
||||
|
@ -20,6 +20,7 @@
|
||||
*/
|
||||
|
||||
#include "AssemblyItem.h"
|
||||
#include <libevmasm/SemanticInformation.h>
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
@ -28,19 +29,19 @@ using namespace dev::eth;
|
||||
|
||||
AssemblyItem AssemblyItem::toSubAssemblyTag(size_t _subId) const
|
||||
{
|
||||
assertThrow(m_data < (u256(1) << 64), Exception, "Tag already has subassembly set.");
|
||||
assertThrow(data() < (u256(1) << 64), Exception, "Tag already has subassembly set.");
|
||||
|
||||
assertThrow(m_type == PushTag || m_type == Tag, Exception, "");
|
||||
AssemblyItem r = *this;
|
||||
r.m_type = PushTag;
|
||||
r.setPushTagSubIdAndTag(_subId, size_t(m_data));
|
||||
r.setPushTagSubIdAndTag(_subId, size_t(data()));
|
||||
return r;
|
||||
}
|
||||
|
||||
pair<size_t, size_t> AssemblyItem::splitForeignPushTag() const
|
||||
{
|
||||
assertThrow(m_type == PushTag || m_type == Tag, Exception, "");
|
||||
return make_pair(size_t(m_data / (u256(1) << 64)) - 1, size_t(m_data));
|
||||
return make_pair(size_t((data()) / (u256(1) << 64)) - 1, size_t(data()));
|
||||
}
|
||||
|
||||
void AssemblyItem::setPushTagSubIdAndTag(size_t _subId, size_t _tag)
|
||||
@ -59,7 +60,7 @@ unsigned AssemblyItem::bytesRequired(unsigned _addressLength) const
|
||||
case PushString:
|
||||
return 33;
|
||||
case Push:
|
||||
return 1 + max<unsigned>(1, dev::bytesRequired(m_data));
|
||||
return 1 + max<unsigned>(1, dev::bytesRequired(data()));
|
||||
case PushSubSize:
|
||||
case PushProgramSize:
|
||||
return 4; // worst case: a 16MB program
|
||||
@ -97,6 +98,28 @@ int AssemblyItem::deposit() const
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool AssemblyItem::canBeFunctional() const
|
||||
{
|
||||
switch (m_type)
|
||||
{
|
||||
case Operation:
|
||||
return !SemanticInformation::isDupInstruction(*this) && !SemanticInformation::isSwapInstruction(*this);
|
||||
case Push:
|
||||
case PushString:
|
||||
case PushTag:
|
||||
case PushData:
|
||||
case PushSub:
|
||||
case PushSubSize:
|
||||
case PushProgramSize:
|
||||
case PushLibraryAddress:
|
||||
return true;
|
||||
case Tag:
|
||||
return false;
|
||||
default:;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
string AssemblyItem::getJumpTypeAsString() const
|
||||
{
|
||||
switch (m_jumpType)
|
||||
@ -111,6 +134,65 @@ string AssemblyItem::getJumpTypeAsString() const
|
||||
}
|
||||
}
|
||||
|
||||
string AssemblyItem::toAssemblyText() const
|
||||
{
|
||||
string text;
|
||||
switch (type())
|
||||
{
|
||||
case Operation:
|
||||
{
|
||||
assertThrow(isValidInstruction(instruction()), AssemblyException, "Invalid instruction.");
|
||||
string name = instructionInfo(instruction()).name;
|
||||
transform(name.begin(), name.end(), name.begin(), [](unsigned char _c) { return tolower(_c); });
|
||||
text = name;
|
||||
break;
|
||||
}
|
||||
case Push:
|
||||
text = toHex(toCompactBigEndian(data(), 1), 1, HexPrefix::Add);
|
||||
break;
|
||||
case PushString:
|
||||
assertThrow(false, AssemblyException, "Push string assembly output not implemented.");
|
||||
break;
|
||||
case PushTag:
|
||||
assertThrow(data() < 0x10000, AssemblyException, "Sub-assembly tags not yet implemented.");
|
||||
text = string("tag_") + to_string(size_t(data()));
|
||||
break;
|
||||
case Tag:
|
||||
assertThrow(data() < 0x10000, AssemblyException, "Sub-assembly tags not yet implemented.");
|
||||
text = string("tag_") + to_string(size_t(data())) + ":";
|
||||
break;
|
||||
case PushData:
|
||||
assertThrow(false, AssemblyException, "Push data not implemented.");
|
||||
break;
|
||||
case PushSub:
|
||||
text = string("dataOffset(sub_") + to_string(size_t(data())) + ")";
|
||||
break;
|
||||
case PushSubSize:
|
||||
text = string("dataSize(sub_") + to_string(size_t(data())) + ")";
|
||||
break;
|
||||
case PushProgramSize:
|
||||
text = string("bytecodeSize");
|
||||
break;
|
||||
case PushLibraryAddress:
|
||||
text = string("linkerSymbol(\"") + toHex(data()) + string("\")");
|
||||
break;
|
||||
case UndefinedItem:
|
||||
assertThrow(false, AssemblyException, "Invalid assembly item.");
|
||||
break;
|
||||
default:
|
||||
BOOST_THROW_EXCEPTION(InvalidOpcode());
|
||||
}
|
||||
if (m_jumpType == JumpType::IntoFunction || m_jumpType == JumpType::OutOfFunction)
|
||||
{
|
||||
text += "\t//";
|
||||
if (m_jumpType == JumpType::IntoFunction)
|
||||
text += " in";
|
||||
else
|
||||
text += " out";
|
||||
}
|
||||
return text;
|
||||
}
|
||||
|
||||
ostream& dev::eth::operator<<(ostream& _out, AssemblyItem const& _item)
|
||||
{
|
||||
switch (_item.type())
|
||||
|
@ -59,16 +59,22 @@ public:
|
||||
AssemblyItem(u256 _push, SourceLocation const& _location = SourceLocation()):
|
||||
AssemblyItem(Push, _push, _location) { }
|
||||
AssemblyItem(solidity::Instruction _i, SourceLocation const& _location = SourceLocation()):
|
||||
AssemblyItem(Operation, byte(_i), _location) { }
|
||||
m_type(Operation),
|
||||
m_instruction(_i),
|
||||
m_location(_location)
|
||||
{}
|
||||
AssemblyItem(AssemblyItemType _type, u256 _data = 0, SourceLocation const& _location = SourceLocation()):
|
||||
m_type(_type),
|
||||
m_data(_data),
|
||||
m_location(_location)
|
||||
{
|
||||
if (m_type == Operation)
|
||||
m_instruction = Instruction(byte(_data));
|
||||
else
|
||||
m_data = std::make_shared<u256>(_data);
|
||||
}
|
||||
|
||||
AssemblyItem tag() const { assertThrow(m_type == PushTag || m_type == Tag, Exception, ""); return AssemblyItem(Tag, m_data); }
|
||||
AssemblyItem pushTag() const { assertThrow(m_type == PushTag || m_type == Tag, Exception, ""); return AssemblyItem(PushTag, m_data); }
|
||||
AssemblyItem tag() const { assertThrow(m_type == PushTag || m_type == Tag, Exception, ""); return AssemblyItem(Tag, data()); }
|
||||
AssemblyItem pushTag() const { assertThrow(m_type == PushTag || m_type == Tag, Exception, ""); return AssemblyItem(PushTag, data()); }
|
||||
/// Converts the tag to a subassembly tag. This has to be called in order to move a tag across assemblies.
|
||||
/// @param _subId the identifier of the subassembly the tag is taken from.
|
||||
AssemblyItem toSubAssemblyTag(size_t _subId) const;
|
||||
@ -79,25 +85,42 @@ public:
|
||||
void setPushTagSubIdAndTag(size_t _subId, size_t _tag);
|
||||
|
||||
AssemblyItemType type() const { return m_type; }
|
||||
u256 const& data() const { return m_data; }
|
||||
void setType(AssemblyItemType const _type) { m_type = _type; }
|
||||
void setData(u256 const& _data) { m_data = _data; }
|
||||
u256 const& data() const { assertThrow(m_type != Operation, Exception, ""); return *m_data; }
|
||||
void setData(u256 const& _data) { assertThrow(m_type != Operation, Exception, ""); m_data = std::make_shared<u256>(_data); }
|
||||
|
||||
/// @returns the instruction of this item (only valid if type() == Operation)
|
||||
Instruction instruction() const { return Instruction(byte(m_data)); }
|
||||
Instruction instruction() const { assertThrow(m_type == Operation, Exception, ""); return m_instruction; }
|
||||
|
||||
/// @returns true if the type and data of the items are equal.
|
||||
bool operator==(AssemblyItem const& _other) const { return m_type == _other.m_type && m_data == _other.m_data; }
|
||||
bool operator==(AssemblyItem const& _other) const
|
||||
{
|
||||
if (type() != _other.type())
|
||||
return false;
|
||||
if (type() == Operation)
|
||||
return instruction() == _other.instruction();
|
||||
else
|
||||
return data() == _other.data();
|
||||
}
|
||||
bool operator!=(AssemblyItem const& _other) const { return !operator==(_other); }
|
||||
/// Less-than operator compatible with operator==.
|
||||
bool operator<(AssemblyItem const& _other) const { return std::tie(m_type, m_data) < std::tie(_other.m_type, _other.m_data); }
|
||||
bool operator<(AssemblyItem const& _other) const
|
||||
{
|
||||
if (type() != _other.type())
|
||||
return type() < _other.type();
|
||||
else if (type() == Operation)
|
||||
return instruction() < _other.instruction();
|
||||
else
|
||||
return data() < _other.data();
|
||||
}
|
||||
|
||||
/// @returns an upper bound for the number of bytes required by this item, assuming that
|
||||
/// the value of a jump tag takes @a _addressLength bytes.
|
||||
unsigned bytesRequired(unsigned _addressLength) const;
|
||||
int deposit() const;
|
||||
|
||||
bool match(AssemblyItem const& _i) const { return _i.m_type == UndefinedItem || (m_type == _i.m_type && (m_type != Operation || m_data == _i.m_data)); }
|
||||
/// @returns true if the assembly item can be used in a functional context.
|
||||
bool canBeFunctional() const;
|
||||
|
||||
void setLocation(SourceLocation const& _location) { m_location = _location; }
|
||||
SourceLocation const& location() const { return m_location; }
|
||||
|
||||
@ -108,9 +131,12 @@ public:
|
||||
void setPushedValue(u256 const& _value) const { m_pushedValue = std::make_shared<u256>(_value); }
|
||||
u256 const* pushedValue() const { return m_pushedValue.get(); }
|
||||
|
||||
std::string toAssemblyText() const;
|
||||
|
||||
private:
|
||||
AssemblyItemType m_type;
|
||||
u256 m_data;
|
||||
Instruction m_instruction; ///< Only valid if m_type == Operation
|
||||
std::shared_ptr<u256> m_data; ///< Only valid if m_type != Operation
|
||||
SourceLocation m_location;
|
||||
JumpType m_jumpType = JumpType::Ordinary;
|
||||
/// Pushed value for operations with data to be determined during assembly stage,
|
||||
|
@ -303,7 +303,9 @@ void CSECodeGenerator::generateClassElement(Id _c, bool _allowSequenced)
|
||||
for (auto it: m_classPositions)
|
||||
for (auto p: it.second)
|
||||
if (p > m_stackHeight)
|
||||
{
|
||||
assertThrow(false, OptimizerException, "");
|
||||
}
|
||||
// do some cleanup
|
||||
removeStackTopIfPossible();
|
||||
|
||||
|
@ -38,6 +38,7 @@ unsigned ConstantOptimisationMethod::optimiseConstants(
|
||||
for (AssemblyItem const& item: _items)
|
||||
if (item.type() == Push)
|
||||
pushes[item]++;
|
||||
map<u256, AssemblyItems> pendingReplacements;
|
||||
for (auto it: pushes)
|
||||
{
|
||||
AssemblyItem const& item = it.first;
|
||||
@ -53,17 +54,22 @@ unsigned ConstantOptimisationMethod::optimiseConstants(
|
||||
bigint copyGas = copy.gasNeeded();
|
||||
ComputeMethod compute(params, item.data());
|
||||
bigint computeGas = compute.gasNeeded();
|
||||
AssemblyItems replacement;
|
||||
if (copyGas < literalGas && copyGas < computeGas)
|
||||
{
|
||||
copy.execute(_assembly, _items);
|
||||
replacement = copy.execute(_assembly);
|
||||
optimisations++;
|
||||
}
|
||||
else if (computeGas < literalGas && computeGas < copyGas)
|
||||
else if (computeGas < literalGas && computeGas <= copyGas)
|
||||
{
|
||||
compute.execute(_assembly, _items);
|
||||
replacement = compute.execute(_assembly);
|
||||
optimisations++;
|
||||
}
|
||||
if (!replacement.empty())
|
||||
pendingReplacements[item.data()] = replacement;
|
||||
}
|
||||
if (!pendingReplacements.empty())
|
||||
replaceConstants(_items, pendingReplacements);
|
||||
return optimisations;
|
||||
}
|
||||
|
||||
@ -101,18 +107,24 @@ size_t ConstantOptimisationMethod::bytesRequired(AssemblyItems const& _items)
|
||||
|
||||
void ConstantOptimisationMethod::replaceConstants(
|
||||
AssemblyItems& _items,
|
||||
AssemblyItems const& _replacement
|
||||
) const
|
||||
map<u256, AssemblyItems> const& _replacements
|
||||
)
|
||||
{
|
||||
assertThrow(_items.size() > 0, OptimizerException, "");
|
||||
for (size_t i = 0; i < _items.size(); ++i)
|
||||
AssemblyItems replaced;
|
||||
for (AssemblyItem const& item: _items)
|
||||
{
|
||||
if (_items.at(i) != AssemblyItem(m_value))
|
||||
continue;
|
||||
_items[i] = _replacement[0];
|
||||
_items.insert(_items.begin() + i + 1, _replacement.begin() + 1, _replacement.end());
|
||||
i += _replacement.size() - 1;
|
||||
if (item.type() == Push)
|
||||
{
|
||||
auto it = _replacements.find(item.data());
|
||||
if (it != _replacements.end())
|
||||
{
|
||||
replaced += it->second;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
replaced.push_back(item);
|
||||
}
|
||||
_items = std::move(replaced);
|
||||
}
|
||||
|
||||
bigint LiteralMethod::gasNeeded()
|
||||
@ -128,7 +140,31 @@ bigint LiteralMethod::gasNeeded()
|
||||
CodeCopyMethod::CodeCopyMethod(Params const& _params, u256 const& _value):
|
||||
ConstantOptimisationMethod(_params, _value)
|
||||
{
|
||||
m_copyRoutine = AssemblyItems{
|
||||
}
|
||||
|
||||
bigint CodeCopyMethod::gasNeeded()
|
||||
{
|
||||
return combineGas(
|
||||
// Run gas: we ignore memory increase costs
|
||||
simpleRunGas(copyRoutine()) + GasCosts::copyGas,
|
||||
// Data gas for copy routines: Some bytes are zero, but we ignore them.
|
||||
bytesRequired(copyRoutine()) * (m_params.isCreation ? GasCosts::txDataNonZeroGas : GasCosts::createDataGas),
|
||||
// Data gas for data itself
|
||||
dataGas(toBigEndian(m_value))
|
||||
);
|
||||
}
|
||||
|
||||
AssemblyItems CodeCopyMethod::execute(Assembly& _assembly)
|
||||
{
|
||||
bytes data = toBigEndian(m_value);
|
||||
AssemblyItems actualCopyRoutine = copyRoutine();
|
||||
actualCopyRoutine[4] = _assembly.newData(data);
|
||||
return actualCopyRoutine;
|
||||
}
|
||||
|
||||
AssemblyItems const& CodeCopyMethod::copyRoutine() const
|
||||
{
|
||||
AssemblyItems static copyRoutine{
|
||||
u256(0),
|
||||
Instruction::DUP1,
|
||||
Instruction::MLOAD, // back up memory
|
||||
@ -141,25 +177,7 @@ CodeCopyMethod::CodeCopyMethod(Params const& _params, u256 const& _value):
|
||||
Instruction::SWAP2,
|
||||
Instruction::MSTORE
|
||||
};
|
||||
}
|
||||
|
||||
bigint CodeCopyMethod::gasNeeded()
|
||||
{
|
||||
return combineGas(
|
||||
// Run gas: we ignore memory increase costs
|
||||
simpleRunGas(m_copyRoutine) + GasCosts::copyGas,
|
||||
// Data gas for copy routines: Some bytes are zero, but we ignore them.
|
||||
bytesRequired(m_copyRoutine) * (m_params.isCreation ? GasCosts::txDataNonZeroGas : GasCosts::createDataGas),
|
||||
// Data gas for data itself
|
||||
dataGas(toBigEndian(m_value))
|
||||
);
|
||||
}
|
||||
|
||||
void CodeCopyMethod::execute(Assembly& _assembly, AssemblyItems& _items)
|
||||
{
|
||||
bytes data = toBigEndian(m_value);
|
||||
m_copyRoutine[4] = _assembly.newData(data);
|
||||
replaceConstants(_items, m_copyRoutine);
|
||||
return copyRoutine;
|
||||
}
|
||||
|
||||
AssemblyItems ComputeMethod::findRepresentation(u256 const& _value)
|
||||
|
@ -60,7 +60,10 @@ public:
|
||||
explicit ConstantOptimisationMethod(Params const& _params, u256 const& _value):
|
||||
m_params(_params), m_value(_value) {}
|
||||
virtual bigint gasNeeded() = 0;
|
||||
virtual void execute(Assembly& _assembly, AssemblyItems& _items) = 0;
|
||||
/// Executes the method, potentially appending to the assembly and returns a vector of
|
||||
/// assembly items the constant should be relpaced with in one sweep.
|
||||
/// If the vector is empty, the constants will not be deleted.
|
||||
virtual AssemblyItems execute(Assembly& _assembly) = 0;
|
||||
|
||||
protected:
|
||||
size_t dataSize() const { return std::max<size_t>(1, dev::bytesRequired(m_value)); }
|
||||
@ -83,8 +86,8 @@ protected:
|
||||
return m_params.runs * _runGas + m_params.multiplicity * _repeatedDataGas + _uniqueDataGas;
|
||||
}
|
||||
|
||||
/// Replaces the constant by the code given in @a _replacement.
|
||||
void replaceConstants(AssemblyItems& _items, AssemblyItems const& _replacement) const;
|
||||
/// Replaces all constants i by the code given in @a _replacement[i].
|
||||
static void replaceConstants(AssemblyItems& _items, std::map<u256, AssemblyItems> const& _replacement);
|
||||
|
||||
Params m_params;
|
||||
u256 const& m_value;
|
||||
@ -100,7 +103,7 @@ public:
|
||||
explicit LiteralMethod(Params const& _params, u256 const& _value):
|
||||
ConstantOptimisationMethod(_params, _value) {}
|
||||
virtual bigint gasNeeded() override;
|
||||
virtual void execute(Assembly&, AssemblyItems&) override {}
|
||||
virtual AssemblyItems execute(Assembly&) override { return AssemblyItems{}; }
|
||||
};
|
||||
|
||||
/**
|
||||
@ -111,10 +114,10 @@ class CodeCopyMethod: public ConstantOptimisationMethod
|
||||
public:
|
||||
explicit CodeCopyMethod(Params const& _params, u256 const& _value);
|
||||
virtual bigint gasNeeded() override;
|
||||
virtual void execute(Assembly& _assembly, AssemblyItems& _items) override;
|
||||
virtual AssemblyItems execute(Assembly& _assembly) override;
|
||||
|
||||
protected:
|
||||
AssemblyItems m_copyRoutine;
|
||||
AssemblyItems const& copyRoutine() const;
|
||||
};
|
||||
|
||||
/**
|
||||
@ -130,9 +133,9 @@ public:
|
||||
}
|
||||
|
||||
virtual bigint gasNeeded() override { return gasNeeded(m_routine); }
|
||||
virtual void execute(Assembly&, AssemblyItems& _items) override
|
||||
virtual AssemblyItems execute(Assembly&) override
|
||||
{
|
||||
replaceConstants(_items, m_routine);
|
||||
return m_routine;
|
||||
}
|
||||
|
||||
protected:
|
||||
|
@ -29,6 +29,7 @@
|
||||
#include <boost/noncopyable.hpp>
|
||||
#include <libevmasm/Assembly.h>
|
||||
#include <libevmasm/CommonSubexpressionEliminator.h>
|
||||
#include <libevmasm/SimplificationRules.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace dev;
|
||||
@ -40,8 +41,18 @@ bool ExpressionClasses::Expression::operator<(ExpressionClasses::Expression cons
|
||||
assertThrow(!!item && !!_other.item, OptimizerException, "");
|
||||
auto type = item->type();
|
||||
auto otherType = _other.item->type();
|
||||
return std::tie(type, item->data(), arguments, sequenceNumber) <
|
||||
std::tie(otherType, _other.item->data(), _other.arguments, _other.sequenceNumber);
|
||||
if (type != otherType)
|
||||
return type < otherType;
|
||||
else if (type == Operation)
|
||||
{
|
||||
auto instr = item->instruction();
|
||||
auto otherInstr = _other.item->instruction();
|
||||
return std::tie(instr, arguments, sequenceNumber) <
|
||||
std::tie(otherInstr, _other.arguments, _other.sequenceNumber);
|
||||
}
|
||||
else
|
||||
return std::tie(item->data(), arguments, sequenceNumber) <
|
||||
std::tie(_other.item->data(), _other.arguments, _other.sequenceNumber);
|
||||
}
|
||||
|
||||
ExpressionClasses::Id ExpressionClasses::find(
|
||||
@ -170,191 +181,6 @@ string ExpressionClasses::fullDAGToString(ExpressionClasses::Id _id) const
|
||||
return str.str();
|
||||
}
|
||||
|
||||
class Rules: public boost::noncopyable
|
||||
{
|
||||
public:
|
||||
Rules();
|
||||
void resetMatchGroups() { m_matchGroups.clear(); }
|
||||
vector<pair<Pattern, function<Pattern()>>> rules() const { return m_rules; }
|
||||
|
||||
private:
|
||||
using Expression = ExpressionClasses::Expression;
|
||||
map<unsigned, Expression const*> m_matchGroups;
|
||||
vector<pair<Pattern, function<Pattern()>>> m_rules;
|
||||
};
|
||||
|
||||
template <class S> S divWorkaround(S const& _a, S const& _b)
|
||||
{
|
||||
return (S)(bigint(_a) / bigint(_b));
|
||||
}
|
||||
|
||||
template <class S> S modWorkaround(S const& _a, S const& _b)
|
||||
{
|
||||
return (S)(bigint(_a) % bigint(_b));
|
||||
}
|
||||
|
||||
Rules::Rules()
|
||||
{
|
||||
// Multiple occurences of one of these inside one rule must match the same equivalence class.
|
||||
// Constants.
|
||||
Pattern A(Push);
|
||||
Pattern B(Push);
|
||||
Pattern C(Push);
|
||||
// Anything.
|
||||
Pattern X;
|
||||
Pattern Y;
|
||||
Pattern Z;
|
||||
A.setMatchGroup(1, m_matchGroups);
|
||||
B.setMatchGroup(2, m_matchGroups);
|
||||
C.setMatchGroup(3, m_matchGroups);
|
||||
X.setMatchGroup(4, m_matchGroups);
|
||||
Y.setMatchGroup(5, m_matchGroups);
|
||||
Z.setMatchGroup(6, m_matchGroups);
|
||||
|
||||
m_rules = vector<pair<Pattern, function<Pattern()>>>{
|
||||
// arithmetics on constants
|
||||
{{Instruction::ADD, {A, B}}, [=]{ return A.d() + B.d(); }},
|
||||
{{Instruction::MUL, {A, B}}, [=]{ return A.d() * B.d(); }},
|
||||
{{Instruction::SUB, {A, B}}, [=]{ return A.d() - B.d(); }},
|
||||
{{Instruction::DIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : divWorkaround(A.d(), B.d()); }},
|
||||
{{Instruction::SDIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(divWorkaround(u2s(A.d()), u2s(B.d()))); }},
|
||||
{{Instruction::MOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : modWorkaround(A.d(), B.d()); }},
|
||||
{{Instruction::SMOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(modWorkaround(u2s(A.d()), u2s(B.d()))); }},
|
||||
{{Instruction::EXP, {A, B}}, [=]{ return u256(boost::multiprecision::powm(bigint(A.d()), bigint(B.d()), bigint(1) << 256)); }},
|
||||
{{Instruction::NOT, {A}}, [=]{ return ~A.d(); }},
|
||||
{{Instruction::LT, {A, B}}, [=]() { return A.d() < B.d() ? u256(1) : 0; }},
|
||||
{{Instruction::GT, {A, B}}, [=]() -> u256 { return A.d() > B.d() ? 1 : 0; }},
|
||||
{{Instruction::SLT, {A, B}}, [=]() -> u256 { return u2s(A.d()) < u2s(B.d()) ? 1 : 0; }},
|
||||
{{Instruction::SGT, {A, B}}, [=]() -> u256 { return u2s(A.d()) > u2s(B.d()) ? 1 : 0; }},
|
||||
{{Instruction::EQ, {A, B}}, [=]() -> u256 { return A.d() == B.d() ? 1 : 0; }},
|
||||
{{Instruction::ISZERO, {A}}, [=]() -> u256 { return A.d() == 0 ? 1 : 0; }},
|
||||
{{Instruction::AND, {A, B}}, [=]{ return A.d() & B.d(); }},
|
||||
{{Instruction::OR, {A, B}}, [=]{ return A.d() | B.d(); }},
|
||||
{{Instruction::XOR, {A, B}}, [=]{ return A.d() ^ B.d(); }},
|
||||
{{Instruction::BYTE, {A, B}}, [=]{ return A.d() >= 32 ? 0 : (B.d() >> unsigned(8 * (31 - A.d()))) & 0xff; }},
|
||||
{{Instruction::ADDMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) + bigint(B.d())) % C.d()); }},
|
||||
{{Instruction::MULMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) * bigint(B.d())) % C.d()); }},
|
||||
{{Instruction::MULMOD, {A, B, C}}, [=]{ return A.d() * B.d(); }},
|
||||
{{Instruction::SIGNEXTEND, {A, B}}, [=]() -> u256 {
|
||||
if (A.d() >= 31)
|
||||
return B.d();
|
||||
unsigned testBit = unsigned(A.d()) * 8 + 7;
|
||||
u256 mask = (u256(1) << testBit) - 1;
|
||||
return u256(boost::multiprecision::bit_test(B.d(), testBit) ? B.d() | ~mask : B.d() & mask);
|
||||
}},
|
||||
|
||||
// invariants involving known constants
|
||||
{{Instruction::ADD, {X, 0}}, [=]{ return X; }},
|
||||
{{Instruction::SUB, {X, 0}}, [=]{ return X; }},
|
||||
{{Instruction::MUL, {X, 1}}, [=]{ return X; }},
|
||||
{{Instruction::DIV, {X, 1}}, [=]{ return X; }},
|
||||
{{Instruction::SDIV, {X, 1}}, [=]{ return X; }},
|
||||
{{Instruction::OR, {X, 0}}, [=]{ return X; }},
|
||||
{{Instruction::XOR, {X, 0}}, [=]{ return X; }},
|
||||
{{Instruction::AND, {X, ~u256(0)}}, [=]{ return X; }},
|
||||
{{Instruction::AND, {X, 0}}, [=]{ return u256(0); }},
|
||||
{{Instruction::MUL, {X, 0}}, [=]{ return u256(0); }},
|
||||
{{Instruction::DIV, {X, 0}}, [=]{ return u256(0); }},
|
||||
{{Instruction::DIV, {0, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::MOD, {X, 0}}, [=]{ return u256(0); }},
|
||||
{{Instruction::MOD, {0, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::OR, {X, ~u256(0)}}, [=]{ return ~u256(0); }},
|
||||
{{Instruction::EQ, {X, 0}}, [=]() -> Pattern { return {Instruction::ISZERO, {X}}; } },
|
||||
// operations involving an expression and itself
|
||||
{{Instruction::AND, {X, X}}, [=]{ return X; }},
|
||||
{{Instruction::OR, {X, X}}, [=]{ return X; }},
|
||||
{{Instruction::XOR, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::SUB, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::EQ, {X, X}}, [=]{ return u256(1); }},
|
||||
{{Instruction::LT, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::SLT, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::GT, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::SGT, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::MOD, {X, X}}, [=]{ return u256(0); }},
|
||||
|
||||
{{Instruction::NOT, {{Instruction::NOT, {X}}}}, [=]{ return X; }},
|
||||
{{Instruction::XOR, {{{X}, {Instruction::XOR, {X, Y}}}}}, [=]{ return Y; }},
|
||||
{{Instruction::OR, {{{X}, {Instruction::AND, {X, Y}}}}}, [=]{ return X; }},
|
||||
{{Instruction::AND, {{{X}, {Instruction::OR, {X, Y}}}}}, [=]{ return X; }},
|
||||
{{Instruction::AND, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return u256(0); }},
|
||||
{{Instruction::OR, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return ~u256(0); }},
|
||||
};
|
||||
// Double negation of opcodes with binary result
|
||||
for (auto const& op: vector<Instruction>{
|
||||
Instruction::EQ,
|
||||
Instruction::LT,
|
||||
Instruction::SLT,
|
||||
Instruction::GT,
|
||||
Instruction::SGT
|
||||
})
|
||||
m_rules.push_back({
|
||||
{Instruction::ISZERO, {{Instruction::ISZERO, {{op, {X, Y}}}}}},
|
||||
[=]() -> Pattern { return {op, {X, Y}}; }
|
||||
});
|
||||
m_rules.push_back({
|
||||
{Instruction::ISZERO, {{Instruction::ISZERO, {{Instruction::ISZERO, {X}}}}}},
|
||||
[=]() -> Pattern { return {Instruction::ISZERO, {X}}; }
|
||||
});
|
||||
m_rules.push_back({
|
||||
{Instruction::ISZERO, {{Instruction::XOR, {X, Y}}}},
|
||||
[=]() -> Pattern { return { Instruction::EQ, {X, Y} }; }
|
||||
});
|
||||
// Associative operations
|
||||
for (auto const& opFun: vector<pair<Instruction,function<u256(u256 const&,u256 const&)>>>{
|
||||
{Instruction::ADD, plus<u256>()},
|
||||
{Instruction::MUL, multiplies<u256>()},
|
||||
{Instruction::AND, bit_and<u256>()},
|
||||
{Instruction::OR, bit_or<u256>()},
|
||||
{Instruction::XOR, bit_xor<u256>()}
|
||||
})
|
||||
{
|
||||
auto op = opFun.first;
|
||||
auto fun = opFun.second;
|
||||
// Moving constants to the outside, order matters here!
|
||||
// we need actions that return expressions (or patterns?) here, and we need also reversed rules
|
||||
// (X+A)+B -> X+(A+B)
|
||||
m_rules += vector<pair<Pattern, function<Pattern()>>>{{
|
||||
{op, {{op, {X, A}}, B}},
|
||||
[=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }
|
||||
}, {
|
||||
// X+(Y+A) -> (X+Y)+A
|
||||
{op, {{op, {X, A}}, Y}},
|
||||
[=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }
|
||||
}, {
|
||||
// For now, we still need explicit commutativity for the inner pattern
|
||||
{op, {{op, {A, X}}, B}},
|
||||
[=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }
|
||||
}, {
|
||||
{op, {{op, {A, X}}, Y}},
|
||||
[=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }
|
||||
}};
|
||||
}
|
||||
// move constants across subtractions
|
||||
m_rules += vector<pair<Pattern, function<Pattern()>>>{
|
||||
{
|
||||
// X - A -> X + (-A)
|
||||
{Instruction::SUB, {X, A}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {X, 0 - A.d()}}; }
|
||||
}, {
|
||||
// (X + A) - Y -> (X - Y) + A
|
||||
{Instruction::SUB, {{Instruction::ADD, {X, A}}, Y}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }
|
||||
}, {
|
||||
// (A + X) - Y -> (X - Y) + A
|
||||
{Instruction::SUB, {{Instruction::ADD, {A, X}}, Y}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }
|
||||
}, {
|
||||
// X - (Y + A) -> (X - Y) + (-A)
|
||||
{Instruction::SUB, {X, {Instruction::ADD, {Y, A}}}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }
|
||||
}, {
|
||||
// X - (A + Y) -> (X - Y) + (-A)
|
||||
{Instruction::SUB, {X, {Instruction::ADD, {A, Y}}}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
ExpressionClasses::Id ExpressionClasses::tryToSimplify(Expression const& _expr, bool _secondRun)
|
||||
{
|
||||
static Rules rules;
|
||||
@ -366,21 +192,17 @@ ExpressionClasses::Id ExpressionClasses::tryToSimplify(Expression const& _expr,
|
||||
)
|
||||
return -1;
|
||||
|
||||
for (auto const& rule: rules.rules())
|
||||
if (auto match = rules.findFirstMatch(_expr, *this))
|
||||
{
|
||||
rules.resetMatchGroups();
|
||||
if (rule.first.matches(_expr, *this))
|
||||
{
|
||||
// Debug info
|
||||
//cout << "Simplifying " << *_expr.item << "(";
|
||||
//for (Id arg: _expr.arguments)
|
||||
// cout << fullDAGToString(arg) << ", ";
|
||||
//cout << ")" << endl;
|
||||
//cout << "with rule " << rule.first.toString() << endl;
|
||||
//ExpressionTemplate t(rule.second());
|
||||
//cout << "to " << rule.second().toString() << endl;
|
||||
return rebuildExpression(ExpressionTemplate(rule.second(), _expr.item->location()));
|
||||
}
|
||||
// Debug info
|
||||
//cout << "Simplifying " << *_expr.item << "(";
|
||||
//for (Id arg: _expr.arguments)
|
||||
// cout << fullDAGToString(arg) << ", ";
|
||||
//cout << ")" << endl;
|
||||
//cout << "with rule " << match->first.toString() << endl;
|
||||
//ExpressionTemplate t(match->second());
|
||||
//cout << "to " << match->second().toString() << endl;
|
||||
return rebuildExpression(ExpressionTemplate(match->second(), _expr.item->location()));
|
||||
}
|
||||
|
||||
if (!_secondRun && _expr.arguments.size() == 2 && SemanticInformation::isCommutativeOperation(*_expr.item))
|
||||
@ -403,122 +225,3 @@ ExpressionClasses::Id ExpressionClasses::rebuildExpression(ExpressionTemplate co
|
||||
arguments.push_back(rebuildExpression(t));
|
||||
return find(_template.item, arguments);
|
||||
}
|
||||
|
||||
|
||||
Pattern::Pattern(Instruction _instruction, std::vector<Pattern> const& _arguments):
|
||||
m_type(Operation),
|
||||
m_requireDataMatch(true),
|
||||
m_data(_instruction),
|
||||
m_arguments(_arguments)
|
||||
{
|
||||
}
|
||||
|
||||
void Pattern::setMatchGroup(unsigned _group, map<unsigned, Expression const*>& _matchGroups)
|
||||
{
|
||||
m_matchGroup = _group;
|
||||
m_matchGroups = &_matchGroups;
|
||||
}
|
||||
|
||||
bool Pattern::matches(Expression const& _expr, ExpressionClasses const& _classes) const
|
||||
{
|
||||
if (!matchesBaseItem(_expr.item))
|
||||
return false;
|
||||
if (m_matchGroup)
|
||||
{
|
||||
if (!m_matchGroups->count(m_matchGroup))
|
||||
(*m_matchGroups)[m_matchGroup] = &_expr;
|
||||
else if ((*m_matchGroups)[m_matchGroup]->id != _expr.id)
|
||||
return false;
|
||||
}
|
||||
assertThrow(m_arguments.size() == 0 || _expr.arguments.size() == m_arguments.size(), OptimizerException, "");
|
||||
for (size_t i = 0; i < m_arguments.size(); ++i)
|
||||
if (!m_arguments[i].matches(_classes.representative(_expr.arguments[i]), _classes))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
AssemblyItem Pattern::toAssemblyItem(SourceLocation const& _location) const
|
||||
{
|
||||
return AssemblyItem(m_type, m_data, _location);
|
||||
}
|
||||
|
||||
string Pattern::toString() const
|
||||
{
|
||||
stringstream s;
|
||||
switch (m_type)
|
||||
{
|
||||
case Operation:
|
||||
s << instructionInfo(Instruction(unsigned(m_data))).name;
|
||||
break;
|
||||
case Push:
|
||||
s << "PUSH " << hex << m_data;
|
||||
break;
|
||||
case UndefinedItem:
|
||||
s << "ANY";
|
||||
break;
|
||||
default:
|
||||
s << "t=" << dec << m_type << " d=" << hex << m_data;
|
||||
break;
|
||||
}
|
||||
if (!m_requireDataMatch)
|
||||
s << " ~";
|
||||
if (m_matchGroup)
|
||||
s << "[" << dec << m_matchGroup << "]";
|
||||
s << "(";
|
||||
for (Pattern const& p: m_arguments)
|
||||
s << p.toString() << ", ";
|
||||
s << ")";
|
||||
return s.str();
|
||||
}
|
||||
|
||||
bool Pattern::matchesBaseItem(AssemblyItem const* _item) const
|
||||
{
|
||||
if (m_type == UndefinedItem)
|
||||
return true;
|
||||
if (!_item)
|
||||
return false;
|
||||
if (m_type != _item->type())
|
||||
return false;
|
||||
if (m_requireDataMatch && m_data != _item->data())
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
Pattern::Expression const& Pattern::matchGroupValue() const
|
||||
{
|
||||
assertThrow(m_matchGroup > 0, OptimizerException, "");
|
||||
assertThrow(!!m_matchGroups, OptimizerException, "");
|
||||
assertThrow((*m_matchGroups)[m_matchGroup], OptimizerException, "");
|
||||
return *(*m_matchGroups)[m_matchGroup];
|
||||
}
|
||||
|
||||
|
||||
ExpressionTemplate::ExpressionTemplate(Pattern const& _pattern, SourceLocation const& _location)
|
||||
{
|
||||
if (_pattern.matchGroup())
|
||||
{
|
||||
hasId = true;
|
||||
id = _pattern.id();
|
||||
}
|
||||
else
|
||||
{
|
||||
hasId = false;
|
||||
item = _pattern.toAssemblyItem(_location);
|
||||
}
|
||||
for (auto const& arg: _pattern.arguments())
|
||||
arguments.push_back(ExpressionTemplate(arg, _location));
|
||||
}
|
||||
|
||||
string ExpressionTemplate::toString() const
|
||||
{
|
||||
stringstream s;
|
||||
if (hasId)
|
||||
s << id;
|
||||
else
|
||||
s << item;
|
||||
s << "(";
|
||||
for (auto const& arg: arguments)
|
||||
s << arg.toString();
|
||||
s << ")";
|
||||
return s.str();
|
||||
}
|
||||
|
@ -121,70 +121,5 @@ private:
|
||||
std::vector<std::shared_ptr<AssemblyItem>> m_spareAssemblyItems;
|
||||
};
|
||||
|
||||
/**
|
||||
* Pattern to match against an expression.
|
||||
* Also stores matched expressions to retrieve them later, for constructing new expressions using
|
||||
* ExpressionTemplate.
|
||||
*/
|
||||
class Pattern
|
||||
{
|
||||
public:
|
||||
using Expression = ExpressionClasses::Expression;
|
||||
using Id = ExpressionClasses::Id;
|
||||
|
||||
// Matches a specific constant value.
|
||||
Pattern(unsigned _value): Pattern(u256(_value)) {}
|
||||
// Matches a specific constant value.
|
||||
Pattern(u256 const& _value): m_type(Push), m_requireDataMatch(true), m_data(_value) {}
|
||||
// Matches a specific assembly item type or anything if not given.
|
||||
Pattern(AssemblyItemType _type = UndefinedItem): m_type(_type) {}
|
||||
// Matches a given instruction with given arguments
|
||||
Pattern(Instruction _instruction, std::vector<Pattern> const& _arguments = {});
|
||||
/// Sets this pattern to be part of the match group with the identifier @a _group.
|
||||
/// Inside one rule, all patterns in the same match group have to match expressions from the
|
||||
/// same expression equivalence class.
|
||||
void setMatchGroup(unsigned _group, std::map<unsigned, Expression const*>& _matchGroups);
|
||||
unsigned matchGroup() const { return m_matchGroup; }
|
||||
bool matches(Expression const& _expr, ExpressionClasses const& _classes) const;
|
||||
|
||||
AssemblyItem toAssemblyItem(SourceLocation const& _location) const;
|
||||
std::vector<Pattern> arguments() const { return m_arguments; }
|
||||
|
||||
/// @returns the id of the matched expression if this pattern is part of a match group.
|
||||
Id id() const { return matchGroupValue().id; }
|
||||
/// @returns the data of the matched expression if this pattern is part of a match group.
|
||||
u256 const& d() const { return matchGroupValue().item->data(); }
|
||||
|
||||
std::string toString() const;
|
||||
|
||||
private:
|
||||
bool matchesBaseItem(AssemblyItem const* _item) const;
|
||||
Expression const& matchGroupValue() const;
|
||||
|
||||
AssemblyItemType m_type;
|
||||
bool m_requireDataMatch = false;
|
||||
u256 m_data = 0;
|
||||
std::vector<Pattern> m_arguments;
|
||||
unsigned m_matchGroup = 0;
|
||||
std::map<unsigned, Expression const*>* m_matchGroups = nullptr;
|
||||
};
|
||||
|
||||
/**
|
||||
* Template for a new expression that can be built from matched patterns.
|
||||
*/
|
||||
struct ExpressionTemplate
|
||||
{
|
||||
using Expression = ExpressionClasses::Expression;
|
||||
using Id = ExpressionClasses::Id;
|
||||
explicit ExpressionTemplate(Pattern const& _pattern, SourceLocation const& _location);
|
||||
std::string toString() const;
|
||||
bool hasId = false;
|
||||
/// Id of the matched expression, if available.
|
||||
Id id = Id(-1);
|
||||
// Otherwise, assembly item.
|
||||
AssemblyItem item = UndefinedItem;
|
||||
std::vector<ExpressionTemplate> arguments;
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
@ -120,7 +120,7 @@ struct OpPop: SimplePeepholeOptimizerMethod<OpPop, 2>
|
||||
if (instructionInfo(instr).ret == 1 && !instructionInfo(instr).sideEffects)
|
||||
{
|
||||
for (int j = 0; j < instructionInfo(instr).args; j++)
|
||||
*_out = Instruction::POP;
|
||||
*_out = {Instruction::POP, _op.location()};
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
370
libevmasm/SimplificationRules.cpp
Normal file
370
libevmasm/SimplificationRules.cpp
Normal file
@ -0,0 +1,370 @@
|
||||
/*
|
||||
This file is part of solidity.
|
||||
|
||||
solidity is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
solidity is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/**
|
||||
* @file ExpressionClasses.cpp
|
||||
* @author Christian <c@ethdev.com>
|
||||
* @date 2015
|
||||
* Container for equivalence classes of expressions for use in common subexpression elimination.
|
||||
*/
|
||||
|
||||
#include <libevmasm/ExpressionClasses.h>
|
||||
#include <utility>
|
||||
#include <tuple>
|
||||
#include <functional>
|
||||
#include <boost/range/adaptor/reversed.hpp>
|
||||
#include <boost/noncopyable.hpp>
|
||||
#include <libevmasm/Assembly.h>
|
||||
#include <libevmasm/CommonSubexpressionEliminator.h>
|
||||
#include <libevmasm/SimplificationRules.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace dev;
|
||||
using namespace dev::eth;
|
||||
|
||||
|
||||
pair<Pattern, function<Pattern()> > const* Rules::findFirstMatch(
|
||||
Expression const& _expr,
|
||||
ExpressionClasses const& _classes
|
||||
)
|
||||
{
|
||||
resetMatchGroups();
|
||||
|
||||
assertThrow(_expr.item, OptimizerException, "");
|
||||
for (auto const& rule: m_rules[byte(_expr.item->instruction())])
|
||||
{
|
||||
if (rule.first.matches(_expr, _classes))
|
||||
return &rule;
|
||||
resetMatchGroups();
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void Rules::addRules(std::vector<std::pair<Pattern, std::function<Pattern ()> > > const& _rules)
|
||||
{
|
||||
for (auto const& r: _rules)
|
||||
addRule(r);
|
||||
}
|
||||
|
||||
void Rules::addRule(std::pair<Pattern, std::function<Pattern()> > const& _rule)
|
||||
{
|
||||
m_rules[byte(_rule.first.instruction())].push_back(_rule);
|
||||
}
|
||||
|
||||
template <class S> S divWorkaround(S const& _a, S const& _b)
|
||||
{
|
||||
return (S)(bigint(_a) / bigint(_b));
|
||||
}
|
||||
|
||||
template <class S> S modWorkaround(S const& _a, S const& _b)
|
||||
{
|
||||
return (S)(bigint(_a) % bigint(_b));
|
||||
}
|
||||
|
||||
Rules::Rules()
|
||||
{
|
||||
// Multiple occurences of one of these inside one rule must match the same equivalence class.
|
||||
// Constants.
|
||||
Pattern A(Push);
|
||||
Pattern B(Push);
|
||||
Pattern C(Push);
|
||||
// Anything.
|
||||
Pattern X;
|
||||
Pattern Y;
|
||||
Pattern Z;
|
||||
A.setMatchGroup(1, m_matchGroups);
|
||||
B.setMatchGroup(2, m_matchGroups);
|
||||
C.setMatchGroup(3, m_matchGroups);
|
||||
X.setMatchGroup(4, m_matchGroups);
|
||||
Y.setMatchGroup(5, m_matchGroups);
|
||||
Z.setMatchGroup(6, m_matchGroups);
|
||||
|
||||
addRules(vector<pair<Pattern, function<Pattern()>>>{
|
||||
// arithmetics on constants
|
||||
{{Instruction::ADD, {A, B}}, [=]{ return A.d() + B.d(); }},
|
||||
{{Instruction::MUL, {A, B}}, [=]{ return A.d() * B.d(); }},
|
||||
{{Instruction::SUB, {A, B}}, [=]{ return A.d() - B.d(); }},
|
||||
{{Instruction::DIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : divWorkaround(A.d(), B.d()); }},
|
||||
{{Instruction::SDIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(divWorkaround(u2s(A.d()), u2s(B.d()))); }},
|
||||
{{Instruction::MOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : modWorkaround(A.d(), B.d()); }},
|
||||
{{Instruction::SMOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(modWorkaround(u2s(A.d()), u2s(B.d()))); }},
|
||||
{{Instruction::EXP, {A, B}}, [=]{ return u256(boost::multiprecision::powm(bigint(A.d()), bigint(B.d()), bigint(1) << 256)); }},
|
||||
{{Instruction::NOT, {A}}, [=]{ return ~A.d(); }},
|
||||
{{Instruction::LT, {A, B}}, [=]() { return A.d() < B.d() ? u256(1) : 0; }},
|
||||
{{Instruction::GT, {A, B}}, [=]() -> u256 { return A.d() > B.d() ? 1 : 0; }},
|
||||
{{Instruction::SLT, {A, B}}, [=]() -> u256 { return u2s(A.d()) < u2s(B.d()) ? 1 : 0; }},
|
||||
{{Instruction::SGT, {A, B}}, [=]() -> u256 { return u2s(A.d()) > u2s(B.d()) ? 1 : 0; }},
|
||||
{{Instruction::EQ, {A, B}}, [=]() -> u256 { return A.d() == B.d() ? 1 : 0; }},
|
||||
{{Instruction::ISZERO, {A}}, [=]() -> u256 { return A.d() == 0 ? 1 : 0; }},
|
||||
{{Instruction::AND, {A, B}}, [=]{ return A.d() & B.d(); }},
|
||||
{{Instruction::OR, {A, B}}, [=]{ return A.d() | B.d(); }},
|
||||
{{Instruction::XOR, {A, B}}, [=]{ return A.d() ^ B.d(); }},
|
||||
{{Instruction::BYTE, {A, B}}, [=]{ return A.d() >= 32 ? 0 : (B.d() >> unsigned(8 * (31 - A.d()))) & 0xff; }},
|
||||
{{Instruction::ADDMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) + bigint(B.d())) % C.d()); }},
|
||||
{{Instruction::MULMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) * bigint(B.d())) % C.d()); }},
|
||||
{{Instruction::MULMOD, {A, B, C}}, [=]{ return A.d() * B.d(); }},
|
||||
{{Instruction::SIGNEXTEND, {A, B}}, [=]() -> u256 {
|
||||
if (A.d() >= 31)
|
||||
return B.d();
|
||||
unsigned testBit = unsigned(A.d()) * 8 + 7;
|
||||
u256 mask = (u256(1) << testBit) - 1;
|
||||
return u256(boost::multiprecision::bit_test(B.d(), testBit) ? B.d() | ~mask : B.d() & mask);
|
||||
}},
|
||||
|
||||
// invariants involving known constants
|
||||
{{Instruction::ADD, {X, 0}}, [=]{ return X; }},
|
||||
{{Instruction::SUB, {X, 0}}, [=]{ return X; }},
|
||||
{{Instruction::MUL, {X, 1}}, [=]{ return X; }},
|
||||
{{Instruction::DIV, {X, 1}}, [=]{ return X; }},
|
||||
{{Instruction::SDIV, {X, 1}}, [=]{ return X; }},
|
||||
{{Instruction::OR, {X, 0}}, [=]{ return X; }},
|
||||
{{Instruction::XOR, {X, 0}}, [=]{ return X; }},
|
||||
{{Instruction::AND, {X, ~u256(0)}}, [=]{ return X; }},
|
||||
{{Instruction::AND, {X, 0}}, [=]{ return u256(0); }},
|
||||
{{Instruction::MUL, {X, 0}}, [=]{ return u256(0); }},
|
||||
{{Instruction::DIV, {X, 0}}, [=]{ return u256(0); }},
|
||||
{{Instruction::DIV, {0, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::MOD, {X, 0}}, [=]{ return u256(0); }},
|
||||
{{Instruction::MOD, {0, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::OR, {X, ~u256(0)}}, [=]{ return ~u256(0); }},
|
||||
{{Instruction::EQ, {X, 0}}, [=]() -> Pattern { return {Instruction::ISZERO, {X}}; } },
|
||||
// operations involving an expression and itself
|
||||
{{Instruction::AND, {X, X}}, [=]{ return X; }},
|
||||
{{Instruction::OR, {X, X}}, [=]{ return X; }},
|
||||
{{Instruction::XOR, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::SUB, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::EQ, {X, X}}, [=]{ return u256(1); }},
|
||||
{{Instruction::LT, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::SLT, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::GT, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::SGT, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::MOD, {X, X}}, [=]{ return u256(0); }},
|
||||
|
||||
{{Instruction::NOT, {{Instruction::NOT, {X}}}}, [=]{ return X; }},
|
||||
{{Instruction::XOR, {{{X}, {Instruction::XOR, {X, Y}}}}}, [=]{ return Y; }},
|
||||
{{Instruction::OR, {{{X}, {Instruction::AND, {X, Y}}}}}, [=]{ return X; }},
|
||||
{{Instruction::AND, {{{X}, {Instruction::OR, {X, Y}}}}}, [=]{ return X; }},
|
||||
{{Instruction::AND, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return u256(0); }},
|
||||
{{Instruction::OR, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return ~u256(0); }},
|
||||
});
|
||||
// Double negation of opcodes with binary result
|
||||
for (auto const& op: vector<Instruction>{
|
||||
Instruction::EQ,
|
||||
Instruction::LT,
|
||||
Instruction::SLT,
|
||||
Instruction::GT,
|
||||
Instruction::SGT
|
||||
})
|
||||
addRule({
|
||||
{Instruction::ISZERO, {{Instruction::ISZERO, {{op, {X, Y}}}}}},
|
||||
[=]() -> Pattern { return {op, {X, Y}}; }
|
||||
});
|
||||
addRule({
|
||||
{Instruction::ISZERO, {{Instruction::ISZERO, {{Instruction::ISZERO, {X}}}}}},
|
||||
[=]() -> Pattern { return {Instruction::ISZERO, {X}}; }
|
||||
});
|
||||
addRule({
|
||||
{Instruction::ISZERO, {{Instruction::XOR, {X, Y}}}},
|
||||
[=]() -> Pattern { return { Instruction::EQ, {X, Y} }; }
|
||||
});
|
||||
// Associative operations
|
||||
for (auto const& opFun: vector<pair<Instruction,function<u256(u256 const&,u256 const&)>>>{
|
||||
{Instruction::ADD, plus<u256>()},
|
||||
{Instruction::MUL, multiplies<u256>()},
|
||||
{Instruction::AND, bit_and<u256>()},
|
||||
{Instruction::OR, bit_or<u256>()},
|
||||
{Instruction::XOR, bit_xor<u256>()}
|
||||
})
|
||||
{
|
||||
auto op = opFun.first;
|
||||
auto fun = opFun.second;
|
||||
// Moving constants to the outside, order matters here!
|
||||
// we need actions that return expressions (or patterns?) here, and we need also reversed rules
|
||||
// (X+A)+B -> X+(A+B)
|
||||
addRules(vector<pair<Pattern, function<Pattern()>>>{{
|
||||
{op, {{op, {X, A}}, B}},
|
||||
[=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }
|
||||
}, {
|
||||
// X+(Y+A) -> (X+Y)+A
|
||||
{op, {{op, {X, A}}, Y}},
|
||||
[=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }
|
||||
}, {
|
||||
// For now, we still need explicit commutativity for the inner pattern
|
||||
{op, {{op, {A, X}}, B}},
|
||||
[=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }
|
||||
}, {
|
||||
{op, {{op, {A, X}}, Y}},
|
||||
[=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }
|
||||
}});
|
||||
}
|
||||
// move constants across subtractions
|
||||
addRules(vector<pair<Pattern, function<Pattern()>>>{
|
||||
{
|
||||
// X - A -> X + (-A)
|
||||
{Instruction::SUB, {X, A}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {X, 0 - A.d()}}; }
|
||||
}, {
|
||||
// (X + A) - Y -> (X - Y) + A
|
||||
{Instruction::SUB, {{Instruction::ADD, {X, A}}, Y}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }
|
||||
}, {
|
||||
// (A + X) - Y -> (X - Y) + A
|
||||
{Instruction::SUB, {{Instruction::ADD, {A, X}}, Y}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }
|
||||
}, {
|
||||
// X - (Y + A) -> (X - Y) + (-A)
|
||||
{Instruction::SUB, {X, {Instruction::ADD, {Y, A}}}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }
|
||||
}, {
|
||||
// X - (A + Y) -> (X - Y) + (-A)
|
||||
{Instruction::SUB, {X, {Instruction::ADD, {A, Y}}}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
Pattern::Pattern(Instruction _instruction, std::vector<Pattern> const& _arguments):
|
||||
m_type(Operation),
|
||||
m_instruction(_instruction),
|
||||
m_arguments(_arguments)
|
||||
{
|
||||
}
|
||||
|
||||
void Pattern::setMatchGroup(unsigned _group, map<unsigned, Expression const*>& _matchGroups)
|
||||
{
|
||||
m_matchGroup = _group;
|
||||
m_matchGroups = &_matchGroups;
|
||||
}
|
||||
|
||||
bool Pattern::matches(Expression const& _expr, ExpressionClasses const& _classes) const
|
||||
{
|
||||
if (!matchesBaseItem(_expr.item))
|
||||
return false;
|
||||
if (m_matchGroup)
|
||||
{
|
||||
if (!m_matchGroups->count(m_matchGroup))
|
||||
(*m_matchGroups)[m_matchGroup] = &_expr;
|
||||
else if ((*m_matchGroups)[m_matchGroup]->id != _expr.id)
|
||||
return false;
|
||||
}
|
||||
assertThrow(m_arguments.size() == 0 || _expr.arguments.size() == m_arguments.size(), OptimizerException, "");
|
||||
for (size_t i = 0; i < m_arguments.size(); ++i)
|
||||
if (!m_arguments[i].matches(_classes.representative(_expr.arguments[i]), _classes))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
AssemblyItem Pattern::toAssemblyItem(SourceLocation const& _location) const
|
||||
{
|
||||
if (m_type == Operation)
|
||||
return AssemblyItem(m_instruction, _location);
|
||||
else
|
||||
return AssemblyItem(m_type, data(), _location);
|
||||
}
|
||||
|
||||
string Pattern::toString() const
|
||||
{
|
||||
stringstream s;
|
||||
switch (m_type)
|
||||
{
|
||||
case Operation:
|
||||
s << instructionInfo(m_instruction).name;
|
||||
break;
|
||||
case Push:
|
||||
if (m_data)
|
||||
s << "PUSH " << hex << data();
|
||||
else
|
||||
s << "PUSH ";
|
||||
break;
|
||||
case UndefinedItem:
|
||||
s << "ANY";
|
||||
break;
|
||||
default:
|
||||
if (m_data)
|
||||
s << "t=" << dec << m_type << " d=" << hex << data();
|
||||
else
|
||||
s << "t=" << dec << m_type << " d: nullptr";
|
||||
break;
|
||||
}
|
||||
if (!m_requireDataMatch)
|
||||
s << " ~";
|
||||
if (m_matchGroup)
|
||||
s << "[" << dec << m_matchGroup << "]";
|
||||
s << "(";
|
||||
for (Pattern const& p: m_arguments)
|
||||
s << p.toString() << ", ";
|
||||
s << ")";
|
||||
return s.str();
|
||||
}
|
||||
|
||||
bool Pattern::matchesBaseItem(AssemblyItem const* _item) const
|
||||
{
|
||||
if (m_type == UndefinedItem)
|
||||
return true;
|
||||
if (!_item)
|
||||
return false;
|
||||
if (m_type != _item->type())
|
||||
return false;
|
||||
else if (m_type == Operation)
|
||||
return m_instruction == _item->instruction();
|
||||
else if (m_requireDataMatch)
|
||||
return data() == _item->data();
|
||||
return true;
|
||||
}
|
||||
|
||||
Pattern::Expression const& Pattern::matchGroupValue() const
|
||||
{
|
||||
assertThrow(m_matchGroup > 0, OptimizerException, "");
|
||||
assertThrow(!!m_matchGroups, OptimizerException, "");
|
||||
assertThrow((*m_matchGroups)[m_matchGroup], OptimizerException, "");
|
||||
return *(*m_matchGroups)[m_matchGroup];
|
||||
}
|
||||
|
||||
u256 const& Pattern::data() const
|
||||
{
|
||||
assertThrow(m_data, OptimizerException, "");
|
||||
return *m_data;
|
||||
}
|
||||
|
||||
ExpressionTemplate::ExpressionTemplate(Pattern const& _pattern, SourceLocation const& _location)
|
||||
{
|
||||
if (_pattern.matchGroup())
|
||||
{
|
||||
hasId = true;
|
||||
id = _pattern.id();
|
||||
}
|
||||
else
|
||||
{
|
||||
hasId = false;
|
||||
item = _pattern.toAssemblyItem(_location);
|
||||
}
|
||||
for (auto const& arg: _pattern.arguments())
|
||||
arguments.push_back(ExpressionTemplate(arg, _location));
|
||||
}
|
||||
|
||||
string ExpressionTemplate::toString() const
|
||||
{
|
||||
stringstream s;
|
||||
if (hasId)
|
||||
s << id;
|
||||
else
|
||||
s << item;
|
||||
s << "(";
|
||||
for (auto const& arg: arguments)
|
||||
s << arg.toString();
|
||||
s << ")";
|
||||
return s.str();
|
||||
}
|
140
libevmasm/SimplificationRules.h
Normal file
140
libevmasm/SimplificationRules.h
Normal file
@ -0,0 +1,140 @@
|
||||
/*
|
||||
This file is part of solidity.
|
||||
|
||||
solidity is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
solidity is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/**
|
||||
* @file SimplificationRules
|
||||
* @author Christian <chris@ethereum.org>
|
||||
* @date 2017
|
||||
* Module for applying replacement rules against Expressions.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <libevmasm/ExpressionClasses.h>
|
||||
|
||||
#include <functional>
|
||||
#include <vector>
|
||||
|
||||
namespace dev
|
||||
{
|
||||
namespace eth
|
||||
{
|
||||
|
||||
class Pattern;
|
||||
|
||||
/**
|
||||
* Container for all simplification rules.
|
||||
*/
|
||||
class Rules: public boost::noncopyable
|
||||
{
|
||||
public:
|
||||
using Expression = ExpressionClasses::Expression;
|
||||
|
||||
Rules();
|
||||
|
||||
/// @returns a pointer to the first matching pattern and sets the match
|
||||
/// groups accordingly.
|
||||
std::pair<Pattern, std::function<Pattern()>> const* findFirstMatch(
|
||||
Expression const& _expr,
|
||||
ExpressionClasses const& _classes
|
||||
);
|
||||
|
||||
private:
|
||||
void addRules(std::vector<std::pair<Pattern, std::function<Pattern()>>> const& _rules);
|
||||
void addRule(std::pair<Pattern, std::function<Pattern()>> const& _rule);
|
||||
|
||||
void resetMatchGroups() { m_matchGroups.clear(); }
|
||||
|
||||
std::map<unsigned, Expression const*> m_matchGroups;
|
||||
std::vector<std::pair<Pattern, std::function<Pattern()>>> m_rules[256];
|
||||
};
|
||||
|
||||
/**
|
||||
* Pattern to match against an expression.
|
||||
* Also stores matched expressions to retrieve them later, for constructing new expressions using
|
||||
* ExpressionTemplate.
|
||||
*/
|
||||
class Pattern
|
||||
{
|
||||
public:
|
||||
using Expression = ExpressionClasses::Expression;
|
||||
using Id = ExpressionClasses::Id;
|
||||
|
||||
// Matches a specific constant value.
|
||||
Pattern(unsigned _value): Pattern(u256(_value)) {}
|
||||
// Matches a specific constant value.
|
||||
Pattern(u256 const& _value): m_type(Push), m_requireDataMatch(true), m_data(std::make_shared<u256>(_value)) {}
|
||||
// Matches a specific assembly item type or anything if not given.
|
||||
Pattern(AssemblyItemType _type = UndefinedItem): m_type(_type) {}
|
||||
// Matches a given instruction with given arguments
|
||||
Pattern(Instruction _instruction, std::vector<Pattern> const& _arguments = {});
|
||||
/// Sets this pattern to be part of the match group with the identifier @a _group.
|
||||
/// Inside one rule, all patterns in the same match group have to match expressions from the
|
||||
/// same expression equivalence class.
|
||||
void setMatchGroup(unsigned _group, std::map<unsigned, Expression const*>& _matchGroups);
|
||||
unsigned matchGroup() const { return m_matchGroup; }
|
||||
bool matches(Expression const& _expr, ExpressionClasses const& _classes) const;
|
||||
|
||||
AssemblyItem toAssemblyItem(SourceLocation const& _location) const;
|
||||
std::vector<Pattern> arguments() const { return m_arguments; }
|
||||
|
||||
/// @returns the id of the matched expression if this pattern is part of a match group.
|
||||
Id id() const { return matchGroupValue().id; }
|
||||
/// @returns the data of the matched expression if this pattern is part of a match group.
|
||||
u256 const& d() const { return matchGroupValue().item->data(); }
|
||||
|
||||
std::string toString() const;
|
||||
|
||||
AssemblyItemType type() const { return m_type; }
|
||||
Instruction instruction() const
|
||||
{
|
||||
assertThrow(type() == Operation, OptimizerException, "");
|
||||
return m_instruction;
|
||||
}
|
||||
|
||||
private:
|
||||
bool matchesBaseItem(AssemblyItem const* _item) const;
|
||||
Expression const& matchGroupValue() const;
|
||||
u256 const& data() const;
|
||||
|
||||
AssemblyItemType m_type;
|
||||
bool m_requireDataMatch = false;
|
||||
Instruction m_instruction; ///< Only valid if m_type is Operation
|
||||
std::shared_ptr<u256> m_data; ///< Only valid if m_type is not Operation
|
||||
std::vector<Pattern> m_arguments;
|
||||
unsigned m_matchGroup = 0;
|
||||
std::map<unsigned, Expression const*>* m_matchGroups = nullptr;
|
||||
};
|
||||
|
||||
/**
|
||||
* Template for a new expression that can be built from matched patterns.
|
||||
*/
|
||||
struct ExpressionTemplate
|
||||
{
|
||||
using Expression = ExpressionClasses::Expression;
|
||||
using Id = ExpressionClasses::Id;
|
||||
explicit ExpressionTemplate(Pattern const& _pattern, SourceLocation const& _location);
|
||||
std::string toString() const;
|
||||
bool hasId = false;
|
||||
/// Id of the matched expression, if available.
|
||||
Id id = Id(-1);
|
||||
// Otherwise, assembly item.
|
||||
AssemblyItem item = UndefinedItem;
|
||||
std::vector<ExpressionTemplate> arguments;
|
||||
};
|
||||
|
||||
}
|
||||
}
|
@ -44,10 +44,19 @@ Declaration const* DeclarationContainer::conflictingDeclaration(
|
||||
|
||||
if (dynamic_cast<FunctionDefinition const*>(&_declaration))
|
||||
{
|
||||
// check that all other declarations with the same name are functions
|
||||
// check that all other declarations with the same name are functions or a public state variable
|
||||
for (Declaration const* declaration: declarations)
|
||||
if (!dynamic_cast<FunctionDefinition const*>(declaration))
|
||||
{
|
||||
if (dynamic_cast<FunctionDefinition const*>(declaration))
|
||||
continue;
|
||||
if (auto variableDeclaration = dynamic_cast<VariableDeclaration const*>(declaration))
|
||||
{
|
||||
if (variableDeclaration->isStateVariable() && !variableDeclaration->isConstant() && variableDeclaration->isPublic())
|
||||
continue;
|
||||
return declaration;
|
||||
}
|
||||
return declaration;
|
||||
}
|
||||
}
|
||||
else if (declarations.size() == 1 && declarations.front() == &_declaration)
|
||||
return nullptr;
|
||||
|
@ -260,10 +260,16 @@ vector<Declaration const*> NameAndTypeResolver::cleanedDeclarations(
|
||||
for (auto it = _declarations.begin(); it != _declarations.end(); ++it)
|
||||
{
|
||||
solAssert(*it, "");
|
||||
// the declaration is functionDefinition while declarations > 1
|
||||
FunctionDefinition const& functionDefinition = dynamic_cast<FunctionDefinition const&>(**it);
|
||||
FunctionType functionType(functionDefinition);
|
||||
for (auto parameter: functionType.parameterTypes() + functionType.returnParameterTypes())
|
||||
// the declaration is functionDefinition or a VariableDeclaration while declarations > 1
|
||||
solAssert(dynamic_cast<FunctionDefinition const*>(*it) || dynamic_cast<VariableDeclaration const*>(*it),
|
||||
"Found overloading involving something not a function or a variable");
|
||||
|
||||
shared_ptr<FunctionType const> functionType { (*it)->functionType(false) };
|
||||
if (!functionType)
|
||||
functionType = (*it)->functionType(true);
|
||||
solAssert(functionType, "failed to determine the function type of the overloaded");
|
||||
|
||||
for (auto parameter: functionType->parameterTypes() + functionType->returnParameterTypes())
|
||||
if (!parameter)
|
||||
reportFatalDeclarationError(_identifier.location(), "Function type can not be used in this context");
|
||||
|
||||
@ -272,8 +278,10 @@ vector<Declaration const*> NameAndTypeResolver::cleanedDeclarations(
|
||||
uniqueFunctions.end(),
|
||||
[&](Declaration const* d)
|
||||
{
|
||||
FunctionType newFunctionType(dynamic_cast<FunctionDefinition const&>(*d));
|
||||
return functionType.hasEqualArgumentTypes(newFunctionType);
|
||||
shared_ptr<FunctionType const> newFunctionType { d->functionType(false) };
|
||||
if (!newFunctionType)
|
||||
newFunctionType = d->functionType(true);
|
||||
return newFunctionType && functionType->hasEqualArgumentTypes(*newFunctionType);
|
||||
}
|
||||
))
|
||||
uniqueFunctions.push_back(*it);
|
||||
@ -289,7 +297,39 @@ void NameAndTypeResolver::importInheritedScope(ContractDefinition const& _base)
|
||||
for (auto const& declaration: nameAndDeclaration.second)
|
||||
// Import if it was declared in the base, is not the constructor and is visible in derived classes
|
||||
if (declaration->scope() == &_base && declaration->isVisibleInDerivedContracts())
|
||||
m_currentScope->registerDeclaration(*declaration);
|
||||
if (!m_currentScope->registerDeclaration(*declaration))
|
||||
{
|
||||
SourceLocation firstDeclarationLocation;
|
||||
SourceLocation secondDeclarationLocation;
|
||||
Declaration const* conflictingDeclaration = m_currentScope->conflictingDeclaration(*declaration);
|
||||
solAssert(conflictingDeclaration, "");
|
||||
|
||||
// Usual shadowing is not an error
|
||||
if (dynamic_cast<VariableDeclaration const*>(declaration) && dynamic_cast<VariableDeclaration const*>(conflictingDeclaration))
|
||||
continue;
|
||||
|
||||
// Usual shadowing is not an error
|
||||
if (dynamic_cast<ModifierDefinition const*>(declaration) && dynamic_cast<ModifierDefinition const*>(conflictingDeclaration))
|
||||
continue;
|
||||
|
||||
if (declaration->location().start < conflictingDeclaration->location().start)
|
||||
{
|
||||
firstDeclarationLocation = declaration->location();
|
||||
secondDeclarationLocation = conflictingDeclaration->location();
|
||||
}
|
||||
else
|
||||
{
|
||||
firstDeclarationLocation = conflictingDeclaration->location();
|
||||
secondDeclarationLocation = declaration->location();
|
||||
}
|
||||
|
||||
reportDeclarationError(
|
||||
secondDeclarationLocation,
|
||||
"Identifier already declared.",
|
||||
firstDeclarationLocation,
|
||||
"The previous declaration is here:"
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
void NameAndTypeResolver::linearizeBaseContracts(ContractDefinition& _contract)
|
||||
|
@ -1500,8 +1500,23 @@ bool TypeChecker::visit(Identifier const& _identifier)
|
||||
if (!annotation.referencedDeclaration)
|
||||
{
|
||||
if (!annotation.argumentTypes)
|
||||
fatalTypeError(_identifier.location(), "Unable to determine overloaded type.");
|
||||
if (annotation.overloadedDeclarations.empty())
|
||||
{
|
||||
// The identifier should be a public state variable shadowing other functions
|
||||
vector<Declaration const*> candidates;
|
||||
|
||||
for (Declaration const* declaration: annotation.overloadedDeclarations)
|
||||
{
|
||||
if (VariableDeclaration const* variableDeclaration = dynamic_cast<decltype(variableDeclaration)>(declaration))
|
||||
candidates.push_back(declaration);
|
||||
}
|
||||
if (candidates.empty())
|
||||
fatalTypeError(_identifier.location(), "No matching declaration found after variable lookup.");
|
||||
else if (candidates.size() == 1)
|
||||
annotation.referencedDeclaration = candidates.front();
|
||||
else
|
||||
fatalTypeError(_identifier.location(), "No unique declaration found after variable lookup.");
|
||||
}
|
||||
else if (annotation.overloadedDeclarations.empty())
|
||||
fatalTypeError(_identifier.location(), "No candidates for overload resolution found.");
|
||||
else if (annotation.overloadedDeclarations.size() == 1)
|
||||
annotation.referencedDeclaration = *annotation.overloadedDeclarations.begin();
|
||||
|
@ -217,6 +217,9 @@ vector<Declaration const*> const& ContractDefinition::inheritableMembers() const
|
||||
|
||||
for (EnumDefinition const* e: definedEnums())
|
||||
addInheritableMember(e);
|
||||
|
||||
for (EventDefinition const* e: events())
|
||||
addInheritableMember(e);
|
||||
}
|
||||
return *m_inheritableMembers;
|
||||
}
|
||||
@ -271,6 +274,45 @@ TypeDeclarationAnnotation& EnumDefinition::annotation() const
|
||||
return static_cast<TypeDeclarationAnnotation&>(*m_annotation);
|
||||
}
|
||||
|
||||
shared_ptr<FunctionType> FunctionDefinition::functionType(bool _internal) const
|
||||
{
|
||||
if (_internal)
|
||||
{
|
||||
switch (visibility())
|
||||
{
|
||||
case Declaration::Visibility::Default:
|
||||
solAssert(false, "visibility() should not return Default");
|
||||
case Declaration::Visibility::Private:
|
||||
case Declaration::Visibility::Internal:
|
||||
case Declaration::Visibility::Public:
|
||||
return make_shared<FunctionType>(*this, _internal);
|
||||
case Declaration::Visibility::External:
|
||||
return {};
|
||||
default:
|
||||
solAssert(false, "visibility() should not return a Visibility");
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
switch (visibility())
|
||||
{
|
||||
case Declaration::Visibility::Default:
|
||||
solAssert(false, "visibility() should not return Default");
|
||||
case Declaration::Visibility::Private:
|
||||
case Declaration::Visibility::Internal:
|
||||
return {};
|
||||
case Declaration::Visibility::Public:
|
||||
case Declaration::Visibility::External:
|
||||
return make_shared<FunctionType>(*this, _internal);
|
||||
default:
|
||||
solAssert(false, "visibility() should not return a Visibility");
|
||||
}
|
||||
}
|
||||
|
||||
// To make the compiler happy
|
||||
return {};
|
||||
}
|
||||
|
||||
TypePointer FunctionDefinition::type() const
|
||||
{
|
||||
return make_shared<FunctionType>(*this);
|
||||
@ -305,6 +347,14 @@ TypePointer EventDefinition::type() const
|
||||
return make_shared<FunctionType>(*this);
|
||||
}
|
||||
|
||||
std::shared_ptr<FunctionType> EventDefinition::functionType(bool _internal) const
|
||||
{
|
||||
if (_internal)
|
||||
return make_shared<FunctionType>(*this);
|
||||
else
|
||||
return {};
|
||||
}
|
||||
|
||||
EventDefinitionAnnotation& EventDefinition::annotation() const
|
||||
{
|
||||
if (!m_annotation)
|
||||
@ -362,6 +412,28 @@ TypePointer VariableDeclaration::type() const
|
||||
return annotation().type;
|
||||
}
|
||||
|
||||
shared_ptr<FunctionType> VariableDeclaration::functionType(bool _internal) const
|
||||
{
|
||||
if (_internal)
|
||||
return {};
|
||||
switch (visibility())
|
||||
{
|
||||
case Declaration::Visibility::Default:
|
||||
solAssert(false, "visibility() should not return Default");
|
||||
case Declaration::Visibility::Private:
|
||||
case Declaration::Visibility::Internal:
|
||||
return {};
|
||||
case Declaration::Visibility::Public:
|
||||
case Declaration::Visibility::External:
|
||||
return make_shared<FunctionType>(*this);
|
||||
default:
|
||||
solAssert(false, "visibility() should not return a Visibility");
|
||||
}
|
||||
|
||||
// To make the compiler happy
|
||||
return {};
|
||||
}
|
||||
|
||||
VariableDeclarationAnnotation& VariableDeclaration::annotation() const
|
||||
{
|
||||
if (!m_annotation)
|
||||
|
@ -171,6 +171,10 @@ public:
|
||||
/// This can only be called once types of variable declarations have already been resolved.
|
||||
virtual TypePointer type() const = 0;
|
||||
|
||||
/// @param _internal false indicates external interface is concerned, true indicates internal interface is concerned.
|
||||
/// @returns null when it is not accessible as a function.
|
||||
virtual std::shared_ptr<FunctionType> functionType(bool /*_internal*/) const { return {}; }
|
||||
|
||||
protected:
|
||||
virtual Visibility defaultVisibility() const { return Visibility::Public; }
|
||||
|
||||
@ -581,6 +585,10 @@ public:
|
||||
|
||||
virtual TypePointer type() const override;
|
||||
|
||||
/// @param _internal false indicates external interface is concerned, true indicates internal interface is concerned.
|
||||
/// @returns null when it is not accessible as a function.
|
||||
virtual std::shared_ptr<FunctionType> functionType(bool /*_internal*/) const override;
|
||||
|
||||
virtual FunctionDefinitionAnnotation& annotation() const override;
|
||||
|
||||
private:
|
||||
@ -643,6 +651,10 @@ public:
|
||||
|
||||
virtual TypePointer type() const override;
|
||||
|
||||
/// @param _internal false indicates external interface is concerned, true indicates internal interface is concerned.
|
||||
/// @returns null when it is not accessible as a function.
|
||||
virtual std::shared_ptr<FunctionType> functionType(bool /*_internal*/) const override;
|
||||
|
||||
virtual VariableDeclarationAnnotation& annotation() const override;
|
||||
|
||||
protected:
|
||||
@ -740,6 +752,7 @@ public:
|
||||
bool isAnonymous() const { return m_anonymous; }
|
||||
|
||||
virtual TypePointer type() const override;
|
||||
virtual std::shared_ptr<FunctionType> functionType(bool /*_internal*/) const override;
|
||||
|
||||
virtual EventDefinitionAnnotation& annotation() const override;
|
||||
|
||||
|
@ -908,19 +908,43 @@ bool ExpressionCompiler::visit(MemberAccess const& _memberAccess)
|
||||
solAssert(_memberAccess.annotation().type, "_memberAccess has no type");
|
||||
if (auto funType = dynamic_cast<FunctionType const*>(_memberAccess.annotation().type.get()))
|
||||
{
|
||||
if (funType->location() != FunctionType::Location::Internal)
|
||||
{
|
||||
_memberAccess.expression().accept(*this);
|
||||
m_context << funType->externalIdentifier();
|
||||
}
|
||||
else
|
||||
switch (funType->location())
|
||||
{
|
||||
case FunctionType::Location::Internal:
|
||||
// We do not visit the expression here on purpose, because in the case of an
|
||||
// internal library function call, this would push the library address forcing
|
||||
// us to link against it although we actually do not need it.
|
||||
auto const* function = dynamic_cast<FunctionDefinition const*>(_memberAccess.annotation().referencedDeclaration);
|
||||
solAssert(!!function, "Function not found in member access");
|
||||
utils().pushCombinedFunctionEntryLabel(*function);
|
||||
if (auto const* function = dynamic_cast<FunctionDefinition const*>(_memberAccess.annotation().referencedDeclaration))
|
||||
utils().pushCombinedFunctionEntryLabel(*function);
|
||||
else
|
||||
solAssert(false, "Function not found in member access");
|
||||
break;
|
||||
case FunctionType::Location::Event:
|
||||
if (!dynamic_cast<EventDefinition const*>(_memberAccess.annotation().referencedDeclaration))
|
||||
solAssert(false, "event not found");
|
||||
// no-op, because the parent node will do the job
|
||||
break;
|
||||
case FunctionType::Location::External:
|
||||
case FunctionType::Location::Creation:
|
||||
case FunctionType::Location::DelegateCall:
|
||||
case FunctionType::Location::CallCode:
|
||||
case FunctionType::Location::Send:
|
||||
case FunctionType::Location::Bare:
|
||||
case FunctionType::Location::BareCallCode:
|
||||
case FunctionType::Location::BareDelegateCall:
|
||||
_memberAccess.expression().accept(*this);
|
||||
m_context << funType->externalIdentifier();
|
||||
break;
|
||||
case FunctionType::Location::Log0:
|
||||
case FunctionType::Location::Log1:
|
||||
case FunctionType::Location::Log2:
|
||||
case FunctionType::Location::Log3:
|
||||
case FunctionType::Location::Log4:
|
||||
case FunctionType::Location::ECRecover:
|
||||
case FunctionType::Location::SHA256:
|
||||
case FunctionType::Location::RIPEMD160:
|
||||
default:
|
||||
solAssert(false, "unsupported member function");
|
||||
}
|
||||
}
|
||||
else if (dynamic_cast<TypeType const*>(_memberAccess.annotation().type.get()))
|
||||
|
@ -509,23 +509,32 @@ string CompilerStack::applyRemapping(string const& _path, string const& _context
|
||||
};
|
||||
|
||||
size_t longestPrefix = 0;
|
||||
string longestPrefixTarget;
|
||||
size_t longestContext = 0;
|
||||
string bestMatchTarget;
|
||||
|
||||
for (auto const& redir: m_remappings)
|
||||
{
|
||||
// Skip if we already have a closer match.
|
||||
if (longestPrefix > 0 && redir.prefix.length() <= longestPrefix)
|
||||
string context = sanitizePath(redir.context);
|
||||
string prefix = sanitizePath(redir.prefix);
|
||||
|
||||
// Skip if current context is closer
|
||||
if (context.length() < longestContext)
|
||||
continue;
|
||||
// Skip if redir.context is not a prefix of _context
|
||||
if (!isPrefixOf(redir.context, _context))
|
||||
if (!isPrefixOf(context, _context))
|
||||
continue;
|
||||
// Skip if we already have a closer prefix match.
|
||||
if (prefix.length() < longestPrefix && context.length() == longestContext)
|
||||
continue;
|
||||
// Skip if the prefix does not match.
|
||||
if (!isPrefixOf(redir.prefix, _path))
|
||||
if (!isPrefixOf(prefix, _path))
|
||||
continue;
|
||||
|
||||
longestPrefix = redir.prefix.length();
|
||||
longestPrefixTarget = redir.target;
|
||||
longestContext = context.length();
|
||||
longestPrefix = prefix.length();
|
||||
bestMatchTarget = sanitizePath(redir.target);
|
||||
}
|
||||
string path = longestPrefixTarget;
|
||||
string path = bestMatchTarget;
|
||||
path.append(_path.begin() + longestPrefix, _path.end());
|
||||
return path;
|
||||
}
|
||||
@ -593,11 +602,11 @@ bool CompilerStack::checkLibraryNameClashes()
|
||||
|
||||
string CompilerStack::absolutePath(string const& _path, string const& _reference) const
|
||||
{
|
||||
// Anything that does not start with `.` is an absolute path.
|
||||
if (_path.empty() || _path.front() != '.')
|
||||
return _path;
|
||||
using path = boost::filesystem::path;
|
||||
path p(_path);
|
||||
// Anything that does not start with `.` is an absolute path.
|
||||
if (p.begin() == p.end() || (*p.begin() != "." && *p.begin() != ".."))
|
||||
return _path;
|
||||
path result(_reference);
|
||||
result.remove_filename();
|
||||
for (path::iterator it = p.begin(); it != p.end(); ++it)
|
||||
|
@ -29,6 +29,7 @@
|
||||
#include <vector>
|
||||
#include <functional>
|
||||
#include <boost/noncopyable.hpp>
|
||||
#include <boost/filesystem.hpp>
|
||||
#include <json/json.h>
|
||||
#include <libdevcore/Common.h>
|
||||
#include <libdevcore/FixedHash.h>
|
||||
@ -234,12 +235,14 @@ private:
|
||||
bool checkLibraryNameClashes();
|
||||
/// @returns the absolute path corresponding to @a _path relative to @a _reference.
|
||||
std::string absolutePath(std::string const& _path, std::string const& _reference) const;
|
||||
/// Helper function to return path converted strings.
|
||||
std::string sanitizePath(std::string const& _path) const { return boost::filesystem::path(_path).generic_string(); }
|
||||
|
||||
/// Compile a single contract and put the result in @a _compiledContracts.
|
||||
void compileContract(
|
||||
ContractDefinition const& _contract,
|
||||
std::map<ContractDefinition const*, eth::Assembly const*>& _compiledContracts
|
||||
);
|
||||
|
||||
void link();
|
||||
|
||||
Contract const& contract(std::string const& _contractName = "") const;
|
||||
|
@ -1153,9 +1153,9 @@ ASTPointer<Expression> Parser::parseLeftHandSideExpression(
|
||||
else if (m_scanner->currentToken() == Token::New)
|
||||
{
|
||||
expectToken(Token::New);
|
||||
ASTPointer<TypeName> contractName(parseTypeName(false));
|
||||
nodeFactory.setEndPositionFromNode(contractName);
|
||||
expression = nodeFactory.createNode<NewExpression>(contractName);
|
||||
ASTPointer<TypeName> typeName(parseTypeName(false));
|
||||
nodeFactory.setEndPositionFromNode(typeName);
|
||||
expression = nodeFactory.createNode<NewExpression>(typeName);
|
||||
}
|
||||
else
|
||||
expression = parsePrimaryExpression();
|
||||
|
34
scripts/create_source_tarball.sh
Executable file
34
scripts/create_source_tarball.sh
Executable file
@ -0,0 +1,34 @@
|
||||
#!/usr/bin/env sh
|
||||
#
|
||||
|
||||
set -e
|
||||
|
||||
REPO_ROOT="$(dirname "$0")"/..
|
||||
(
|
||||
cd "$REPO_ROOT"
|
||||
version=$(grep -oP "PROJECT_VERSION \"?\K[0-9.]+(?=\")"? CMakeLists.txt)
|
||||
commithash=$(git rev-parse --short=8 HEAD)
|
||||
commitdate=$(git show --format=%ci HEAD | head -n 1 | cut - -b1-10 | sed -e 's/-0?/./' | sed -e 's/-0?/./')
|
||||
|
||||
# file exists and has zero size -> not a prerelease
|
||||
if [ -e prerelease.txt -a ! -s prerelease.txt ]
|
||||
then
|
||||
versionstring="$version"
|
||||
else
|
||||
versionstring="$version-develop-$commitdate-$commithash"
|
||||
fi
|
||||
|
||||
TEMPDIR=$(mktemp -d)
|
||||
SOLDIR="$TEMPDIR/solidity_$versionstring/"
|
||||
mkdir "$SOLDIR"
|
||||
# Store the current source
|
||||
git checkout-index -a --prefix="$SOLDIR"
|
||||
git submodule foreach 'git checkout-index -a --prefix="'"$SOLDIR"'/$path/"'
|
||||
# Store the commit hash
|
||||
echo "$commithash" > "$SOLDIR/commit_hash.txt"
|
||||
# Add dependencies
|
||||
mkdir -p "$SOLDIR/deps/downloads/" 2>/dev/null || true
|
||||
wget -O "$SOLDIR/deps/downloads/jsoncpp-1.7.7.tar.gz" https://github.com/open-source-parsers/jsoncpp/archive/1.7.7.tar.gz
|
||||
tar czf "$REPO_ROOT/solidity_$versionstring.tar.gz" -C "$TEMPDIR" "solidity_$versionstring"
|
||||
rm -r "$TEMPDIR"
|
||||
)
|
37
scripts/install_cmake.sh
Executable file
37
scripts/install_cmake.sh
Executable file
@ -0,0 +1,37 @@
|
||||
#!/usr/bin/env sh
|
||||
|
||||
# This script downloads the CMake binary and installs it in ~/.local directory
|
||||
# (the cmake executable will be in ~/.local/bin).
|
||||
# This is mostly suitable for CIs, not end users.
|
||||
|
||||
set -e
|
||||
|
||||
VERSION=3.7.1
|
||||
PREFIX=~/.local
|
||||
|
||||
OS=$(uname -s)
|
||||
case $OS in
|
||||
Linux) SHA256=7b4b7a1d9f314f45722899c0521c261e4bfab4a6b532609e37fef391da6bade2;;
|
||||
Darwin) SHA256=1851d1448964893fdc5a8c05863326119f397a3790e0c84c40b83499c7960267;;
|
||||
esac
|
||||
|
||||
|
||||
BIN=$PREFIX/bin
|
||||
|
||||
if test -f $BIN/cmake && ($BIN/cmake --version | grep -q "$VERSION"); then
|
||||
echo "CMake $VERSION already installed in $BIN"
|
||||
else
|
||||
FILE=cmake-$VERSION-$OS-x86_64.tar.gz
|
||||
URL=https://cmake.org/files/v3.7/$FILE
|
||||
ERROR=0
|
||||
TMPFILE=$(mktemp --tmpdir cmake-$VERSION-$OS-x86_64.XXXXXXXX.tar.gz)
|
||||
echo "Downloading CMake ($URL)..."
|
||||
wget "$URL" -O "$TMPFILE" -nv
|
||||
if ! (shasum -a256 "$TMPFILE" | grep -q "$SHA256"); then
|
||||
echo "Checksum mismatch ($TMPFILE)"
|
||||
exit 1
|
||||
fi
|
||||
mkdir -p "$PREFIX"
|
||||
tar xzf "$TMPFILE" -C "$PREFIX" --strip 1
|
||||
rm $TMPFILE
|
||||
fi
|
@ -164,6 +164,43 @@ BOOST_AUTO_TEST_CASE(context_dependent_remappings)
|
||||
BOOST_CHECK(c.compile());
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(filename_with_period)
|
||||
{
|
||||
CompilerStack c;
|
||||
c.addSource("a/a.sol", "import \".b.sol\"; contract A is B {} pragma solidity >=0.0;");
|
||||
c.addSource("a/.b.sol", "contract B {} pragma solidity >=0.0;");
|
||||
BOOST_CHECK(!c.compile());
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(context_dependent_remappings_ensure_default_and_module_preserved)
|
||||
{
|
||||
CompilerStack c;
|
||||
c.setRemappings(vector<string>{"foo=vendor/foo_2.0.0", "vendor/bar:foo=vendor/foo_1.0.0", "bar=vendor/bar"});
|
||||
c.addSource("main.sol", "import \"foo/foo.sol\"; import {Bar} from \"bar/bar.sol\"; contract Main is Foo2, Bar {} pragma solidity >=0.0;");
|
||||
c.addSource("vendor/bar/bar.sol", "import \"foo/foo.sol\"; contract Bar {Foo1 foo;} pragma solidity >=0.0;");
|
||||
c.addSource("vendor/foo_1.0.0/foo.sol", "contract Foo1 {} pragma solidity >=0.0;");
|
||||
c.addSource("vendor/foo_2.0.0/foo.sol", "contract Foo2 {} pragma solidity >=0.0;");
|
||||
BOOST_CHECK(c.compile());
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(context_dependent_remappings_order_independent)
|
||||
{
|
||||
CompilerStack c;
|
||||
c.setRemappings(vector<string>{"a:x/y/z=d", "a/b:x=e"});
|
||||
c.addSource("a/main.sol", "import \"x/y/z/z.sol\"; contract Main is D {} pragma solidity >=0.0;");
|
||||
c.addSource("a/b/main.sol", "import \"x/y/z/z.sol\"; contract Main is E {} pragma solidity >=0.0;");
|
||||
c.addSource("d/z.sol", "contract D {} pragma solidity >=0.0;");
|
||||
c.addSource("e/y/z/z.sol", "contract E {} pragma solidity >=0.0;");
|
||||
BOOST_CHECK(c.compile());
|
||||
CompilerStack d;
|
||||
d.setRemappings(vector<string>{"a/b:x=e", "a:x/y/z=d"});
|
||||
d.addSource("a/main.sol", "import \"x/y/z/z.sol\"; contract Main is D {} pragma solidity >=0.0;");
|
||||
d.addSource("a/b/main.sol", "import \"x/y/z/z.sol\"; contract Main is E {} pragma solidity >=0.0;");
|
||||
d.addSource("d/z.sol", "contract D {} pragma solidity >=0.0;");
|
||||
d.addSource("e/y/z/z.sol", "contract E {} pragma solidity >=0.0;");
|
||||
BOOST_CHECK(d.compile());
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_SUITE_END()
|
||||
|
||||
}
|
||||
|
@ -2770,6 +2770,28 @@ BOOST_AUTO_TEST_CASE(event_no_arguments)
|
||||
BOOST_CHECK_EQUAL(m_logs[0].topics[0], dev::keccak256(string("Deposit()")));
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(event_access_through_base_name)
|
||||
{
|
||||
char const* sourceCode = R"(
|
||||
contract A {
|
||||
event x();
|
||||
}
|
||||
contract B is A {
|
||||
function f() returns (uint) {
|
||||
A.x();
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
)";
|
||||
compileAndRun(sourceCode);
|
||||
callContractFunction("f()");
|
||||
BOOST_REQUIRE_EQUAL(m_logs.size(), 1);
|
||||
BOOST_CHECK_EQUAL(m_logs[0].address, m_contractAddress);
|
||||
BOOST_CHECK(m_logs[0].data.empty());
|
||||
BOOST_REQUIRE_EQUAL(m_logs[0].topics.size(), 1);
|
||||
BOOST_CHECK_EQUAL(m_logs[0].topics[0], dev::keccak256(string("x()")));
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(event_anonymous)
|
||||
{
|
||||
char const* sourceCode = R"(
|
||||
@ -4847,60 +4869,6 @@ BOOST_AUTO_TEST_CASE(proper_order_of_overwriting_of_attributes)
|
||||
BOOST_CHECK(callContractFunction("ok()") == encodeArgs(false));
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(proper_overwriting_accessor_by_function)
|
||||
{
|
||||
// bug #1798
|
||||
char const* sourceCode = R"(
|
||||
contract attribute {
|
||||
bool ok = false;
|
||||
}
|
||||
contract func {
|
||||
function ok() returns (bool) { return true; }
|
||||
}
|
||||
|
||||
contract attr_func is attribute, func {
|
||||
function checkOk() returns (bool) { return ok(); }
|
||||
}
|
||||
contract func_attr is func, attribute {
|
||||
function checkOk() returns (bool) { return ok; }
|
||||
}
|
||||
)";
|
||||
compileAndRun(sourceCode, 0, "attr_func");
|
||||
BOOST_CHECK(callContractFunction("ok()") == encodeArgs(true));
|
||||
compileAndRun(sourceCode, 0, "func_attr");
|
||||
BOOST_CHECK(callContractFunction("checkOk()") == encodeArgs(false));
|
||||
}
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_CASE(overwriting_inheritance)
|
||||
{
|
||||
// bug #1798
|
||||
char const* sourceCode = R"(
|
||||
contract A {
|
||||
function ok() returns (uint) { return 1; }
|
||||
}
|
||||
contract B {
|
||||
function ok() returns (uint) { return 2; }
|
||||
}
|
||||
contract C {
|
||||
uint ok = 6;
|
||||
}
|
||||
contract AB is A, B {
|
||||
function ok() returns (uint) { return 4; }
|
||||
}
|
||||
contract reversedE is C, AB {
|
||||
function checkOk() returns (uint) { return ok(); }
|
||||
}
|
||||
contract E is AB, C {
|
||||
function checkOk() returns (uint) { return ok; }
|
||||
}
|
||||
)";
|
||||
compileAndRun(sourceCode, 0, "reversedE");
|
||||
BOOST_CHECK(callContractFunction("checkOk()") == encodeArgs(4));
|
||||
compileAndRun(sourceCode, 0, "E");
|
||||
BOOST_CHECK(callContractFunction("checkOk()") == encodeArgs(6));
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(struct_assign_reference_to_struct)
|
||||
{
|
||||
char const* sourceCode = R"(
|
||||
|
@ -1056,7 +1056,9 @@ BOOST_AUTO_TEST_CASE(modifier_overrides_function)
|
||||
contract A { modifier mod(uint a) { _; } }
|
||||
contract B is A { function mod(uint a) { } }
|
||||
)";
|
||||
CHECK_ERROR(text, TypeError, "");
|
||||
// Error: Identifier already declared.
|
||||
// Error: Override changes modifier to function.
|
||||
CHECK_ERROR_ALLOW_MULTI(text, DeclarationError, "");
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(function_overrides_modifier)
|
||||
@ -1065,7 +1067,9 @@ BOOST_AUTO_TEST_CASE(function_overrides_modifier)
|
||||
contract A { function mod(uint a) { } }
|
||||
contract B is A { modifier mod(uint a) { _; } }
|
||||
)";
|
||||
CHECK_ERROR(text, TypeError, "");
|
||||
// Error: Identifier already declared.
|
||||
// Error: Override changes function to modifier.
|
||||
CHECK_ERROR_ALLOW_MULTI(text, DeclarationError, "");
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(modifier_returns_value)
|
||||
@ -4304,6 +4308,25 @@ BOOST_AUTO_TEST_CASE(illegal_override_payable_nonpayable)
|
||||
CHECK_ERROR(text, TypeError, "");
|
||||
}
|
||||
|
||||
BOOST_AUTO_TEST_CASE(function_variable_mixin)
|
||||
{
|
||||
// bug #1798 (cpp-ethereum), related to #1286 (solidity)
|
||||
char const* text = R"(
|
||||
contract attribute {
|
||||
bool ok = false;
|
||||
}
|
||||
contract func {
|
||||
function ok() returns (bool) { return true; }
|
||||
}
|
||||
|
||||
contract attr_func is attribute, func {
|
||||
function checkOk() returns (bool) { return ok(); }
|
||||
}
|
||||
)";
|
||||
CHECK_ERROR(text, DeclarationError, "");
|
||||
}
|
||||
|
||||
|
||||
BOOST_AUTO_TEST_CASE(payable_constant_conflict)
|
||||
{
|
||||
char const* text = R"(
|
||||
|
Loading…
Reference in New Issue
Block a user