mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
Merge pull request #9816 from ethereum/exp-base-literals
[Sol->Yul] Optimization for exponentiation when the base is a literal
This commit is contained in:
commit
4b342a7cad
@ -635,6 +635,119 @@ string YulUtilFunctions::overflowCheckedIntExpFunction(
|
||||
});
|
||||
}
|
||||
|
||||
string YulUtilFunctions::overflowCheckedIntLiteralExpFunction(
|
||||
RationalNumberType const& _baseType,
|
||||
IntegerType const& _exponentType,
|
||||
IntegerType const& _commonType
|
||||
)
|
||||
{
|
||||
solAssert(!_exponentType.isSigned(), "");
|
||||
solAssert(_baseType.isNegative() == _commonType.isSigned(), "");
|
||||
solAssert(_commonType.numBits() == 256, "");
|
||||
|
||||
string functionName = "checked_exp_" + _baseType.richIdentifier() + "_" + _exponentType.identifier();
|
||||
|
||||
return m_functionCollector.createFunction(functionName, [&]()
|
||||
{
|
||||
// Converts a bigint number into u256 (negative numbers represented in two's complement form.)
|
||||
// We assume that `_v` fits in 256 bits.
|
||||
auto bigint2u = [&](bigint const& _v) -> u256
|
||||
{
|
||||
if (_v < 0)
|
||||
return s2u(s256(_v));
|
||||
return u256(_v);
|
||||
};
|
||||
|
||||
// Calculates the upperbound for exponentiation, that is, calculate `b`, such that
|
||||
// _base**b <= _maxValue and _base**(b + 1) > _maxValue
|
||||
auto findExponentUpperbound = [](bigint const _base, bigint const _maxValue) -> unsigned
|
||||
{
|
||||
// There is no overflow for these cases
|
||||
if (_base == 0 || _base == -1 || _base == 1)
|
||||
return 0;
|
||||
|
||||
unsigned first = 0;
|
||||
unsigned last = 255;
|
||||
unsigned middle;
|
||||
|
||||
while (first < last)
|
||||
{
|
||||
middle = (first + last) / 2;
|
||||
|
||||
if (
|
||||
// The condition on msb is a shortcut that avoids computing large powers in
|
||||
// arbitrary precision.
|
||||
boost::multiprecision::msb(_base) * middle <= boost::multiprecision::msb(_maxValue) &&
|
||||
boost::multiprecision::pow(_base, middle) <= _maxValue
|
||||
)
|
||||
{
|
||||
if (boost::multiprecision::pow(_base, middle + 1) > _maxValue)
|
||||
return middle;
|
||||
else
|
||||
first = middle + 1;
|
||||
}
|
||||
else
|
||||
last = middle;
|
||||
}
|
||||
|
||||
return last;
|
||||
};
|
||||
|
||||
bigint baseValue = _baseType.isNegative() ?
|
||||
u2s(_baseType.literalValue(nullptr)) :
|
||||
_baseType.literalValue(nullptr);
|
||||
bool needsOverflowCheck = !((baseValue == 0) || (baseValue == -1) || (baseValue == 1));
|
||||
unsigned exponentUpperbound;
|
||||
|
||||
if (_baseType.isNegative())
|
||||
{
|
||||
// Only checks for underflow. The only case where this can be a problem is when, for a
|
||||
// negative base, say `b`, and an even exponent, say `e`, `b**e = 2**255` (which is an
|
||||
// overflow.) But this never happens because, `255 = 3*5*17`, and therefore there is no even
|
||||
// number `e` such that `b**e = 2**255`.
|
||||
exponentUpperbound = findExponentUpperbound(abs(baseValue), abs(_commonType.minValue()));
|
||||
|
||||
bigint power = boost::multiprecision::pow(baseValue, exponentUpperbound);
|
||||
bigint overflowedPower = boost::multiprecision::pow(baseValue, exponentUpperbound + 1);
|
||||
|
||||
if (needsOverflowCheck)
|
||||
solAssert(
|
||||
(power <= _commonType.maxValue()) && (power >= _commonType.minValue()) &&
|
||||
!((overflowedPower <= _commonType.maxValue()) && (overflowedPower >= _commonType.minValue())),
|
||||
"Incorrect exponent upper bound calculated."
|
||||
);
|
||||
}
|
||||
else
|
||||
{
|
||||
exponentUpperbound = findExponentUpperbound(baseValue, _commonType.maxValue());
|
||||
|
||||
if (needsOverflowCheck)
|
||||
solAssert(
|
||||
boost::multiprecision::pow(baseValue, exponentUpperbound) <= _commonType.maxValue() &&
|
||||
boost::multiprecision::pow(baseValue, exponentUpperbound + 1) > _commonType.maxValue(),
|
||||
"Incorrect exponent upper bound calculated."
|
||||
);
|
||||
}
|
||||
|
||||
return Whiskers(R"(
|
||||
function <functionName>(exponent) -> power {
|
||||
exponent := <exponentCleanupFunction>(exponent)
|
||||
<?needsOverflowCheck>
|
||||
if gt(exponent, <exponentUpperbound>) { <panic>() }
|
||||
</needsOverflowCheck>
|
||||
power := exp(<base>, exponent)
|
||||
}
|
||||
)")
|
||||
("functionName", functionName)
|
||||
("exponentCleanupFunction", cleanupFunction(_exponentType))
|
||||
("needsOverflowCheck", needsOverflowCheck)
|
||||
("exponentUpperbound", to_string(exponentUpperbound))
|
||||
("panic", panicFunction())
|
||||
("base", bigint2u(baseValue).str())
|
||||
.render();
|
||||
});
|
||||
}
|
||||
|
||||
string YulUtilFunctions::overflowCheckedUnsignedExpFunction()
|
||||
{
|
||||
// Checks for the "small number specialization" below.
|
||||
|
@ -128,6 +128,14 @@ public:
|
||||
/// signature: (base, exponent) -> power
|
||||
std::string overflowCheckedIntExpFunction(IntegerType const& _type, IntegerType const& _exponentType);
|
||||
|
||||
/// @returns the name of the exponentiation function, specialized for literal base.
|
||||
/// signature: exponent -> power
|
||||
std::string overflowCheckedIntLiteralExpFunction(
|
||||
RationalNumberType const& _baseType,
|
||||
IntegerType const& _exponentType,
|
||||
IntegerType const& _commonType
|
||||
);
|
||||
|
||||
/// Generic unsigned checked exponentiation function.
|
||||
/// Reverts if the result is larger than max.
|
||||
/// signature: (base, exponent, max) -> power
|
||||
|
@ -695,17 +695,34 @@ bool IRGeneratorForStatements::visit(BinaryOperation const& _binOp)
|
||||
solAssert(false, "Unknown comparison operator.");
|
||||
define(_binOp) << expr << "\n";
|
||||
}
|
||||
else if (TokenTraits::isShiftOp(op) || op == Token::Exp)
|
||||
else if (op == Token::Exp)
|
||||
{
|
||||
IRVariable left = convert(_binOp.leftExpression(), *commonType);
|
||||
IRVariable right = convert(_binOp.rightExpression(), *type(_binOp.rightExpression()).mobileType());
|
||||
if (op == Token::Exp)
|
||||
|
||||
if (auto rationalNumberType = dynamic_cast<RationalNumberType const*>(_binOp.leftExpression().annotation().type))
|
||||
{
|
||||
solAssert(rationalNumberType->integerType(), "Invalid literal as the base for exponentiation.");
|
||||
solAssert(dynamic_cast<IntegerType const*>(commonType), "");
|
||||
|
||||
define(_binOp) << m_utils.overflowCheckedIntLiteralExpFunction(
|
||||
*rationalNumberType,
|
||||
dynamic_cast<IntegerType const&>(right.type()),
|
||||
dynamic_cast<IntegerType const&>(*commonType)
|
||||
) << "(" << right.name() << ")\n";
|
||||
}
|
||||
else
|
||||
define(_binOp) << m_utils.overflowCheckedIntExpFunction(
|
||||
dynamic_cast<IntegerType const&>(left.type()),
|
||||
dynamic_cast<IntegerType const&>(right.type())
|
||||
) << "(" << left.name() << ", " << right.name() << ")\n";
|
||||
else
|
||||
define(_binOp) << shiftOperation(_binOp.getOperator(), left, right) << "\n";
|
||||
|
||||
}
|
||||
else if (TokenTraits::isShiftOp(op))
|
||||
{
|
||||
IRVariable left = convert(_binOp.leftExpression(), *commonType);
|
||||
IRVariable right = convert(_binOp.rightExpression(), *type(_binOp.rightExpression()).mobileType());
|
||||
define(_binOp) << shiftOperation(_binOp.getOperator(), left, right) << "\n";
|
||||
}
|
||||
else
|
||||
{
|
||||
|
1
test/cmdlineTests/exp_base_literal/args
Normal file
1
test/cmdlineTests/exp_base_literal/args
Normal file
@ -0,0 +1 @@
|
||||
--ir
|
1
test/cmdlineTests/exp_base_literal/err
Normal file
1
test/cmdlineTests/exp_base_literal/err
Normal file
@ -0,0 +1 @@
|
||||
|
1
test/cmdlineTests/exp_base_literal/exit
Normal file
1
test/cmdlineTests/exp_base_literal/exit
Normal file
@ -0,0 +1 @@
|
||||
0
|
18
test/cmdlineTests/exp_base_literal/input.sol
Normal file
18
test/cmdlineTests/exp_base_literal/input.sol
Normal file
@ -0,0 +1,18 @@
|
||||
// SPDX-License-Identifier: GPL-3.0
|
||||
pragma solidity > 0.7.1;
|
||||
|
||||
contract C {
|
||||
function f(uint a, uint b, uint c, uint d) public pure returns (uint, int, uint, uint) {
|
||||
uint w = 2**a;
|
||||
int x = (-2)**b;
|
||||
uint y = 10**c;
|
||||
uint z = (2**256 -1 )**d;
|
||||
|
||||
// Special cases: 0, 1, and -1
|
||||
w = (0)**a;
|
||||
x = (-1)**b;
|
||||
y = 1**c;
|
||||
|
||||
return (w, x, y, z);
|
||||
}
|
||||
}
|
304
test/cmdlineTests/exp_base_literal/output
Normal file
304
test/cmdlineTests/exp_base_literal/output
Normal file
@ -0,0 +1,304 @@
|
||||
IR:
|
||||
/*******************************************************
|
||||
* WARNING *
|
||||
* Solidity to Yul compilation is still EXPERIMENTAL *
|
||||
* It can result in LOSS OF FUNDS or worse *
|
||||
* !USE AT YOUR OWN RISK! *
|
||||
*******************************************************/
|
||||
|
||||
|
||||
object "C_80" {
|
||||
code {
|
||||
mstore(64, memoryguard(128))
|
||||
if callvalue() { revert(0, 0) }
|
||||
|
||||
constructor_C_80()
|
||||
|
||||
codecopy(0, dataoffset("C_80_deployed"), datasize("C_80_deployed"))
|
||||
|
||||
return(0, datasize("C_80_deployed"))
|
||||
|
||||
function constructor_C_80() {
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
object "C_80_deployed" {
|
||||
code {
|
||||
mstore(64, memoryguard(128))
|
||||
|
||||
if iszero(lt(calldatasize(), 4))
|
||||
{
|
||||
let selector := shift_right_224_unsigned(calldataload(0))
|
||||
switch selector
|
||||
|
||||
case 0x70cb9605
|
||||
{
|
||||
// f(uint256,uint256,uint256,uint256)
|
||||
if callvalue() { revert(0, 0) }
|
||||
let param_0, param_1, param_2, param_3 := abi_decode_tuple_t_uint256t_uint256t_uint256t_uint256(4, calldatasize())
|
||||
let ret_0, ret_1, ret_2, ret_3 := fun_f_79(param_0, param_1, param_2, param_3)
|
||||
let memPos := allocateMemory(0)
|
||||
let memEnd := abi_encode_tuple_t_uint256_t_int256_t_uint256_t_uint256__to_t_uint256_t_int256_t_uint256_t_uint256__fromStack(memPos , ret_0, ret_1, ret_2, ret_3)
|
||||
return(memPos, sub(memEnd, memPos))
|
||||
}
|
||||
|
||||
default {}
|
||||
}
|
||||
if iszero(calldatasize()) { }
|
||||
revert(0, 0)
|
||||
|
||||
function abi_decode_t_uint256(offset, end) -> value {
|
||||
value := calldataload(offset)
|
||||
validator_revert_t_uint256(value)
|
||||
}
|
||||
|
||||
function abi_decode_tuple_t_uint256t_uint256t_uint256t_uint256(headStart, dataEnd) -> value0, value1, value2, value3 {
|
||||
if slt(sub(dataEnd, headStart), 128) { revert(0, 0) }
|
||||
|
||||
{
|
||||
let offset := 0
|
||||
value0 := abi_decode_t_uint256(add(headStart, offset), dataEnd)
|
||||
}
|
||||
|
||||
{
|
||||
let offset := 32
|
||||
value1 := abi_decode_t_uint256(add(headStart, offset), dataEnd)
|
||||
}
|
||||
|
||||
{
|
||||
let offset := 64
|
||||
value2 := abi_decode_t_uint256(add(headStart, offset), dataEnd)
|
||||
}
|
||||
|
||||
{
|
||||
let offset := 96
|
||||
value3 := abi_decode_t_uint256(add(headStart, offset), dataEnd)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
function abi_encode_t_int256_to_t_int256_fromStack(value, pos) {
|
||||
mstore(pos, cleanup_t_int256(value))
|
||||
}
|
||||
|
||||
function abi_encode_t_uint256_to_t_uint256_fromStack(value, pos) {
|
||||
mstore(pos, cleanup_t_uint256(value))
|
||||
}
|
||||
|
||||
function abi_encode_tuple_t_uint256_t_int256_t_uint256_t_uint256__to_t_uint256_t_int256_t_uint256_t_uint256__fromStack(headStart , value0, value1, value2, value3) -> tail {
|
||||
tail := add(headStart, 128)
|
||||
|
||||
abi_encode_t_uint256_to_t_uint256_fromStack(value0, add(headStart, 0))
|
||||
|
||||
abi_encode_t_int256_to_t_int256_fromStack(value1, add(headStart, 32))
|
||||
|
||||
abi_encode_t_uint256_to_t_uint256_fromStack(value2, add(headStart, 64))
|
||||
|
||||
abi_encode_t_uint256_to_t_uint256_fromStack(value3, add(headStart, 96))
|
||||
|
||||
}
|
||||
|
||||
function allocateMemory(size) -> memPtr {
|
||||
memPtr := mload(64)
|
||||
let newFreePtr := add(memPtr, size)
|
||||
// protect against overflow
|
||||
if or(gt(newFreePtr, 0xffffffffffffffff), lt(newFreePtr, memPtr)) { panic_error() }
|
||||
mstore(64, newFreePtr)
|
||||
}
|
||||
|
||||
function checked_exp_t_rational_0_by_1_t_uint256(exponent) -> power {
|
||||
exponent := cleanup_t_uint256(exponent)
|
||||
|
||||
power := exp(0, exponent)
|
||||
}
|
||||
|
||||
function checked_exp_t_rational_10_by_1_t_uint256(exponent) -> power {
|
||||
exponent := cleanup_t_uint256(exponent)
|
||||
|
||||
if gt(exponent, 77) { panic_error() }
|
||||
|
||||
power := exp(10, exponent)
|
||||
}
|
||||
|
||||
function checked_exp_t_rational_115792089237316195423570985008687907853269984665640564039457584007913129639935_by_1_t_uint256(exponent) -> power {
|
||||
exponent := cleanup_t_uint256(exponent)
|
||||
|
||||
if gt(exponent, 1) { panic_error() }
|
||||
|
||||
power := exp(115792089237316195423570985008687907853269984665640564039457584007913129639935, exponent)
|
||||
}
|
||||
|
||||
function checked_exp_t_rational_1_by_1_t_uint256(exponent) -> power {
|
||||
exponent := cleanup_t_uint256(exponent)
|
||||
|
||||
power := exp(1, exponent)
|
||||
}
|
||||
|
||||
function checked_exp_t_rational_2_by_1_t_uint256(exponent) -> power {
|
||||
exponent := cleanup_t_uint256(exponent)
|
||||
|
||||
if gt(exponent, 255) { panic_error() }
|
||||
|
||||
power := exp(2, exponent)
|
||||
}
|
||||
|
||||
function checked_exp_t_rational_minus_1_by_1_t_uint256(exponent) -> power {
|
||||
exponent := cleanup_t_uint256(exponent)
|
||||
|
||||
power := exp(115792089237316195423570985008687907853269984665640564039457584007913129639935, exponent)
|
||||
}
|
||||
|
||||
function checked_exp_t_rational_minus_2_by_1_t_uint256(exponent) -> power {
|
||||
exponent := cleanup_t_uint256(exponent)
|
||||
|
||||
if gt(exponent, 255) { panic_error() }
|
||||
|
||||
power := exp(115792089237316195423570985008687907853269984665640564039457584007913129639934, exponent)
|
||||
}
|
||||
|
||||
function cleanup_t_int256(value) -> cleaned {
|
||||
cleaned := value
|
||||
}
|
||||
|
||||
function cleanup_t_uint256(value) -> cleaned {
|
||||
cleaned := value
|
||||
}
|
||||
|
||||
function convert_t_rational_0_by_1_to_t_uint256(value) -> converted {
|
||||
converted := cleanup_t_uint256(value)
|
||||
}
|
||||
|
||||
function convert_t_rational_10_by_1_to_t_uint256(value) -> converted {
|
||||
converted := cleanup_t_uint256(value)
|
||||
}
|
||||
|
||||
function convert_t_rational_115792089237316195423570985008687907853269984665640564039457584007913129639935_by_1_to_t_uint256(value) -> converted {
|
||||
converted := cleanup_t_uint256(value)
|
||||
}
|
||||
|
||||
function convert_t_rational_1_by_1_to_t_uint256(value) -> converted {
|
||||
converted := cleanup_t_uint256(value)
|
||||
}
|
||||
|
||||
function convert_t_rational_2_by_1_to_t_uint256(value) -> converted {
|
||||
converted := cleanup_t_uint256(value)
|
||||
}
|
||||
|
||||
function convert_t_rational_minus_1_by_1_to_t_int256(value) -> converted {
|
||||
converted := cleanup_t_int256(value)
|
||||
}
|
||||
|
||||
function convert_t_rational_minus_2_by_1_to_t_int256(value) -> converted {
|
||||
converted := cleanup_t_int256(value)
|
||||
}
|
||||
|
||||
function fun_f_79(vloc_a_3, vloc_b_5, vloc_c_7, vloc_d_9) -> vloc__12, vloc__14, vloc__16, vloc__18 {
|
||||
let zero_value_for_type_t_uint256_1 := zero_value_for_split_t_uint256()
|
||||
vloc__12 := zero_value_for_type_t_uint256_1
|
||||
let zero_value_for_type_t_int256_2 := zero_value_for_split_t_int256()
|
||||
vloc__14 := zero_value_for_type_t_int256_2
|
||||
let zero_value_for_type_t_uint256_3 := zero_value_for_split_t_uint256()
|
||||
vloc__16 := zero_value_for_type_t_uint256_3
|
||||
let zero_value_for_type_t_uint256_4 := zero_value_for_split_t_uint256()
|
||||
vloc__18 := zero_value_for_type_t_uint256_4
|
||||
|
||||
let expr_22 := 0x02
|
||||
let _5 := vloc_a_3
|
||||
let expr_23 := _5
|
||||
let _6 := convert_t_rational_2_by_1_to_t_uint256(expr_22)
|
||||
let expr_24 := checked_exp_t_rational_2_by_1_t_uint256(expr_23)
|
||||
let vloc_w_21 := expr_24
|
||||
let expr_28 := 0x02
|
||||
let expr_29 := 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe
|
||||
let expr_30 := expr_29
|
||||
let _7 := vloc_b_5
|
||||
let expr_31 := _7
|
||||
let _8 := convert_t_rational_minus_2_by_1_to_t_int256(expr_30)
|
||||
let expr_32 := checked_exp_t_rational_minus_2_by_1_t_uint256(expr_31)
|
||||
let vloc_x_27 := expr_32
|
||||
let expr_36 := 0x0a
|
||||
let _9 := vloc_c_7
|
||||
let expr_37 := _9
|
||||
let _10 := convert_t_rational_10_by_1_to_t_uint256(expr_36)
|
||||
let expr_38 := checked_exp_t_rational_10_by_1_t_uint256(expr_37)
|
||||
let vloc_y_35 := expr_38
|
||||
let expr_46 := 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
|
||||
let expr_47 := expr_46
|
||||
let _11 := vloc_d_9
|
||||
let expr_48 := _11
|
||||
let _12 := convert_t_rational_115792089237316195423570985008687907853269984665640564039457584007913129639935_by_1_to_t_uint256(expr_47)
|
||||
let expr_49 := checked_exp_t_rational_115792089237316195423570985008687907853269984665640564039457584007913129639935_by_1_t_uint256(expr_48)
|
||||
let vloc_z_41 := expr_49
|
||||
let expr_52 := 0x00
|
||||
let expr_53 := expr_52
|
||||
let _13 := vloc_a_3
|
||||
let expr_54 := _13
|
||||
let _14 := convert_t_rational_0_by_1_to_t_uint256(expr_53)
|
||||
let expr_55 := checked_exp_t_rational_0_by_1_t_uint256(expr_54)
|
||||
vloc_w_21 := expr_55
|
||||
let expr_56 := expr_55
|
||||
let expr_59 := 0x01
|
||||
let expr_60 := 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
|
||||
let expr_61 := expr_60
|
||||
let _15 := vloc_b_5
|
||||
let expr_62 := _15
|
||||
let _16 := convert_t_rational_minus_1_by_1_to_t_int256(expr_61)
|
||||
let expr_63 := checked_exp_t_rational_minus_1_by_1_t_uint256(expr_62)
|
||||
vloc_x_27 := expr_63
|
||||
let expr_64 := expr_63
|
||||
let expr_67 := 0x01
|
||||
let _17 := vloc_c_7
|
||||
let expr_68 := _17
|
||||
let _18 := convert_t_rational_1_by_1_to_t_uint256(expr_67)
|
||||
let expr_69 := checked_exp_t_rational_1_by_1_t_uint256(expr_68)
|
||||
vloc_y_35 := expr_69
|
||||
let expr_70 := expr_69
|
||||
let _19 := vloc_w_21
|
||||
let expr_72 := _19
|
||||
let expr_76_component_1 := expr_72
|
||||
let _20 := vloc_x_27
|
||||
let expr_73 := _20
|
||||
let expr_76_component_2 := expr_73
|
||||
let _21 := vloc_y_35
|
||||
let expr_74 := _21
|
||||
let expr_76_component_3 := expr_74
|
||||
let _22 := vloc_z_41
|
||||
let expr_75 := _22
|
||||
let expr_76_component_4 := expr_75
|
||||
vloc__12 := expr_76_component_1
|
||||
vloc__14 := expr_76_component_2
|
||||
vloc__16 := expr_76_component_3
|
||||
vloc__18 := expr_76_component_4
|
||||
leave
|
||||
|
||||
}
|
||||
|
||||
function panic_error() {
|
||||
invalid()
|
||||
}
|
||||
|
||||
function shift_right_224_unsigned(value) -> newValue {
|
||||
newValue :=
|
||||
|
||||
shr(224, value)
|
||||
|
||||
}
|
||||
|
||||
function validator_revert_t_uint256(value) {
|
||||
if iszero(eq(value, cleanup_t_uint256(value))) { revert(0, 0) }
|
||||
}
|
||||
|
||||
function zero_value_for_split_t_int256() -> ret {
|
||||
ret := 0
|
||||
}
|
||||
|
||||
function zero_value_for_split_t_uint256() -> ret {
|
||||
ret := 0
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
49
test/libsolidity/semanticTests/viaYul/exp_literals.sol
Normal file
49
test/libsolidity/semanticTests/viaYul/exp_literals.sol
Normal file
@ -0,0 +1,49 @@
|
||||
contract C {
|
||||
function exp_2(uint y) public returns (uint) {
|
||||
return 2**y;
|
||||
}
|
||||
function exp_minus_2(uint y) public returns (int) {
|
||||
return (-2)**y;
|
||||
}
|
||||
|
||||
function exp_uint_max(uint y) public returns (uint) {
|
||||
return (2**256 - 1)**y;
|
||||
}
|
||||
function exp_int_max(uint y) public returns (int) {
|
||||
return ((-2)**255)**y;
|
||||
}
|
||||
|
||||
function exp_5(uint y) public returns (uint) {
|
||||
return 5**y;
|
||||
}
|
||||
function exp_minus_5(uint y) public returns (int) {
|
||||
return (-5)**y;
|
||||
}
|
||||
|
||||
function exp_256(uint y) public returns (uint) {
|
||||
return 256**y;
|
||||
}
|
||||
function exp_minus_256(uint y) public returns (int) {
|
||||
return (-256)**y;
|
||||
}
|
||||
|
||||
}
|
||||
// ====
|
||||
// compileViaYul: true
|
||||
// ----
|
||||
// exp_2(uint256): 255 -> 57896044618658097711785492504343953926634992332820282019728792003956564819968
|
||||
// exp_2(uint256): 256 -> FAILURE
|
||||
// exp_minus_2(uint256): 255 -> -57896044618658097711785492504343953926634992332820282019728792003956564819968
|
||||
// exp_minus_2(uint256): 256 -> FAILURE
|
||||
// exp_uint_max(uint256): 1 -> 115792089237316195423570985008687907853269984665640564039457584007913129639935
|
||||
// exp_uint_max(uint256): 2 -> FAILURE
|
||||
// exp_int_max(uint256): 1 -> -57896044618658097711785492504343953926634992332820282019728792003956564819968
|
||||
// exp_int_max(uint256): 2 -> FAILURE
|
||||
// exp_5(uint256): 110 -> 77037197775489434122239117703397092741524065928615527809597551822662353515625
|
||||
// exp_5(uint256): 111 -> FAILURE
|
||||
// exp_minus_5(uint256): 109 -> -15407439555097886824447823540679418548304813185723105561919510364532470703125
|
||||
// exp_minus_5(uint256): 110 -> FAILURE
|
||||
// exp_256(uint256): 31 -> 452312848583266388373324160190187140051835877600158453279131187530910662656
|
||||
// exp_256(uint256): 32 -> FAILURE
|
||||
// exp_minus_256(uint256): 31 -> -452312848583266388373324160190187140051835877600158453279131187530910662656
|
||||
// exp_minus_256(uint256): 32 -> FAILURE
|
@ -0,0 +1,41 @@
|
||||
contract C {
|
||||
function exp_2(uint y) public returns (uint) {
|
||||
return 2**y;
|
||||
}
|
||||
function exp_minus_2(uint y) public returns (int) {
|
||||
return (-2)**y;
|
||||
}
|
||||
|
||||
function exp_uint_max(uint y) public returns (uint) {
|
||||
return (2**256 - 1)**y;
|
||||
}
|
||||
function exp_int_max(uint y) public returns (int) {
|
||||
return ((-2)**255)**y;
|
||||
}
|
||||
|
||||
function exp_5(uint y) public returns (uint) {
|
||||
return 5**y;
|
||||
}
|
||||
function exp_minus_5(uint y) public returns (int) {
|
||||
return (-5)**y;
|
||||
}
|
||||
|
||||
function exp_256(uint y) public returns (uint) {
|
||||
return 256**y;
|
||||
}
|
||||
function exp_minus_256(uint y) public returns (int) {
|
||||
return (-256)**y;
|
||||
}
|
||||
|
||||
}
|
||||
// ====
|
||||
// compileViaYul: also
|
||||
// ----
|
||||
// exp_2(uint256): 255 -> 57896044618658097711785492504343953926634992332820282019728792003956564819968
|
||||
// exp_minus_2(uint256): 255 -> -57896044618658097711785492504343953926634992332820282019728792003956564819968
|
||||
// exp_uint_max(uint256): 1 -> 115792089237316195423570985008687907853269984665640564039457584007913129639935
|
||||
// exp_int_max(uint256): 1 -> -57896044618658097711785492504343953926634992332820282019728792003956564819968
|
||||
// exp_5(uint256): 110 -> 77037197775489434122239117703397092741524065928615527809597551822662353515625
|
||||
// exp_minus_5(uint256): 109 -> -15407439555097886824447823540679418548304813185723105561919510364532470703125
|
||||
// exp_256(uint256): 31 -> 452312848583266388373324160190187140051835877600158453279131187530910662656
|
||||
// exp_minus_256(uint256): 31 -> -452312848583266388373324160190187140051835877600158453279131187530910662656
|
Loading…
Reference in New Issue
Block a user