Move computation of constants out of types.cpp

This commit is contained in:
chriseth 2020-11-18 17:54:30 +01:00 committed by Leonardo Alt
parent d56a7bb89e
commit 49bde69afa
7 changed files with 263 additions and 228 deletions

View File

@ -32,6 +32,201 @@ using namespace solidity;
using namespace solidity::frontend; using namespace solidity::frontend;
using namespace solidity::langutil; using namespace solidity::langutil;
namespace
{
/// Check whether (_base ** _exp) fits into 4096 bits.
bool fitsPrecisionExp(bigint const& _base, bigint const& _exp)
{
if (_base == 0)
return true;
solAssert(_base > 0, "");
size_t const bitsMax = 4096;
unsigned mostSignificantBaseBit = boost::multiprecision::msb(_base);
if (mostSignificantBaseBit == 0) // _base == 1
return true;
if (mostSignificantBaseBit > bitsMax) // _base >= 2 ^ 4096
return false;
bigint bitsNeeded = _exp * (mostSignificantBaseBit + 1);
return bitsNeeded <= bitsMax;
}
/// Checks whether _mantissa * (2 ** _expBase10) fits into 4096 bits.
bool fitsPrecisionBase2(bigint const& _mantissa, uint32_t _expBase2)
{
return fitsPrecisionBaseX(_mantissa, 1.0, _expBase2);
}
}
optional<rational> ConstantEvaluator::evaluateBinaryOperator(Token _operator, rational const& _left, rational const& _right)
{
bool fractional = _left.denominator() != 1 || _right.denominator() != 1;
switch (_operator)
{
//bit operations will only be enabled for integers and fixed types that resemble integers
case Token::BitOr:
if (fractional)
return nullopt;
else
return _left.numerator() | _right.numerator();
case Token::BitXor:
if (fractional)
return nullopt;
else
return _left.numerator() ^ _right.numerator();
case Token::BitAnd:
if (fractional)
return nullopt;
else
return _left.numerator() & _right.numerator();
case Token::Add: return _left + _right;
case Token::Sub: return _left - _right;
case Token::Mul: return _left * _right;
case Token::Div:
if (_right == rational(0))
return nullopt;
else
return _left / _right;
case Token::Mod:
if (_right == rational(0))
return nullopt;
else if (fractional)
{
rational tempValue = _left / _right;
return _left - (tempValue.numerator() / tempValue.denominator()) * _right;
}
else
return _left.numerator() % _right.numerator();
break;
case Token::Exp:
{
if (_right.denominator() != 1)
return nullopt;
bigint const& exp = _right.numerator();
// x ** 0 = 1
// for 0, 1 and -1 the size of the exponent doesn't have to be restricted
if (exp == 0)
return 1;
else if (_left == 0 || _left == 1)
return _left;
else if (_left == -1)
{
bigint isOdd = abs(exp) & bigint(1);
return 1 - 2 * isOdd.convert_to<int>();
}
else
{
if (abs(exp) > numeric_limits<uint32_t>::max())
return nullopt; // This will need too much memory to represent.
uint32_t absExp = bigint(abs(exp)).convert_to<uint32_t>();
if (!fitsPrecisionExp(abs(_left.numerator()), absExp) || !fitsPrecisionExp(abs(_left.denominator()), absExp))
return nullopt;
static auto const optimizedPow = [](bigint const& _base, uint32_t _exponent) -> bigint {
if (_base == 1)
return 1;
else if (_base == -1)
return 1 - 2 * static_cast<int>(_exponent & 1);
else
return boost::multiprecision::pow(_base, _exponent);
};
bigint numerator = optimizedPow(_left.numerator(), absExp);
bigint denominator = optimizedPow(_left.denominator(), absExp);
if (exp >= 0)
return makeRational(numerator, denominator);
else
// invert
return makeRational(denominator, numerator);
}
break;
}
case Token::SHL:
{
if (fractional)
return nullopt;
else if (_right < 0)
return nullopt;
else if (_right > numeric_limits<uint32_t>::max())
return nullopt;
if (_left.numerator() == 0)
return 0;
else
{
uint32_t exponent = _right.numerator().convert_to<uint32_t>();
if (!fitsPrecisionBase2(abs(_left.numerator()), exponent))
return nullopt;
return _left.numerator() * boost::multiprecision::pow(bigint(2), exponent);
}
break;
}
// NOTE: we're using >> (SAR) to denote right shifting. The type of the LValue
// determines the resulting type and the type of shift (SAR or SHR).
case Token::SAR:
{
if (fractional)
return nullopt;
else if (_right < 0)
return nullopt;
else if (_right > numeric_limits<uint32_t>::max())
return nullopt;
if (_left.numerator() == 0)
return 0;
else
{
uint32_t exponent = _right.numerator().convert_to<uint32_t>();
if (exponent > boost::multiprecision::msb(boost::multiprecision::abs(_left.numerator())))
return _left.numerator() < 0 ? -1 : 0;
else
{
if (_left.numerator() < 0)
// Add 1 to the negative value before dividing to get a result that is strictly too large,
// then subtract 1 afterwards to round towards negative infinity.
// This is the same algorithm as used in ExpressionCompiler::appendShiftOperatorCode(...).
// To see this note that for negative x, xor(x,all_ones) = (-x-1) and
// therefore xor(div(xor(x,all_ones), exp(2, shift_amount)), all_ones) is
// -(-x - 1) / 2^shift_amount - 1, which is the same as
// (x + 1) / 2^shift_amount - 1.
return rational((_left.numerator() + 1) / boost::multiprecision::pow(bigint(2), exponent) - bigint(1), 1);
else
return rational(_left.numerator() / boost::multiprecision::pow(bigint(2), exponent), 1);
}
}
break;
}
default:
return nullopt;
}
}
optional<rational> ConstantEvaluator::evaluateUnaryOperator(Token _operator, rational const& _input)
{
switch (_operator)
{
case Token::BitNot:
if (_input.denominator() != 1)
return nullopt;
else
return ~_input.numerator();
case Token::Add:
return +_input;
case Token::Sub:
return -_input;
default:
return nullopt;
}
}
void ConstantEvaluator::endVisit(UnaryOperation const& _operation) void ConstantEvaluator::endVisit(UnaryOperation const& _operation)
{ {
auto sub = type(_operation.subExpression()); auto sub = type(_operation.subExpression());

View File

@ -56,6 +56,14 @@ public:
TypePointer evaluate(Expression const& _expr); TypePointer evaluate(Expression const& _expr);
/// Performs arbitrary-precision evaluation of a binary operator. Returns nullopt on cases like
/// division by zero or e.g. bit operators applied to fractional values.
static std::optional<rational> evaluateBinaryOperator(Token _operator, rational const& _left, rational const& _right);
/// Performs arbitrary-precision evaluation of a unary operator. Returns nullopt on cases like
/// bit operators applied to fractional values.
static std::optional<rational> evaluateUnaryOperator(Token _operator, rational const& _input);
private: private:
void endVisit(BinaryOperation const& _operation) override; void endVisit(BinaryOperation const& _operation) override;
void endVisit(UnaryOperation const& _operation) override; void endVisit(UnaryOperation const& _operation) override;

View File

@ -26,6 +26,8 @@
#include <libsolidity/ast/AST.h> #include <libsolidity/ast/AST.h>
#include <libsolidity/ast/TypeProvider.h> #include <libsolidity/ast/TypeProvider.h>
#include <libsolidity/analysis/ConstantEvaluator.h>
#include <libsolutil/Algorithms.h> #include <libsolutil/Algorithms.h>
#include <libsolutil/CommonData.h> #include <libsolutil/CommonData.h>
#include <libsolutil/CommonIO.h> #include <libsolutil/CommonIO.h>
@ -56,50 +58,6 @@ using namespace solidity::frontend;
namespace namespace
{ {
/// Check whether (_base ** _exp) fits into 4096 bits.
bool fitsPrecisionExp(bigint const& _base, bigint const& _exp)
{
if (_base == 0)
return true;
solAssert(_base > 0, "");
size_t const bitsMax = 4096;
unsigned mostSignificantBaseBit = boost::multiprecision::msb(_base);
if (mostSignificantBaseBit == 0) // _base == 1
return true;
if (mostSignificantBaseBit > bitsMax) // _base >= 2 ^ 4096
return false;
bigint bitsNeeded = _exp * (mostSignificantBaseBit + 1);
return bitsNeeded <= bitsMax;
}
/// Checks whether _mantissa * (X ** _exp) fits into 4096 bits,
/// where X is given indirectly via _log2OfBase = log2(X).
bool fitsPrecisionBaseX(
bigint const& _mantissa,
double _log2OfBase,
uint32_t _exp
)
{
if (_mantissa == 0)
return true;
solAssert(_mantissa > 0, "");
size_t const bitsMax = 4096;
unsigned mostSignificantMantissaBit = boost::multiprecision::msb(_mantissa);
if (mostSignificantMantissaBit > bitsMax) // _mantissa >= 2 ^ 4096
return false;
bigint bitsNeeded = mostSignificantMantissaBit + bigint(floor(double(_exp) * _log2OfBase)) + 1;
return bitsNeeded <= bitsMax;
}
/// Checks whether _mantissa * (10 ** _expBase10) fits into 4096 bits. /// Checks whether _mantissa * (10 ** _expBase10) fits into 4096 bits.
bool fitsPrecisionBase10(bigint const& _mantissa, uint32_t _expBase10) bool fitsPrecisionBase10(bigint const& _mantissa, uint32_t _expBase10)
{ {
@ -107,12 +65,6 @@ bool fitsPrecisionBase10(bigint const& _mantissa, uint32_t _expBase10)
return fitsPrecisionBaseX(_mantissa, log2Of10AwayFromZero, _expBase10); return fitsPrecisionBaseX(_mantissa, log2Of10AwayFromZero, _expBase10);
} }
/// Checks whether _mantissa * (2 ** _expBase10) fits into 4096 bits.
bool fitsPrecisionBase2(bigint const& _mantissa, uint32_t _expBase2)
{
return fitsPrecisionBaseX(_mantissa, 1.0, _expBase2);
}
/// Checks whether _value fits into IntegerType _type. /// Checks whether _value fits into IntegerType _type.
BoolResult fitsIntegerType(bigint const& _value, IntegerType const& _type) BoolResult fitsIntegerType(bigint const& _value, IntegerType const& _type)
{ {
@ -1000,26 +952,10 @@ BoolResult RationalNumberType::isExplicitlyConvertibleTo(Type const& _convertTo)
TypeResult RationalNumberType::unaryOperatorResult(Token _operator) const TypeResult RationalNumberType::unaryOperatorResult(Token _operator) const
{ {
rational value; if (optional<rational> value = ConstantEvaluator::evaluateUnaryOperator(_operator, m_value))
switch (_operator) return TypeResult{TypeProvider::rationalNumber(*value)};
{ else
case Token::BitNot:
if (isFractional())
return nullptr; return nullptr;
value = ~m_value.numerator();
break;
case Token::Add:
value = +(m_value);
break;
case Token::Sub:
value = -(m_value);
break;
case Token::After:
return this;
default:
return nullptr;
}
return TypeResult{TypeProvider::rationalNumber(value)};
} }
TypeResult RationalNumberType::binaryOperatorResult(Token _operator, Type const* _other) const TypeResult RationalNumberType::binaryOperatorResult(Token _operator, Type const* _other) const
@ -1074,165 +1010,16 @@ TypeResult RationalNumberType::binaryOperatorResult(Token _operator, Type const*
return nullptr; return nullptr;
return thisMobile->binaryOperatorResult(_operator, otherMobile); return thisMobile->binaryOperatorResult(_operator, otherMobile);
} }
else else if (optional<rational> value = ConstantEvaluator::evaluateBinaryOperator(_operator, m_value, other.m_value))
{ {
rational value;
bool fractional = isFractional() || other.isFractional();
switch (_operator)
{
//bit operations will only be enabled for integers and fixed types that resemble integers
case Token::BitOr:
if (fractional)
return nullptr;
value = m_value.numerator() | other.m_value.numerator();
break;
case Token::BitXor:
if (fractional)
return nullptr;
value = m_value.numerator() ^ other.m_value.numerator();
break;
case Token::BitAnd:
if (fractional)
return nullptr;
value = m_value.numerator() & other.m_value.numerator();
break;
case Token::Add:
value = m_value + other.m_value;
break;
case Token::Sub:
value = m_value - other.m_value;
break;
case Token::Mul:
value = m_value * other.m_value;
break;
case Token::Div:
if (other.m_value == rational(0))
return nullptr;
else
value = m_value / other.m_value;
break;
case Token::Mod:
if (other.m_value == rational(0))
return nullptr;
else if (fractional)
{
rational tempValue = m_value / other.m_value;
value = m_value - (tempValue.numerator() / tempValue.denominator()) * other.m_value;
}
else
value = m_value.numerator() % other.m_value.numerator();
break;
case Token::Exp:
{
if (other.isFractional())
return nullptr;
solAssert(other.m_value.denominator() == 1, "");
bigint const& exp = other.m_value.numerator();
// x ** 0 = 1
// for 0, 1 and -1 the size of the exponent doesn't have to be restricted
if (exp == 0)
value = 1;
else if (m_value.numerator() == 0 || m_value == 1)
value = m_value;
else if (m_value == -1)
{
bigint isOdd = abs(exp) & bigint(1);
value = 1 - 2 * isOdd.convert_to<int>();
}
else
{
if (abs(exp) > numeric_limits<uint32_t>::max())
return nullptr; // This will need too much memory to represent.
uint32_t absExp = bigint(abs(exp)).convert_to<uint32_t>();
if (!fitsPrecisionExp(abs(m_value.numerator()), absExp) || !fitsPrecisionExp(abs(m_value.denominator()), absExp))
return TypeResult::err("Precision of rational constants is limited to 4096 bits.");
static auto const optimizedPow = [](bigint const& _base, uint32_t _exponent) -> bigint {
if (_base == 1)
return 1;
else if (_base == -1)
return 1 - 2 * static_cast<int>(_exponent & 1);
else
return boost::multiprecision::pow(_base, _exponent);
};
bigint numerator = optimizedPow(m_value.numerator(), absExp);
bigint denominator = optimizedPow(m_value.denominator(), absExp);
if (exp >= 0)
value = makeRational(numerator, denominator);
else
// invert
value = makeRational(denominator, numerator);
}
break;
}
case Token::SHL:
{
if (fractional)
return nullptr;
else if (other.m_value < 0)
return nullptr;
else if (other.m_value > numeric_limits<uint32_t>::max())
return nullptr;
if (m_value.numerator() == 0)
value = 0;
else
{
uint32_t exponent = other.m_value.numerator().convert_to<uint32_t>();
if (!fitsPrecisionBase2(abs(m_value.numerator()), exponent))
return nullptr;
value = m_value.numerator() * boost::multiprecision::pow(bigint(2), exponent);
}
break;
}
// NOTE: we're using >> (SAR) to denote right shifting. The type of the LValue
// determines the resulting type and the type of shift (SAR or SHR).
case Token::SAR:
{
if (fractional)
return nullptr;
else if (other.m_value < 0)
return nullptr;
else if (other.m_value > numeric_limits<uint32_t>::max())
return nullptr;
if (m_value.numerator() == 0)
value = 0;
else
{
uint32_t exponent = other.m_value.numerator().convert_to<uint32_t>();
if (exponent > boost::multiprecision::msb(boost::multiprecision::abs(m_value.numerator())))
value = m_value.numerator() < 0 ? -1 : 0;
else
{
if (m_value.numerator() < 0)
// Add 1 to the negative value before dividing to get a result that is strictly too large,
// then subtract 1 afterwards to round towards negative infinity.
// This is the same algorithm as used in ExpressionCompiler::appendShiftOperatorCode(...).
// To see this note that for negative x, xor(x,all_ones) = (-x-1) and
// therefore xor(div(xor(x,all_ones), exp(2, shift_amount)), all_ones) is
// -(-x - 1) / 2^shift_amount - 1, which is the same as
// (x + 1) / 2^shift_amount - 1.
value = rational((m_value.numerator() + 1) / boost::multiprecision::pow(bigint(2), exponent) - bigint(1), 1);
else
value = rational(m_value.numerator() / boost::multiprecision::pow(bigint(2), exponent), 1);
}
}
break;
}
default:
return nullptr;
}
// verify that numerator and denominator fit into 4096 bit after every operation // verify that numerator and denominator fit into 4096 bit after every operation
if (value.numerator() != 0 && max(boost::multiprecision::msb(abs(value.numerator())), boost::multiprecision::msb(abs(value.denominator()))) > 4096) if (value->numerator() != 0 && max(boost::multiprecision::msb(abs(value->numerator())), boost::multiprecision::msb(abs(value->denominator()))) > 4096)
return TypeResult::err("Precision of rational constants is limited to 4096 bits."); return TypeResult::err("Precision of rational constants is limited to 4096 bits.");
return TypeResult{TypeProvider::rationalNumber(value)}; return TypeResult{TypeProvider::rationalNumber(*value)};
} }
else
return nullptr;
} }
string RationalNumberType::richIdentifier() const string RationalNumberType::richIdentifier() const

View File

@ -3,6 +3,7 @@ set(sources
AnsiColorized.h AnsiColorized.h
Assertions.h Assertions.h
Common.h Common.h
Common.cpp
CommonData.cpp CommonData.cpp
CommonData.h CommonData.h
CommonIO.cpp CommonIO.cpp

40
libsolutil/Common.cpp Normal file
View File

@ -0,0 +1,40 @@
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
#include <libsolutil/Common.h>
#include <liblangutil/Exceptions.h>
using namespace solidity;
bool solidity::fitsPrecisionBaseX(bigint const& _mantissa, double _log2OfBase, uint32_t _exp)
{
if (_mantissa == 0)
return true;
solAssert(_mantissa > 0, "");
size_t const bitsMax = 4096;
unsigned mostSignificantMantissaBit = boost::multiprecision::msb(_mantissa);
if (mostSignificantMantissaBit > bitsMax) // _mantissa >= 2 ^ 4096
return false;
bigint bitsNeeded = mostSignificantMantissaBit + bigint(floor(double(_exp) * _log2OfBase)) + 1;
return bitsNeeded <= bitsMax;
}

View File

@ -107,6 +107,10 @@ inline u256 exp256(u256 _base, u256 _exponent)
return result; return result;
} }
/// Checks whether _mantissa * (X ** _exp) fits into 4096 bits,
/// where X is given indirectly via _log2OfBase = log2(X).
bool fitsPrecisionBaseX(bigint const& _mantissa, double _log2OfBase, uint32_t _exp);
inline std::ostream& operator<<(std::ostream& os, bytes const& _bytes) inline std::ostream& operator<<(std::ostream& os, bytes const& _bytes)
{ {
std::ostringstream ss; std::ostringstream ss;

View File

@ -19,7 +19,7 @@ contract c {
} }
} }
// ---- // ----
// TypeError 2271: (71-112): Operator ** not compatible with types int_const 1797...(301 digits omitted)...7216 and int_const 4. Precision of rational constants is limited to 4096 bits. // TypeError 2271: (71-112): Operator ** not compatible with types int_const 1797...(301 digits omitted)...7216 and int_const 4
// TypeError 7407: (71-112): Type int_const 1797...(301 digits omitted)...7216 is not implicitly convertible to expected type int256. Literal is too large to fit in int256. // TypeError 7407: (71-112): Type int_const 1797...(301 digits omitted)...7216 is not implicitly convertible to expected type int256. Literal is too large to fit in int256.
// TypeError 2271: (135-151): Operator ** not compatible with types int_const 4 and int_const 1157...(70 digits omitted)...9936 // TypeError 2271: (135-151): Operator ** not compatible with types int_const 4 and int_const 1157...(70 digits omitted)...9936
// TypeError 7407: (126-169): Type int_const 1340...(147 digits omitted)...4096 is not implicitly convertible to expected type int256. Literal is too large to fit in int256. // TypeError 7407: (126-169): Type int_const 1340...(147 digits omitted)...4096 is not implicitly convertible to expected type int256. Literal is too large to fit in int256.
@ -29,13 +29,13 @@ contract c {
// TypeError 2271: (258-270): Operator ** not compatible with types int_const -2 and int_const 1000...(1226 digits omitted)...0000 // TypeError 2271: (258-270): Operator ** not compatible with types int_const -2 and int_const 1000...(1226 digits omitted)...0000
// TypeError 2271: (284-296): Operator ** not compatible with types int_const 2 and int_const -100...(1227 digits omitted)...0000 // TypeError 2271: (284-296): Operator ** not compatible with types int_const 2 and int_const -100...(1227 digits omitted)...0000
// TypeError 2271: (310-323): Operator ** not compatible with types int_const -2 and int_const -100...(1227 digits omitted)...0000 // TypeError 2271: (310-323): Operator ** not compatible with types int_const -2 and int_const -100...(1227 digits omitted)...0000
// TypeError 2271: (337-348): Operator ** not compatible with types int_const 1000...(1226 digits omitted)...0000 and int_const 2. Precision of rational constants is limited to 4096 bits. // TypeError 2271: (337-348): Operator ** not compatible with types int_const 1000...(1226 digits omitted)...0000 and int_const 2
// TypeError 7407: (337-348): Type int_const 1000...(1226 digits omitted)...0000 is not implicitly convertible to expected type int256. Literal is too large to fit in int256. // TypeError 7407: (337-348): Type int_const 1000...(1226 digits omitted)...0000 is not implicitly convertible to expected type int256. Literal is too large to fit in int256.
// TypeError 2271: (362-374): Operator ** not compatible with types int_const -100...(1227 digits omitted)...0000 and int_const 2. Precision of rational constants is limited to 4096 bits. // TypeError 2271: (362-374): Operator ** not compatible with types int_const -100...(1227 digits omitted)...0000 and int_const 2
// TypeError 7407: (362-374): Type int_const -100...(1227 digits omitted)...0000 is not implicitly convertible to expected type int256. Literal is too large to fit in int256. // TypeError 7407: (362-374): Type int_const -100...(1227 digits omitted)...0000 is not implicitly convertible to expected type int256. Literal is too large to fit in int256.
// TypeError 2271: (388-400): Operator ** not compatible with types int_const 1000...(1226 digits omitted)...0000 and int_const -2. Precision of rational constants is limited to 4096 bits. // TypeError 2271: (388-400): Operator ** not compatible with types int_const 1000...(1226 digits omitted)...0000 and int_const -2
// TypeError 7407: (388-400): Type int_const 1000...(1226 digits omitted)...0000 is not implicitly convertible to expected type int256. Literal is too large to fit in int256. // TypeError 7407: (388-400): Type int_const 1000...(1226 digits omitted)...0000 is not implicitly convertible to expected type int256. Literal is too large to fit in int256.
// TypeError 2271: (414-427): Operator ** not compatible with types int_const -100...(1227 digits omitted)...0000 and int_const -2. Precision of rational constants is limited to 4096 bits. // TypeError 2271: (414-427): Operator ** not compatible with types int_const -100...(1227 digits omitted)...0000 and int_const -2
// TypeError 7407: (414-427): Type int_const -100...(1227 digits omitted)...0000 is not implicitly convertible to expected type int256. Literal is too large to fit in int256. // TypeError 7407: (414-427): Type int_const -100...(1227 digits omitted)...0000 is not implicitly convertible to expected type int256. Literal is too large to fit in int256.
// TypeError 2271: (441-457): Operator ** not compatible with types int_const 1000...(1226 digits omitted)...0000 and int_const 1000...(1226 digits omitted)...0000 // TypeError 2271: (441-457): Operator ** not compatible with types int_const 1000...(1226 digits omitted)...0000 and int_const 1000...(1226 digits omitted)...0000
// TypeError 7407: (441-457): Type int_const 1000...(1226 digits omitted)...0000 is not implicitly convertible to expected type int256. Literal is too large to fit in int256. // TypeError 7407: (441-457): Type int_const 1000...(1226 digits omitted)...0000 is not implicitly convertible to expected type int256. Literal is too large to fit in int256.