mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
Move out the rule list.
This commit is contained in:
parent
d786d65243
commit
491d6d3e0c
214
libevmasm/RuleList.h
Normal file
214
libevmasm/RuleList.h
Normal file
@ -0,0 +1,214 @@
|
||||
/*
|
||||
This file is part of solidity.
|
||||
|
||||
solidity is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
solidity is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
/**
|
||||
* @date 2018
|
||||
* Templatized list of simplification rules.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
#include <functional>
|
||||
|
||||
#include <libevmasm/Instruction.h>
|
||||
|
||||
namespace dev
|
||||
{
|
||||
namespace solidity
|
||||
{
|
||||
|
||||
template <class S> S divWorkaround(S const& _a, S const& _b)
|
||||
{
|
||||
return (S)(bigint(_a) / bigint(_b));
|
||||
}
|
||||
|
||||
template <class S> S modWorkaround(S const& _a, S const& _b)
|
||||
{
|
||||
return (S)(bigint(_a) % bigint(_b));
|
||||
}
|
||||
|
||||
/// @returns a list of simplification rules given certain match placeholders.
|
||||
/// A, B and C should represent constants, X and Y arbitrary expressions.
|
||||
/// As the simplification can remove instructions, care has to be taken if multiple
|
||||
/// non-constant expressions are used. The simplifications should not change the
|
||||
/// order of operations, though.
|
||||
template <class Pattern>
|
||||
std::vector<std::pair<Pattern, std::function<Pattern()>>> simplificationRuleList(
|
||||
Pattern A,
|
||||
Pattern B,
|
||||
Pattern C,
|
||||
Pattern X,
|
||||
Pattern Y
|
||||
)
|
||||
{
|
||||
std::vector<std::pair<Pattern, std::function<Pattern()>>> rules;
|
||||
rules += std::vector<std::pair<Pattern, std::function<Pattern()>>>{
|
||||
// arithmetics on constants
|
||||
{{Instruction::ADD, {A, B}}, [=]{ return A.d() + B.d(); }},
|
||||
{{Instruction::MUL, {A, B}}, [=]{ return A.d() * B.d(); }},
|
||||
{{Instruction::SUB, {A, B}}, [=]{ return A.d() - B.d(); }},
|
||||
{{Instruction::DIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : divWorkaround(A.d(), B.d()); }},
|
||||
{{Instruction::SDIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(divWorkaround(u2s(A.d()), u2s(B.d()))); }},
|
||||
{{Instruction::MOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : modWorkaround(A.d(), B.d()); }},
|
||||
{{Instruction::SMOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(modWorkaround(u2s(A.d()), u2s(B.d()))); }},
|
||||
{{Instruction::EXP, {A, B}}, [=]{ return u256(boost::multiprecision::powm(bigint(A.d()), bigint(B.d()), bigint(1) << 256)); }},
|
||||
{{Instruction::NOT, {A}}, [=]{ return ~A.d(); }},
|
||||
{{Instruction::LT, {A, B}}, [=]() -> u256 { return A.d() < B.d() ? 1 : 0; }},
|
||||
{{Instruction::GT, {A, B}}, [=]() -> u256 { return A.d() > B.d() ? 1 : 0; }},
|
||||
{{Instruction::SLT, {A, B}}, [=]() -> u256 { return u2s(A.d()) < u2s(B.d()) ? 1 : 0; }},
|
||||
{{Instruction::SGT, {A, B}}, [=]() -> u256 { return u2s(A.d()) > u2s(B.d()) ? 1 : 0; }},
|
||||
{{Instruction::EQ, {A, B}}, [=]() -> u256 { return A.d() == B.d() ? 1 : 0; }},
|
||||
{{Instruction::ISZERO, {A}}, [=]() -> u256 { return A.d() == 0 ? 1 : 0; }},
|
||||
{{Instruction::AND, {A, B}}, [=]{ return A.d() & B.d(); }},
|
||||
{{Instruction::OR, {A, B}}, [=]{ return A.d() | B.d(); }},
|
||||
{{Instruction::XOR, {A, B}}, [=]{ return A.d() ^ B.d(); }},
|
||||
{{Instruction::BYTE, {A, B}}, [=]{ return A.d() >= 32 ? 0 : (B.d() >> unsigned(8 * (31 - A.d()))) & 0xff; }},
|
||||
{{Instruction::ADDMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) + bigint(B.d())) % C.d()); }},
|
||||
{{Instruction::MULMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) * bigint(B.d())) % C.d()); }},
|
||||
{{Instruction::MULMOD, {A, B, C}}, [=]{ return A.d() * B.d(); }},
|
||||
{{Instruction::SIGNEXTEND, {A, B}}, [=]() -> u256 {
|
||||
if (A.d() >= 31)
|
||||
return B.d();
|
||||
unsigned testBit = unsigned(A.d()) * 8 + 7;
|
||||
u256 mask = (u256(1) << testBit) - 1;
|
||||
return u256(boost::multiprecision::bit_test(B.d(), testBit) ? B.d() | ~mask : B.d() & mask);
|
||||
}},
|
||||
|
||||
// invariants involving known constants (commutative instructions will be checked with swapped operants too)
|
||||
{{Instruction::ADD, {X, 0}}, [=]{ return X; }},
|
||||
{{Instruction::SUB, {X, 0}}, [=]{ return X; }},
|
||||
{{Instruction::MUL, {X, 0}}, [=]{ return u256(0); }},
|
||||
{{Instruction::MUL, {X, 1}}, [=]{ return X; }},
|
||||
{{Instruction::DIV, {X, 0}}, [=]{ return u256(0); }},
|
||||
{{Instruction::DIV, {0, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::DIV, {X, 1}}, [=]{ return X; }},
|
||||
{{Instruction::SDIV, {X, 0}}, [=]{ return u256(0); }},
|
||||
{{Instruction::SDIV, {0, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::SDIV, {X, 1}}, [=]{ return X; }},
|
||||
{{Instruction::AND, {X, ~u256(0)}}, [=]{ return X; }},
|
||||
{{Instruction::AND, {X, 0}}, [=]{ return u256(0); }},
|
||||
{{Instruction::OR, {X, 0}}, [=]{ return X; }},
|
||||
{{Instruction::OR, {X, ~u256(0)}}, [=]{ return ~u256(0); }},
|
||||
{{Instruction::XOR, {X, 0}}, [=]{ return X; }},
|
||||
{{Instruction::MOD, {X, 0}}, [=]{ return u256(0); }},
|
||||
{{Instruction::MOD, {0, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::EQ, {X, 0}}, [=]() -> Pattern { return {Instruction::ISZERO, {X}}; } },
|
||||
|
||||
// operations involving an expression and itself
|
||||
{{Instruction::AND, {X, X}}, [=]{ return X; }},
|
||||
{{Instruction::OR, {X, X}}, [=]{ return X; }},
|
||||
{{Instruction::XOR, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::SUB, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::EQ, {X, X}}, [=]{ return u256(1); }},
|
||||
{{Instruction::LT, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::SLT, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::GT, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::SGT, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::MOD, {X, X}}, [=]{ return u256(0); }},
|
||||
|
||||
// logical instruction combinations
|
||||
{{Instruction::NOT, {{Instruction::NOT, {X}}}}, [=]{ return X; }},
|
||||
{{Instruction::XOR, {{{X}, {Instruction::XOR, {X, Y}}}}}, [=]{ return Y; }},
|
||||
{{Instruction::OR, {{{X}, {Instruction::AND, {X, Y}}}}}, [=]{ return X; }},
|
||||
{{Instruction::AND, {{{X}, {Instruction::OR, {X, Y}}}}}, [=]{ return X; }},
|
||||
{{Instruction::AND, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return u256(0); }},
|
||||
{{Instruction::OR, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return ~u256(0); }},
|
||||
};
|
||||
|
||||
// Double negation of opcodes with binary result
|
||||
for (auto const& op: std::vector<Instruction>{
|
||||
Instruction::EQ,
|
||||
Instruction::LT,
|
||||
Instruction::SLT,
|
||||
Instruction::GT,
|
||||
Instruction::SGT
|
||||
})
|
||||
rules.push_back({
|
||||
{Instruction::ISZERO, {{Instruction::ISZERO, {{op, {X, Y}}}}}},
|
||||
[=]() -> Pattern { return {op, {X, Y}}; }
|
||||
});
|
||||
|
||||
rules.push_back({
|
||||
{Instruction::ISZERO, {{Instruction::ISZERO, {{Instruction::ISZERO, {X}}}}}},
|
||||
[=]() -> Pattern { return {Instruction::ISZERO, {X}}; }
|
||||
});
|
||||
|
||||
rules.push_back({
|
||||
{Instruction::ISZERO, {{Instruction::XOR, {X, Y}}}},
|
||||
[=]() -> Pattern { return { Instruction::EQ, {X, Y} }; }
|
||||
});
|
||||
|
||||
// Associative operations
|
||||
for (auto const& opFun: std::vector<std::pair<Instruction,std::function<u256(u256 const&,u256 const&)>>>{
|
||||
{Instruction::ADD, std::plus<u256>()},
|
||||
{Instruction::MUL, std::multiplies<u256>()},
|
||||
{Instruction::AND, std::bit_and<u256>()},
|
||||
{Instruction::OR, std::bit_or<u256>()},
|
||||
{Instruction::XOR, std::bit_xor<u256>()}
|
||||
})
|
||||
{
|
||||
auto op = opFun.first;
|
||||
auto fun = opFun.second;
|
||||
// Moving constants to the outside, order matters here!
|
||||
// we need actions that return expressions (or patterns?) here, and we need also reversed rules
|
||||
// (X+A)+B -> X+(A+B)
|
||||
rules += std::vector<std::pair<Pattern, std::function<Pattern()>>>{{
|
||||
{op, {{op, {X, A}}, B}},
|
||||
[=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }
|
||||
}, {
|
||||
// X+(Y+A) -> (X+Y)+A
|
||||
{op, {{op, {X, A}}, Y}},
|
||||
[=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }
|
||||
}, {
|
||||
// For now, we still need explicit commutativity for the inner pattern
|
||||
{op, {{op, {A, X}}, B}},
|
||||
[=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }
|
||||
}, {
|
||||
{op, {{op, {A, X}}, Y}},
|
||||
[=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }
|
||||
}};
|
||||
}
|
||||
|
||||
// move constants across subtractions
|
||||
rules += std::vector<std::pair<Pattern, std::function<Pattern()>>>{
|
||||
{
|
||||
// X - A -> X + (-A)
|
||||
{Instruction::SUB, {X, A}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {X, 0 - A.d()}}; }
|
||||
}, {
|
||||
// (X + A) - Y -> (X - Y) + A
|
||||
{Instruction::SUB, {{Instruction::ADD, {X, A}}, Y}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }
|
||||
}, {
|
||||
// (A + X) - Y -> (X - Y) + A
|
||||
{Instruction::SUB, {{Instruction::ADD, {A, X}}, Y}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }
|
||||
}, {
|
||||
// X - (Y + A) -> (X - Y) + (-A)
|
||||
{Instruction::SUB, {X, {Instruction::ADD, {Y, A}}}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }
|
||||
}, {
|
||||
// X - (A + Y) -> (X - Y) + (-A)
|
||||
{Instruction::SUB, {X, {Instruction::ADD, {A, Y}}}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }
|
||||
}
|
||||
};
|
||||
return rules;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
@ -31,6 +31,8 @@
|
||||
#include <libevmasm/CommonSubexpressionEliminator.h>
|
||||
#include <libevmasm/SimplificationRules.h>
|
||||
|
||||
#include <libevmasm/RuleList.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace dev;
|
||||
using namespace dev::eth;
|
||||
@ -64,16 +66,6 @@ void Rules::addRule(std::pair<Pattern, std::function<Pattern()> > const& _rule)
|
||||
m_rules[byte(_rule.first.instruction())].push_back(_rule);
|
||||
}
|
||||
|
||||
template <class S> S divWorkaround(S const& _a, S const& _b)
|
||||
{
|
||||
return (S)(bigint(_a) / bigint(_b));
|
||||
}
|
||||
|
||||
template <class S> S modWorkaround(S const& _a, S const& _b)
|
||||
{
|
||||
return (S)(bigint(_a) % bigint(_b));
|
||||
}
|
||||
|
||||
Rules::Rules()
|
||||
{
|
||||
// Multiple occurences of one of these inside one rule must match the same equivalence class.
|
||||
@ -84,165 +76,13 @@ Rules::Rules()
|
||||
// Anything.
|
||||
Pattern X;
|
||||
Pattern Y;
|
||||
Pattern Z;
|
||||
A.setMatchGroup(1, m_matchGroups);
|
||||
B.setMatchGroup(2, m_matchGroups);
|
||||
C.setMatchGroup(3, m_matchGroups);
|
||||
X.setMatchGroup(4, m_matchGroups);
|
||||
Y.setMatchGroup(5, m_matchGroups);
|
||||
Z.setMatchGroup(6, m_matchGroups);
|
||||
|
||||
addRules(vector<pair<Pattern, function<Pattern()>>>{
|
||||
// arithmetics on constants
|
||||
{{Instruction::ADD, {A, B}}, [=]{ return A.d() + B.d(); }},
|
||||
{{Instruction::MUL, {A, B}}, [=]{ return A.d() * B.d(); }},
|
||||
{{Instruction::SUB, {A, B}}, [=]{ return A.d() - B.d(); }},
|
||||
{{Instruction::DIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : divWorkaround(A.d(), B.d()); }},
|
||||
{{Instruction::SDIV, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(divWorkaround(u2s(A.d()), u2s(B.d()))); }},
|
||||
{{Instruction::MOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : modWorkaround(A.d(), B.d()); }},
|
||||
{{Instruction::SMOD, {A, B}}, [=]{ return B.d() == 0 ? 0 : s2u(modWorkaround(u2s(A.d()), u2s(B.d()))); }},
|
||||
{{Instruction::EXP, {A, B}}, [=]{ return u256(boost::multiprecision::powm(bigint(A.d()), bigint(B.d()), bigint(1) << 256)); }},
|
||||
{{Instruction::NOT, {A}}, [=]{ return ~A.d(); }},
|
||||
{{Instruction::LT, {A, B}}, [=]() -> u256 { return A.d() < B.d() ? 1 : 0; }},
|
||||
{{Instruction::GT, {A, B}}, [=]() -> u256 { return A.d() > B.d() ? 1 : 0; }},
|
||||
{{Instruction::SLT, {A, B}}, [=]() -> u256 { return u2s(A.d()) < u2s(B.d()) ? 1 : 0; }},
|
||||
{{Instruction::SGT, {A, B}}, [=]() -> u256 { return u2s(A.d()) > u2s(B.d()) ? 1 : 0; }},
|
||||
{{Instruction::EQ, {A, B}}, [=]() -> u256 { return A.d() == B.d() ? 1 : 0; }},
|
||||
{{Instruction::ISZERO, {A}}, [=]() -> u256 { return A.d() == 0 ? 1 : 0; }},
|
||||
{{Instruction::AND, {A, B}}, [=]{ return A.d() & B.d(); }},
|
||||
{{Instruction::OR, {A, B}}, [=]{ return A.d() | B.d(); }},
|
||||
{{Instruction::XOR, {A, B}}, [=]{ return A.d() ^ B.d(); }},
|
||||
{{Instruction::BYTE, {A, B}}, [=]{ return A.d() >= 32 ? 0 : (B.d() >> unsigned(8 * (31 - A.d()))) & 0xff; }},
|
||||
{{Instruction::ADDMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) + bigint(B.d())) % C.d()); }},
|
||||
{{Instruction::MULMOD, {A, B, C}}, [=]{ return C.d() == 0 ? 0 : u256((bigint(A.d()) * bigint(B.d())) % C.d()); }},
|
||||
{{Instruction::MULMOD, {A, B, C}}, [=]{ return A.d() * B.d(); }},
|
||||
{{Instruction::SIGNEXTEND, {A, B}}, [=]() -> u256 {
|
||||
if (A.d() >= 31)
|
||||
return B.d();
|
||||
unsigned testBit = unsigned(A.d()) * 8 + 7;
|
||||
u256 mask = (u256(1) << testBit) - 1;
|
||||
return u256(boost::multiprecision::bit_test(B.d(), testBit) ? B.d() | ~mask : B.d() & mask);
|
||||
}},
|
||||
|
||||
// invariants involving known constants (commutative instructions will be checked with swapped operants too)
|
||||
{{Instruction::ADD, {X, 0}}, [=]{ return X; }},
|
||||
{{Instruction::SUB, {X, 0}}, [=]{ return X; }},
|
||||
{{Instruction::MUL, {X, 0}}, [=]{ return u256(0); }},
|
||||
{{Instruction::MUL, {X, 1}}, [=]{ return X; }},
|
||||
{{Instruction::DIV, {X, 0}}, [=]{ return u256(0); }},
|
||||
{{Instruction::DIV, {0, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::DIV, {X, 1}}, [=]{ return X; }},
|
||||
{{Instruction::SDIV, {X, 0}}, [=]{ return u256(0); }},
|
||||
{{Instruction::SDIV, {0, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::SDIV, {X, 1}}, [=]{ return X; }},
|
||||
{{Instruction::AND, {X, ~u256(0)}}, [=]{ return X; }},
|
||||
{{Instruction::AND, {X, 0}}, [=]{ return u256(0); }},
|
||||
{{Instruction::OR, {X, 0}}, [=]{ return X; }},
|
||||
{{Instruction::OR, {X, ~u256(0)}}, [=]{ return ~u256(0); }},
|
||||
{{Instruction::XOR, {X, 0}}, [=]{ return X; }},
|
||||
{{Instruction::MOD, {X, 0}}, [=]{ return u256(0); }},
|
||||
{{Instruction::MOD, {0, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::EQ, {X, 0}}, [=]() -> Pattern { return {Instruction::ISZERO, {X}}; } },
|
||||
|
||||
// operations involving an expression and itself
|
||||
{{Instruction::AND, {X, X}}, [=]{ return X; }},
|
||||
{{Instruction::OR, {X, X}}, [=]{ return X; }},
|
||||
{{Instruction::XOR, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::SUB, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::EQ, {X, X}}, [=]{ return u256(1); }},
|
||||
{{Instruction::LT, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::SLT, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::GT, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::SGT, {X, X}}, [=]{ return u256(0); }},
|
||||
{{Instruction::MOD, {X, X}}, [=]{ return u256(0); }},
|
||||
|
||||
// logical instruction combinations
|
||||
{{Instruction::NOT, {{Instruction::NOT, {X}}}}, [=]{ return X; }},
|
||||
{{Instruction::XOR, {{{X}, {Instruction::XOR, {X, Y}}}}}, [=]{ return Y; }},
|
||||
{{Instruction::OR, {{{X}, {Instruction::AND, {X, Y}}}}}, [=]{ return X; }},
|
||||
{{Instruction::AND, {{{X}, {Instruction::OR, {X, Y}}}}}, [=]{ return X; }},
|
||||
{{Instruction::AND, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return u256(0); }},
|
||||
{{Instruction::OR, {{{X}, {Instruction::NOT, {X}}}}}, [=]{ return ~u256(0); }},
|
||||
});
|
||||
|
||||
// Double negation of opcodes with binary result
|
||||
for (auto const& op: vector<Instruction>{
|
||||
Instruction::EQ,
|
||||
Instruction::LT,
|
||||
Instruction::SLT,
|
||||
Instruction::GT,
|
||||
Instruction::SGT
|
||||
})
|
||||
addRule({
|
||||
{Instruction::ISZERO, {{Instruction::ISZERO, {{op, {X, Y}}}}}},
|
||||
[=]() -> Pattern { return {op, {X, Y}}; }
|
||||
});
|
||||
|
||||
addRule({
|
||||
{Instruction::ISZERO, {{Instruction::ISZERO, {{Instruction::ISZERO, {X}}}}}},
|
||||
[=]() -> Pattern { return {Instruction::ISZERO, {X}}; }
|
||||
});
|
||||
|
||||
addRule({
|
||||
{Instruction::ISZERO, {{Instruction::XOR, {X, Y}}}},
|
||||
[=]() -> Pattern { return { Instruction::EQ, {X, Y} }; }
|
||||
});
|
||||
|
||||
// Associative operations
|
||||
for (auto const& opFun: vector<pair<Instruction,function<u256(u256 const&,u256 const&)>>>{
|
||||
{Instruction::ADD, plus<u256>()},
|
||||
{Instruction::MUL, multiplies<u256>()},
|
||||
{Instruction::AND, bit_and<u256>()},
|
||||
{Instruction::OR, bit_or<u256>()},
|
||||
{Instruction::XOR, bit_xor<u256>()}
|
||||
})
|
||||
{
|
||||
auto op = opFun.first;
|
||||
auto fun = opFun.second;
|
||||
// Moving constants to the outside, order matters here!
|
||||
// we need actions that return expressions (or patterns?) here, and we need also reversed rules
|
||||
// (X+A)+B -> X+(A+B)
|
||||
addRules(vector<pair<Pattern, function<Pattern()>>>{{
|
||||
{op, {{op, {X, A}}, B}},
|
||||
[=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }
|
||||
}, {
|
||||
// X+(Y+A) -> (X+Y)+A
|
||||
{op, {{op, {X, A}}, Y}},
|
||||
[=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }
|
||||
}, {
|
||||
// For now, we still need explicit commutativity for the inner pattern
|
||||
{op, {{op, {A, X}}, B}},
|
||||
[=]() -> Pattern { return {op, {X, fun(A.d(), B.d())}}; }
|
||||
}, {
|
||||
{op, {{op, {A, X}}, Y}},
|
||||
[=]() -> Pattern { return {op, {{op, {X, Y}}, A}}; }
|
||||
}});
|
||||
}
|
||||
|
||||
// move constants across subtractions
|
||||
addRules(vector<pair<Pattern, function<Pattern()>>>{
|
||||
{
|
||||
// X - A -> X + (-A)
|
||||
{Instruction::SUB, {X, A}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {X, 0 - A.d()}}; }
|
||||
}, {
|
||||
// (X + A) - Y -> (X - Y) + A
|
||||
{Instruction::SUB, {{Instruction::ADD, {X, A}}, Y}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }
|
||||
}, {
|
||||
// (A + X) - Y -> (X - Y) + A
|
||||
{Instruction::SUB, {{Instruction::ADD, {A, X}}, Y}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, A}}; }
|
||||
}, {
|
||||
// X - (Y + A) -> (X - Y) + (-A)
|
||||
{Instruction::SUB, {X, {Instruction::ADD, {Y, A}}}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }
|
||||
}, {
|
||||
// X - (A + Y) -> (X - Y) + (-A)
|
||||
{Instruction::SUB, {X, {Instruction::ADD, {A, Y}}}},
|
||||
[=]() -> Pattern { return {Instruction::ADD, {{Instruction::SUB, {X, Y}}, 0 - A.d()}}; }
|
||||
}
|
||||
});
|
||||
addRules(simplificationRuleList(A, B, C, X, Y));
|
||||
}
|
||||
|
||||
Pattern::Pattern(Instruction _instruction, std::vector<Pattern> const& _arguments):
|
||||
|
Loading…
Reference in New Issue
Block a user