implement overload resolution

This commit is contained in:
Lu Guanqun 2015-03-01 11:34:39 +08:00
parent e008f3f808
commit 3b9b71e0ae
8 changed files with 210 additions and 39 deletions

159
AST.cpp
View File

@ -76,6 +76,15 @@ void ContractDefinition::checkTypeRequirements()
for (ASTPointer<FunctionDefinition> const& function: getDefinedFunctions()) for (ASTPointer<FunctionDefinition> const& function: getDefinedFunctions())
function->checkTypeRequirements(); function->checkTypeRequirements();
// check for duplicate declaration
set<string> functions;
for (ASTPointer<FunctionDefinition> const& function: getDefinedFunctions())
{
string signature = function->getCanonicalSignature();
if (functions.count(signature))
BOOST_THROW_EXCEPTION(DeclarationError() << errinfo_comment("Duplicate functions are not allowed."));
functions.insert(signature);
}
for (ASTPointer<VariableDeclaration> const& variable: m_stateVariables) for (ASTPointer<VariableDeclaration> const& variable: m_stateVariables)
variable->checkTypeRequirements(); variable->checkTypeRequirements();
@ -129,6 +138,7 @@ void ContractDefinition::checkIllegalOverrides() const
// TODO unify this at a later point. for this we need to put the constness and the access specifier // TODO unify this at a later point. for this we need to put the constness and the access specifier
// into the types // into the types
map<string, FunctionDefinition const*> functions; map<string, FunctionDefinition const*> functions;
set<string> functionNames;
map<string, ModifierDefinition const*> modifiers; map<string, ModifierDefinition const*> modifiers;
// We search from derived to base, so the stored item causes the error. // We search from derived to base, so the stored item causes the error.
@ -141,7 +151,8 @@ void ContractDefinition::checkIllegalOverrides() const
string const& name = function->getName(); string const& name = function->getName();
if (modifiers.count(name)) if (modifiers.count(name))
BOOST_THROW_EXCEPTION(modifiers[name]->createTypeError("Override changes function to modifier.")); BOOST_THROW_EXCEPTION(modifiers[name]->createTypeError("Override changes function to modifier."));
FunctionDefinition const*& override = functions[name]; FunctionDefinition const*& override = functions[function->getCanonicalSignature()];
functionNames.insert(name);
if (!override) if (!override)
override = function.get(); override = function.get();
else if (override->getVisibility() != function->getVisibility() || else if (override->getVisibility() != function->getVisibility() ||
@ -152,13 +163,13 @@ void ContractDefinition::checkIllegalOverrides() const
for (ASTPointer<ModifierDefinition> const& modifier: contract->getFunctionModifiers()) for (ASTPointer<ModifierDefinition> const& modifier: contract->getFunctionModifiers())
{ {
string const& name = modifier->getName(); string const& name = modifier->getName();
if (functions.count(name))
BOOST_THROW_EXCEPTION(functions[name]->createTypeError("Override changes modifier to function."));
ModifierDefinition const*& override = modifiers[name]; ModifierDefinition const*& override = modifiers[name];
if (!override) if (!override)
override = modifier.get(); override = modifier.get();
else if (ModifierType(*override) != ModifierType(*modifier)) else if (ModifierType(*override) != ModifierType(*modifier))
BOOST_THROW_EXCEPTION(override->createTypeError("Override changes modifier signature.")); BOOST_THROW_EXCEPTION(override->createTypeError("Override changes modifier signature."));
if (functionNames.count(name))
BOOST_THROW_EXCEPTION(override->createTypeError("Override changes modifier to function."));
} }
} }
} }
@ -185,16 +196,21 @@ vector<pair<FixedHash<4>, FunctionTypePointer>> const& ContractDefinition::getIn
if (!m_interfaceFunctionList) if (!m_interfaceFunctionList)
{ {
set<string> functionsSeen; set<string> functionsSeen;
set<string> signaturesSeen;
m_interfaceFunctionList.reset(new vector<pair<FixedHash<4>, FunctionTypePointer>>()); m_interfaceFunctionList.reset(new vector<pair<FixedHash<4>, FunctionTypePointer>>());
for (ContractDefinition const* contract: getLinearizedBaseContracts()) for (ContractDefinition const* contract: getLinearizedBaseContracts())
{ {
for (ASTPointer<FunctionDefinition> const& f: contract->getDefinedFunctions()) for (ASTPointer<FunctionDefinition> const& f: contract->getDefinedFunctions())
if (f->isPublic() && !f->isConstructor() && !f->getName().empty() && functionsSeen.count(f->getName()) == 0) {
string functionSignature = f->getCanonicalSignature();
if (f->isPublic() && !f->isConstructor() && !f->getName().empty() && signaturesSeen.count(functionSignature) == 0)
{ {
functionsSeen.insert(f->getName()); functionsSeen.insert(f->getName());
FixedHash<4> hash(dev::sha3(f->getCanonicalSignature())); signaturesSeen.insert(functionSignature);
FixedHash<4> hash(dev::sha3(functionSignature));
m_interfaceFunctionList->push_back(make_pair(hash, make_shared<FunctionType>(*f, false))); m_interfaceFunctionList->push_back(make_pair(hash, make_shared<FunctionType>(*f, false)));
} }
}
for (ASTPointer<VariableDeclaration> const& v: contract->getStateVariables()) for (ASTPointer<VariableDeclaration> const& v: contract->getStateVariables())
if (v->isPublic() && functionsSeen.count(v->getName()) == 0) if (v->isPublic() && functionsSeen.count(v->getName()) == 0)
@ -467,7 +483,43 @@ void Return::checkTypeRequirements()
void VariableDeclarationStatement::checkTypeRequirements() void VariableDeclarationStatement::checkTypeRequirements()
{ {
<<<<<<< HEAD
m_variable->checkTypeRequirements(); m_variable->checkTypeRequirements();
=======
// Variables can be declared without type (with "var"), in which case the first assignment
// sets the type.
// Note that assignments before the first declaration are legal because of the special scoping
// rules inherited from JavaScript.
if (m_variable->getValue())
{
if (m_variable->getType())
{
std::cout << "getType() ok" << std::endl;
m_variable->getValue()->expectType(*m_variable->getType());
}
else
{
// no type declared and no previous assignment, infer the type
std::cout << "here's where called...." << std::endl;
Identifier* identifier = dynamic_cast<Identifier*>(m_variable->getValue().get());
if (identifier)
identifier->checkTypeRequirementsFromVariableDeclaration();
else
m_variable->getValue()->checkTypeRequirements();
TypePointer type = m_variable->getValue()->getType();
if (type->getCategory() == Type::Category::IntegerConstant)
{
auto intType = dynamic_pointer_cast<IntegerConstantType const>(type)->getIntegerType();
if (!intType)
BOOST_THROW_EXCEPTION(m_variable->getValue()->createTypeError("Invalid integer constant " + type->toString()));
type = intType;
}
else if (type->getCategory() == Type::Category::Void)
BOOST_THROW_EXCEPTION(m_variable->createTypeError("var cannot be void type"));
m_variable->setType(type);
}
}
>>>>>>> implement overload resolution
} }
void Assignment::checkTypeRequirements() void Assignment::checkTypeRequirements()
@ -544,10 +596,16 @@ void BinaryOperation::checkTypeRequirements()
void FunctionCall::checkTypeRequirements() void FunctionCall::checkTypeRequirements()
{ {
m_expression->checkTypeRequirements(); // we need to check arguments' type first as their info will be used by m_express(Identifier).
for (ASTPointer<Expression> const& argument: m_arguments) for (ASTPointer<Expression> const& argument: m_arguments)
argument->checkTypeRequirements(); argument->checkTypeRequirements();
auto identifier = dynamic_cast<Identifier*>(m_expression.get());
if (identifier)
identifier->checkTypeRequirementsWithFunctionCall(*this);
else
m_expression->checkTypeRequirements();
Type const* expressionType = m_expression->getType().get(); Type const* expressionType = m_expression->getType().get();
if (isTypeConversion()) if (isTypeConversion())
{ {
@ -617,6 +675,19 @@ void FunctionCall::checkTypeRequirements()
else else
m_type = functionType->getReturnParameterTypes().front(); m_type = functionType->getReturnParameterTypes().front();
} }
else if (OverloadedFunctionType const* overloadedTypes = dynamic_cast<OverloadedFunctionType const*>(expressionType))
{
// this only applies to "x(3)" where x is assigned by "var x = f;" where f is an overloaded functions.
overloadedTypes->m_identifier->overloadResolution(*this);
FunctionType const* functionType = dynamic_cast<FunctionType const*>(overloadedTypes->m_identifier->getType().get());
// @todo actually the return type should be an anonymous struct,
// but we change it to the type of the first return value until we have structs
if (functionType->getReturnParameterTypes().empty())
m_type = make_shared<VoidType>();
else
m_type = functionType->getReturnParameterTypes().front();
}
else else
BOOST_THROW_EXCEPTION(createTypeError("Type is not callable.")); BOOST_THROW_EXCEPTION(createTypeError("Type is not callable."));
} }
@ -709,16 +780,92 @@ void IndexAccess::checkTypeRequirements()
} }
} }
void Identifier::checkTypeRequirementsWithFunctionCall(FunctionCall const& _functionCall)
{
solAssert(m_referencedDeclaration || !m_overloadedDeclarations.empty(), "Identifier not resolved.");
if (!m_referencedDeclaration)
overloadResolution(_functionCall);
checkTypeRequirements();
}
void Identifier::checkTypeRequirementsFromVariableDeclaration()
{
solAssert(m_referencedDeclaration || !m_overloadedDeclarations.empty(), "Identifier not resolved.");
if (!m_referencedDeclaration)
m_type = make_shared<OverloadedFunctionType>(m_overloadedDeclarations, this);
else
checkTypeRequirements();
m_isLValue = true;
}
void Identifier::checkTypeRequirements() void Identifier::checkTypeRequirements()
{ {
// var x = f; TODO!
solAssert(m_referencedDeclaration, "Identifier not resolved."); solAssert(m_referencedDeclaration, "Identifier not resolved.");
m_isLValue = m_referencedDeclaration->isLValue(); m_isLValue = m_referencedDeclaration->isLValue();
if (m_isLValue)
std::cout << "Identifier: " << string(getName()) << " -> true" << std::endl;
else
std::cout << "Identifier: " << string(getName()) << " -> true" << std::endl;
m_type = m_referencedDeclaration->getType(m_currentContract); m_type = m_referencedDeclaration->getType(m_currentContract);
if (!m_type) if (!m_type)
BOOST_THROW_EXCEPTION(createTypeError("Declaration referenced before type could be determined.")); BOOST_THROW_EXCEPTION(createTypeError("Declaration referenced before type could be determined."));
} }
void Identifier::overloadResolution(FunctionCall const& _functionCall)
{
solAssert(m_overloadedDeclarations.size() > 1, "FunctionIdentifier not resolved.");
solAssert(!m_referencedDeclaration, "Referenced declaration should be null before overload resolution.");
bool resolved = false;
std::vector<ASTPointer<Expression const>> arguments = _functionCall.getArguments();
std::vector<ASTPointer<ASTString>> const& argumentNames = _functionCall.getNames();
if (argumentNames.empty())
{
// positional arguments
std::vector<Declaration const*> possibles;
for (Declaration const* declaration: m_overloadedDeclarations)
{
TypePointer const& function = declaration->getType();
auto const& functionType = dynamic_cast<FunctionType const&>(*function);
TypePointers const& parameterTypes = functionType.getParameterTypes();
if (functionType.takesArbitraryParameters() ||
(arguments.size() == parameterTypes.size() &&
std::equal(arguments.cbegin(), arguments.cend(), parameterTypes.cbegin(),
[](ASTPointer<Expression const> const& argument, TypePointer const& parameterType)
{
return argument->getType()->isImplicitlyConvertibleTo(*parameterType);
})))
possibles.push_back(declaration);
}
std::cout << "possibles: " << possibles.size() << std::endl;
if (possibles.empty())
BOOST_THROW_EXCEPTION(createTypeError("Can't resolve identifier"));
else if (std::none_of(possibles.cbegin() + 1, possibles.cend(),
[&possibles](Declaration const* declaration)
{
return declaration->getScope() == possibles.front()->getScope();
}))
setReferencedDeclaration(*possibles.front());
else
BOOST_THROW_EXCEPTION(createTypeError("Can't resolve identifier"));
}
else
{
// named arguments
// TODO: don't support right now
// BOOST_THROW_EXCEPTION(createTypeError("Named arguments with overloaded functions are not supported yet."));
}
}
void ElementaryTypeNameExpression::checkTypeRequirements() void ElementaryTypeNameExpression::checkTypeRequirements()
{ {
m_type = make_shared<TypeType>(Type::fromElementaryTypeName(m_typeToken)); m_type = make_shared<TypeType>(Type::fromElementaryTypeName(m_typeToken));

15
AST.h
View File

@ -1134,8 +1134,8 @@ public:
class Identifier: public PrimaryExpression class Identifier: public PrimaryExpression
{ {
public: public:
Identifier(SourceLocation const& _location, ASTPointer<ASTString> const& _name, bool _isCallable): Identifier(SourceLocation const& _location, ASTPointer<ASTString> const& _name):
PrimaryExpression(_location), m_name(_name), m_isCallable(_isCallable) {} PrimaryExpression(_location), m_name(_name) {}
virtual void accept(ASTVisitor& _visitor) override; virtual void accept(ASTVisitor& _visitor) override;
virtual void accept(ASTConstVisitor& _visitor) const override; virtual void accept(ASTConstVisitor& _visitor) const override;
virtual void checkTypeRequirements() override; virtual void checkTypeRequirements() override;
@ -1151,9 +1151,15 @@ public:
Declaration const* getReferencedDeclaration() const { return m_referencedDeclaration; } Declaration const* getReferencedDeclaration() const { return m_referencedDeclaration; }
ContractDefinition const* getCurrentContract() const { return m_currentContract; } ContractDefinition const* getCurrentContract() const { return m_currentContract; }
bool isCallable() const { return m_isCallable; } void setOverloadedDeclarations(std::set<Declaration const*> const& _declarations) { m_overloadedDeclarations = _declarations; }
std::set<Declaration const*> getOverloadedDeclarations() const { return m_overloadedDeclarations; }
void checkTypeRequirementsWithFunctionCall(FunctionCall const& _functionCall);
void checkTypeRequirementsFromVariableDeclaration();
void overloadResolution(FunctionCall const& _functionCall);
private: private:
ASTPointer<ASTString> m_name; ASTPointer<ASTString> m_name;
/// Declaration the name refers to. /// Declaration the name refers to.
@ -1161,7 +1167,8 @@ private:
/// Stores a reference to the current contract. This is needed because types of base contracts /// Stores a reference to the current contract. This is needed because types of base contracts
/// change depending on the context. /// change depending on the context.
ContractDefinition const* m_currentContract = nullptr; ContractDefinition const* m_currentContract = nullptr;
bool m_isCallable = false; /// A set of overloaded declarations, right now only FunctionDefinition has overloaded declarations.
std::set<Declaration const*> m_overloadedDeclarations;
}; };
/** /**

View File

@ -108,8 +108,8 @@ eth::AssemblyItem CompilerContext::getVirtualFunctionEntryLabel(FunctionDefiniti
for (ASTPointer<FunctionDefinition> const& function: contract->getDefinedFunctions()) for (ASTPointer<FunctionDefinition> const& function: contract->getDefinedFunctions())
{ {
if (!function->isConstructor() && if (!function->isConstructor() &&
dynamic_cast<FunctionType const&>(*function->getType()).getCanonicalSignature() == dynamic_cast<FunctionType const&>(*function->getType(contract)).getCanonicalSignature() ==
dynamic_cast<FunctionType const&>(*_function.getType()).getCanonicalSignature()) dynamic_cast<FunctionType const&>(*_function.getType(contract)).getCanonicalSignature())
return getFunctionEntryLabel(*function); return getFunctionEntryLabel(*function);
} }
solAssert(false, "Virtual function " + _function.getName() + " not found."); solAssert(false, "Virtual function " + _function.getName() + " not found.");

View File

@ -822,7 +822,11 @@ bool ExpressionCompiler::visit(IndexAccess const& _indexAccess)
void ExpressionCompiler::endVisit(Identifier const& _identifier) void ExpressionCompiler::endVisit(Identifier const& _identifier)
{ {
Declaration const* declaration = _identifier.getReferencedDeclaration(); Declaration const* declaration = _identifier.getReferencedDeclaration();
if (MagicVariableDeclaration const* magicVar = dynamic_cast<MagicVariableDeclaration const*>(declaration)) if (declaration == nullptr)
{
// no-op
}
else if (MagicVariableDeclaration const* magicVar = dynamic_cast<MagicVariableDeclaration const*>(declaration))
{ {
if (magicVar->getType()->getCategory() == Type::Category::Contract) if (magicVar->getType()->getCategory() == Type::Category::Contract)
// "this" or "super" // "this" or "super"

View File

@ -90,15 +90,15 @@ void NameAndTypeResolver::updateDeclaration(Declaration const& _declaration)
solAssert(_declaration.getScope() == nullptr, "Updated declaration outside global scope."); solAssert(_declaration.getScope() == nullptr, "Updated declaration outside global scope.");
} }
Declaration const* NameAndTypeResolver::resolveName(ASTString const& _name, Declaration const* _scope) const std::set<Declaration const*> NameAndTypeResolver::resolveName(ASTString const& _name, Declaration const* _scope) const
{ {
auto iterator = m_scopes.find(_scope); auto iterator = m_scopes.find(_scope);
if (iterator == end(m_scopes)) if (iterator == end(m_scopes))
return nullptr; return std::set<Declaration const*>({});
return iterator->second.resolveName(_name, false); return iterator->second.resolveName(_name, false);
} }
Declaration const* NameAndTypeResolver::getNameFromCurrentScope(ASTString const& _name, bool _recursive) std::set<Declaration const*> NameAndTypeResolver::getNameFromCurrentScope(ASTString const& _name, bool _recursive)
{ {
return m_currentScope->resolveName(_name, _recursive); return m_currentScope->resolveName(_name, _recursive);
} }
@ -108,14 +108,12 @@ void NameAndTypeResolver::importInheritedScope(ContractDefinition const& _base)
auto iterator = m_scopes.find(&_base); auto iterator = m_scopes.find(&_base);
solAssert(iterator != end(m_scopes), ""); solAssert(iterator != end(m_scopes), "");
for (auto const& nameAndDeclaration: iterator->second.getDeclarations()) for (auto const& nameAndDeclaration: iterator->second.getDeclarations())
{ for (auto const& declaration: nameAndDeclaration.second)
Declaration const* declaration = nameAndDeclaration.second;
// Import if it was declared in the base, is not the constructor and is visible in derived classes // Import if it was declared in the base, is not the constructor and is visible in derived classes
if (declaration->getScope() == &_base && declaration->getName() != _base.getName() && if (declaration->getScope() == &_base && declaration->getName() != _base.getName() &&
declaration->isVisibleInDerivedContracts()) declaration->isVisibleInDerivedContracts())
m_currentScope->registerDeclaration(*declaration); m_currentScope->registerDeclaration(*declaration);
} }
}
void NameAndTypeResolver::linearizeBaseContracts(ContractDefinition& _contract) const void NameAndTypeResolver::linearizeBaseContracts(ContractDefinition& _contract) const
{ {
@ -361,24 +359,31 @@ bool ReferencesResolver::visit(Mapping&)
bool ReferencesResolver::visit(UserDefinedTypeName& _typeName) bool ReferencesResolver::visit(UserDefinedTypeName& _typeName)
{ {
Declaration const* declaration = m_resolver.getNameFromCurrentScope(_typeName.getName()); auto declarations = m_resolver.getNameFromCurrentScope(_typeName.getName());
if (!declaration) if (declarations.empty())
BOOST_THROW_EXCEPTION(DeclarationError() << errinfo_sourceLocation(_typeName.getLocation()) BOOST_THROW_EXCEPTION(DeclarationError() << errinfo_sourceLocation(_typeName.getLocation())
<< errinfo_comment("Undeclared identifier.")); << errinfo_comment("Undeclared identifier."));
_typeName.setReferencedDeclaration(*declaration); else if (declarations.size() > 1)
BOOST_THROW_EXCEPTION(DeclarationError() << errinfo_sourceLocation(_typeName.getLocation())
<< errinfo_comment("Duplicate identifier."));
else
_typeName.setReferencedDeclaration(**declarations.begin());
return false; return false;
} }
bool ReferencesResolver::visit(Identifier& _identifier) bool ReferencesResolver::visit(Identifier& _identifier)
{ {
Declaration const* declaration = m_resolver.getNameFromCurrentScope(_identifier.getName()); auto declarations = m_resolver.getNameFromCurrentScope(_identifier.getName());
if (!declaration) if (declarations.empty())
BOOST_THROW_EXCEPTION(DeclarationError() << errinfo_sourceLocation(_identifier.getLocation()) BOOST_THROW_EXCEPTION(DeclarationError() << errinfo_sourceLocation(_identifier.getLocation())
<< errinfo_comment("Undeclared identifier.")); << errinfo_comment("Undeclared identifier."));
_identifier.setReferencedDeclaration(*declaration, m_currentContract); else if (declarations.size() == 1)
_identifier.setReferencedDeclaration(**declarations.begin(), m_currentContract);
else
// Duplicate declaration will be checked in checkTypeRequirements()
_identifier.setOverloadedDeclarations(declarations);
return false; return false;
} }
} }
} }

View File

@ -56,11 +56,11 @@ public:
/// Resolves the given @a _name inside the scope @a _scope. If @a _scope is omitted, /// Resolves the given @a _name inside the scope @a _scope. If @a _scope is omitted,
/// the global scope is used (i.e. the one containing only the contract). /// the global scope is used (i.e. the one containing only the contract).
/// @returns a pointer to the declaration on success or nullptr on failure. /// @returns a pointer to the declaration on success or nullptr on failure.
Declaration const* resolveName(ASTString const& _name, Declaration const* _scope = nullptr) const; std::set<Declaration const*> resolveName(ASTString const& _name, Declaration const* _scope = nullptr) const;
/// Resolves a name in the "current" scope. Should only be called during the initial /// Resolves a name in the "current" scope. Should only be called during the initial
/// resolving phase. /// resolving phase.
Declaration const* getNameFromCurrentScope(ASTString const& _name, bool _recursive = true); std::set<Declaration const*> getNameFromCurrentScope(ASTString const& _name, bool _recursive = true);
private: private:
void reset(); void reset();

View File

@ -837,14 +837,9 @@ ASTPointer<Expression> Parser::parsePrimaryExpression()
expression = nodeFactory.createNode<Literal>(token, getLiteralAndAdvance()); expression = nodeFactory.createNode<Literal>(token, getLiteralAndAdvance());
break; break;
case Token::Identifier: case Token::Identifier:
{
nodeFactory.markEndPosition(); nodeFactory.markEndPosition();
// if the next token is '(', this identifier looks like function call, expression = nodeFactory.createNode<Identifier>(getLiteralAndAdvance());
// it could be a contract, event etc.
bool isCallable = m_scanner->peekNextToken() == Token::LParen;
expression = nodeFactory.createNode<Identifier>(getLiteralAndAdvance(), isCallable);
break; break;
}
case Token::LParen: case Token::LParen:
{ {
m_scanner->next(); m_scanner->next();

15
Types.h
View File

@ -77,7 +77,7 @@ public:
enum class Category enum class Category
{ {
Integer, IntegerConstant, Bool, Real, Array, Integer, IntegerConstant, Bool, Real, Array,
String, Contract, Struct, Function, Enum, String, Contract, Struct, Function, OverloadedFunctions, Enum,
Mapping, Void, TypeType, Modifier, Magic Mapping, Void, TypeType, Modifier, Magic
}; };
@ -524,6 +524,19 @@ private:
Declaration const* m_declaration = nullptr; Declaration const* m_declaration = nullptr;
}; };
class OverloadedFunctionType: public Type
{
public:
explicit OverloadedFunctionType(std::set<Declaration const*> const& _overloadedDeclarations, Identifier* _identifier):
m_overloadedDeclarations(_overloadedDeclarations), m_identifier(_identifier) {}
virtual Category getCategory() const override { return Category::OverloadedFunctions; }
virtual std::string toString() const override { return "OverloadedFunctions"; }
// private:
std::set<Declaration const*> m_overloadedDeclarations;
Identifier * m_identifier;
};
/** /**
* The type of a mapping, there is one distinct type per key/value type pair. * The type of a mapping, there is one distinct type per key/value type pair.
*/ */