mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
Move Julia documentation to its own file
This commit is contained in:
parent
f73660423a
commit
2a91eb9538
@ -1,197 +1,13 @@
|
||||
#################################################
|
||||
Joyfully Universal Language for (Inline) Assembly
|
||||
#################################################
|
||||
|
||||
.. _julia:
|
||||
#################
|
||||
Solidity Assembly
|
||||
#################
|
||||
|
||||
.. index:: ! assembly, ! asm, ! evmasm
|
||||
|
||||
JULIA is an intermediate language that can compile to various different backends
|
||||
(EVM 1.0, EVM 1.5 and eWASM are planned).
|
||||
Because of that, it is designed to be as featureless as possible.
|
||||
It can already be used for "inline assembly" inside Solidity and
|
||||
future versions of the Solidity compiler will even use JULIA as intermediate
|
||||
language. It should also be easy to build high-level optimizer stages for JULIA.
|
||||
|
||||
The core components of JULIA are functions, blocks, variables, literals,
|
||||
for-loops, switch-statements, expressions and assignments to variables.
|
||||
|
||||
JULIA in itself does not even provide operators. If the EVM is targeted,
|
||||
opcodes will be available as built-in functions, but they can be reimplemented
|
||||
if the backend changes.
|
||||
|
||||
The following example program assumes that the EVM opcodes ``mul``, ``div``
|
||||
and ``mod`` are available either natively or as functions and computes exponentiation.
|
||||
|
||||
.. code::
|
||||
{
|
||||
function power(base, exponent) -> (result)
|
||||
{
|
||||
switch exponent
|
||||
0: { result := 1 }
|
||||
1: { result := base }
|
||||
default:
|
||||
{
|
||||
result := power(mul(base, base), div(exponent, 2))
|
||||
switch mod(exponent, 2)
|
||||
1: { result := mul(base, result) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
It is also possible to implement the same function using a for-loop
|
||||
instead of recursion. Here, we need the EVM opcodes ``lt`` (less-than)
|
||||
and ``add`` to be available.
|
||||
|
||||
.. code::
|
||||
{
|
||||
function power(base, exponent) -> (result)
|
||||
{
|
||||
result := 1
|
||||
for { let i := 0 } lt(i, exponent) { i := add(i, 1) }
|
||||
{
|
||||
result := mul(result, base)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Specification of JULIA
|
||||
======================
|
||||
|
||||
Grammar::
|
||||
|
||||
Block = '{' Statement* '}'
|
||||
Statement =
|
||||
Block |
|
||||
FunctionDefinition |
|
||||
VariableDeclaration |
|
||||
Assignment |
|
||||
Expression |
|
||||
Switch |
|
||||
ForLoop |
|
||||
BreakContinue |
|
||||
SubAssembly
|
||||
FunctionDefinition =
|
||||
'function' Identifier '(' IdentifierList? ')'
|
||||
( '->' '(' IdentifierList ')' )? Block
|
||||
VariableDeclaration =
|
||||
'let' IdentifierOrList ':=' Expression
|
||||
Assignment =
|
||||
IdentifierOrList ':=' Expression
|
||||
Expression =
|
||||
FunctionCall | Identifier | Literal
|
||||
Switch =
|
||||
'switch' Expression Case* ( 'default' ':' Block )?
|
||||
Case =
|
||||
'case' Expression ':' Block
|
||||
ForLoop =
|
||||
'for' Block Expression Block Block
|
||||
BreakContinue =
|
||||
'break' | 'continue'
|
||||
SubAssembly =
|
||||
'assembly' Identifier Block
|
||||
FunctionCall =
|
||||
Identifier '(' ( Expression ( ',' Expression )* )? ')'
|
||||
IdentifierOrList = Identifier | '(' IdentifierList ')'
|
||||
Identifier = [a-zA-Z_$] [a-zA-Z_0-9]*
|
||||
IdentifierList = Identifier ( ',' Identifier)*
|
||||
Literal =
|
||||
NumberLiteral | StringLiteral | HexLiteral
|
||||
NumberLiteral = HexNumber | DecimalNumber
|
||||
HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
|
||||
StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
|
||||
HexNumber = '0x' [0-9a-fA-F]+
|
||||
DecimalNumber = [0-9]+
|
||||
|
||||
Restrictions on the Grammar
|
||||
---------------------------
|
||||
|
||||
Scopes in JULIA are tied to Blocks and all declarations
|
||||
(``FunctionDefinition``, ``VariableDeclaration`` and ``SubAssembly``)
|
||||
introduce new identifiers into these scopes. Shadowing is disallowed
|
||||
|
||||
Talk about identifiers across functions etc
|
||||
|
||||
|
||||
Restriction for Expression: Statements have to return empty tuple
|
||||
Function arguments have to be single item
|
||||
|
||||
Restriction for VariableDeclaration and Assignment: Number of elements left and right needs to be the same
|
||||
continue and break only in for loop
|
||||
|
||||
Literals have to fit 32 bytes
|
||||
|
||||
|
||||
|
||||
| 'dataSize' '(' Identifier ')' |
|
||||
LinkerSymbol |
|
||||
'bytecodeSize' |
|
||||
|
||||
|
||||
Formal Specification
|
||||
--------------------
|
||||
|
||||
We formally specify JULIA by providing an evaluation function E overloaded
|
||||
on the various nodes of the AST. Any functions can have side effects, so
|
||||
E takes a state objects and the actual argument and also returns new
|
||||
state objects and new arguments. There is a global state object
|
||||
(which in the context of the EVM is the memory, storage and state of the
|
||||
blockchain) and a local state object (the state of local variables, i.e. a
|
||||
segment of the stack in the EVM).
|
||||
|
||||
The the evaluation function E takes a global state, a local state and
|
||||
a node of the AST and returns a new global state, a new local state
|
||||
and a value (if the AST node is an expression).
|
||||
|
||||
We use sequence numbers as a shorthand for the order of evaluation
|
||||
and how state is forwarded. For example, ``E2(x), E1(y)`` is a shorthand
|
||||
for
|
||||
|
||||
For ``(S1, z) = E(S, y)`` let ``(S2, w) = E(S1, x)``. TODO
|
||||
|
||||
.. code::
|
||||
E(G, L, <{St1, ..., Stn}>: Block) =
|
||||
let L' be a copy of L that adds a new inner scope which contains
|
||||
all functions and variables declared in the block (but not its sub-blocks)
|
||||
variables are marked inactive for now
|
||||
TODO: more formal
|
||||
G1, L'1 = E(G, L', St1)
|
||||
G2, L'2 = E(G1, L'1, St2)
|
||||
...
|
||||
Gn, L'n = E(G(n-1), L'(n-1), Stn)
|
||||
let L'' be a copy of L'n where the innermost scope is removed
|
||||
Gn, L''
|
||||
E(G, L, <function fname (param1, ..., paramn) -> (ret1, ..., retm) block>: FunctionDefinition) =
|
||||
G, L
|
||||
E(G, L, <let (var1, ..., varn) := value>: VariableDeclaration) =
|
||||
E(G, L, <(var1, ..., varn) := value>: Assignment)
|
||||
E(G, L, <(var1, ..., varn) := value>: Assignment) =
|
||||
let G', L', v1, ..., vn = E(G, L, value)
|
||||
let L'' be a copy of L' where L'[vi] = vi for i = 1, ..., n
|
||||
G, L''
|
||||
E(G, L, name: Identifier) =
|
||||
G, L, L[name]
|
||||
E(G, L, fname(arg1, ..., argn): FunctionCall) =
|
||||
G1, L1, vn = E(G, L, argn)
|
||||
...
|
||||
G(n-1), L(n-1), v2 = E(G(n-2), L(n-2), arg2)
|
||||
Gn, Ln, v1 = E(G(n-1), L(n-1), arg1)
|
||||
Let <function fname (param1, ..., paramn) -> (ret1, ..., retm) block>
|
||||
be the function L[fname].
|
||||
Let L' be a copy of L that does not contain any variables in any scope,
|
||||
but which has a new innermost scope such that
|
||||
L'[parami] = vi and L'[reti] = 0
|
||||
Let G'', L'', rv1, ..., rvm = E(Gn, L', block)
|
||||
G'', Ln, rv1, ..., rvm
|
||||
E(G, L, l: HexLiteral) = G, L, hexString(l),
|
||||
where hexString decodes l from hex and left-aligns in into 32 bytes
|
||||
E(G, L, l: StringLiteral) = G, L, utf8EncodeLeftAligned(l),
|
||||
where utf8EncodeLeftAligned performs a utf8 encoding of l
|
||||
and aligns it left into 32 bytes
|
||||
E(G, L, n: HexNumber) = G, L, hex(n)
|
||||
where hex is the hexadecimal decoding function
|
||||
E(G, L, n: DecimalNumber) = G, L, dec(n),
|
||||
where dec is the decimal decoding function
|
||||
Solidity defines an assembly language that can also be used without Solidity.
|
||||
This assembly language can also be used as "inline assembly" inside Solidity
|
||||
source code. We start with describing how to use inline assembly and how it
|
||||
differs from standalone assembly and then specify assembly itself.
|
||||
|
||||
.. _inline-assembly:
|
||||
|
||||
|
189
docs/julia.rst
Normal file
189
docs/julia.rst
Normal file
@ -0,0 +1,189 @@
|
||||
#################################################
|
||||
Joyfully Universal Language for (Inline) Assembly
|
||||
#################################################
|
||||
|
||||
.. _julia:
|
||||
|
||||
.. index:: ! assembly, ! asm, ! evmasm, ! julia
|
||||
|
||||
JULIA is an intermediate language that can compile to various different backends
|
||||
(EVM 1.0, EVM 1.5 and eWASM are planned).
|
||||
Because of that, it is designed to be as featureless as possible.
|
||||
It can already be used for "inline assembly" inside Solidity and
|
||||
future versions of the Solidity compiler will even use JULIA as intermediate
|
||||
language. It should also be easy to build high-level optimizer stages for JULIA.
|
||||
|
||||
The core components of JULIA are functions, blocks, variables, literals,
|
||||
for-loops, switch-statements, expressions and assignments to variables.
|
||||
|
||||
JULIA in itself does not even provide operators. If the EVM is targeted,
|
||||
opcodes will be available as built-in functions, but they can be reimplemented
|
||||
if the backend changes.
|
||||
|
||||
The following example program assumes that the EVM opcodes ``mul``, ``div``
|
||||
and ``mod`` are available either natively or as functions and computes exponentiation.
|
||||
|
||||
.. code::
|
||||
|
||||
{
|
||||
function power(base, exponent) -> (result)
|
||||
{
|
||||
switch exponent
|
||||
0: { result := 1 }
|
||||
1: { result := base }
|
||||
default:
|
||||
{
|
||||
result := power(mul(base, base), div(exponent, 2))
|
||||
switch mod(exponent, 2)
|
||||
1: { result := mul(base, result) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
It is also possible to implement the same function using a for-loop
|
||||
instead of recursion. Here, we need the EVM opcodes ``lt`` (less-than)
|
||||
and ``add`` to be available.
|
||||
|
||||
.. code::
|
||||
|
||||
{
|
||||
function power(base, exponent) -> (result)
|
||||
{
|
||||
result := 1
|
||||
for { let i := 0 } lt(i, exponent) { i := add(i, 1) }
|
||||
{
|
||||
result := mul(result, base)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Specification of JULIA
|
||||
======================
|
||||
|
||||
Grammar::
|
||||
|
||||
Block = '{' Statement* '}'
|
||||
Statement =
|
||||
Block |
|
||||
FunctionDefinition |
|
||||
VariableDeclaration |
|
||||
Assignment |
|
||||
Expression |
|
||||
Switch |
|
||||
ForLoop |
|
||||
BreakContinue |
|
||||
SubAssembly
|
||||
FunctionDefinition =
|
||||
'function' Identifier '(' IdentifierList? ')'
|
||||
( '->' '(' IdentifierList ')' )? Block
|
||||
VariableDeclaration =
|
||||
'let' IdentifierOrList ':=' Expression
|
||||
Assignment =
|
||||
IdentifierOrList ':=' Expression
|
||||
Expression =
|
||||
FunctionCall | Identifier | Literal
|
||||
Switch =
|
||||
'switch' Expression Case* ( 'default' ':' Block )?
|
||||
Case =
|
||||
'case' Expression ':' Block
|
||||
ForLoop =
|
||||
'for' Block Expression Block Block
|
||||
BreakContinue =
|
||||
'break' | 'continue'
|
||||
SubAssembly =
|
||||
'assembly' Identifier Block
|
||||
FunctionCall =
|
||||
Identifier '(' ( Expression ( ',' Expression )* )? ')'
|
||||
IdentifierOrList = Identifier | '(' IdentifierList ')'
|
||||
Identifier = [a-zA-Z_$] [a-zA-Z_0-9]*
|
||||
IdentifierList = Identifier ( ',' Identifier)*
|
||||
Literal =
|
||||
NumberLiteral | StringLiteral | HexLiteral
|
||||
NumberLiteral = HexNumber | DecimalNumber
|
||||
HexLiteral = 'hex' ('"' ([0-9a-fA-F]{2})* '"' | '\'' ([0-9a-fA-F]{2})* '\'')
|
||||
StringLiteral = '"' ([^"\r\n\\] | '\\' .)* '"'
|
||||
HexNumber = '0x' [0-9a-fA-F]+
|
||||
DecimalNumber = [0-9]+
|
||||
|
||||
Restrictions on the Grammar
|
||||
---------------------------
|
||||
|
||||
Scopes in JULIA are tied to Blocks and all declarations
|
||||
(``FunctionDefinition``, ``VariableDeclaration`` and ``SubAssembly``)
|
||||
introduce new identifiers into these scopes. Shadowing is disallowed
|
||||
|
||||
Talk about identifiers across functions etc
|
||||
|
||||
Restriction for Expression: Statements have to return empty tuple
|
||||
Function arguments have to be single item
|
||||
|
||||
Restriction for VariableDeclaration and Assignment: Number of elements left and right needs to be the same
|
||||
continue and break only in for loop
|
||||
|
||||
Literals have to fit 32 bytes
|
||||
|
||||
Formal Specification
|
||||
--------------------
|
||||
|
||||
We formally specify JULIA by providing an evaluation function E overloaded
|
||||
on the various nodes of the AST. Any functions can have side effects, so
|
||||
E takes a state objects and the actual argument and also returns new
|
||||
state objects and new arguments. There is a global state object
|
||||
(which in the context of the EVM is the memory, storage and state of the
|
||||
blockchain) and a local state object (the state of local variables, i.e. a
|
||||
segment of the stack in the EVM).
|
||||
|
||||
The the evaluation function E takes a global state, a local state and
|
||||
a node of the AST and returns a new global state, a new local state
|
||||
and a value (if the AST node is an expression).
|
||||
|
||||
We use sequence numbers as a shorthand for the order of evaluation
|
||||
and how state is forwarded. For example, ``E2(x), E1(y)`` is a shorthand
|
||||
for
|
||||
|
||||
For ``(S1, z) = E(S, y)`` let ``(S2, w) = E(S1, x)``. TODO
|
||||
|
||||
.. code::
|
||||
|
||||
E(G, L, <{St1, ..., Stn}>: Block) =
|
||||
let L' be a copy of L that adds a new inner scope which contains
|
||||
all functions and variables declared in the block (but not its sub-blocks)
|
||||
variables are marked inactive for now
|
||||
TODO: more formal
|
||||
G1, L'1 = E(G, L', St1)
|
||||
G2, L'2 = E(G1, L'1, St2)
|
||||
...
|
||||
Gn, L'n = E(G(n-1), L'(n-1), Stn)
|
||||
let L'' be a copy of L'n where the innermost scope is removed
|
||||
Gn, L''
|
||||
E(G, L, <function fname (param1, ..., paramn) -> (ret1, ..., retm) block>: FunctionDefinition) =
|
||||
G, L
|
||||
E(G, L, <let (var1, ..., varn) := value>: VariableDeclaration) =
|
||||
E(G, L, <(var1, ..., varn) := value>: Assignment)
|
||||
E(G, L, <(var1, ..., varn) := value>: Assignment) =
|
||||
let G', L', v1, ..., vn = E(G, L, value)
|
||||
let L'' be a copy of L' where L'[vi] = vi for i = 1, ..., n
|
||||
G, L''
|
||||
E(G, L, name: Identifier) =
|
||||
G, L, L[name]
|
||||
E(G, L, fname(arg1, ..., argn): FunctionCall) =
|
||||
G1, L1, vn = E(G, L, argn)
|
||||
...
|
||||
G(n-1), L(n-1), v2 = E(G(n-2), L(n-2), arg2)
|
||||
Gn, Ln, v1 = E(G(n-1), L(n-1), arg1)
|
||||
Let <function fname (param1, ..., paramn) -> (ret1, ..., retm) block>
|
||||
be the function L[fname].
|
||||
Let L' be a copy of L that does not contain any variables in any scope,
|
||||
but which has a new innermost scope such that
|
||||
L'[parami] = vi and L'[reti] = 0
|
||||
Let G'', L'', rv1, ..., rvm = E(Gn, L', block)
|
||||
G'', Ln, rv1, ..., rvm
|
||||
E(G, L, l: HexLiteral) = G, L, hexString(l),
|
||||
where hexString decodes l from hex and left-aligns in into 32 bytes
|
||||
E(G, L, l: StringLiteral) = G, L, utf8EncodeLeftAligned(l),
|
||||
where utf8EncodeLeftAligned performs a utf8 encoding of l
|
||||
and aligns it left into 32 bytes
|
||||
E(G, L, n: HexNumber) = G, L, hex(n)
|
||||
where hex is the hexadecimal decoding function
|
||||
E(G, L, n: DecimalNumber) = G, L, dec(n),
|
||||
where dec is the decimal decoding function
|
Loading…
Reference in New Issue
Block a user