mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
Merge pull request #5756 from ethereum/docs-split-libraries
[DOCS] Split libraries into new doc
This commit is contained in:
commit
28c25efc80
@ -536,235 +536,6 @@ converted to ``uint8``.
|
|||||||
.. include:: contracts/abstract-contracts.rst
|
.. include:: contracts/abstract-contracts.rst
|
||||||
.. include:: contracts/interfaces.rst
|
.. include:: contracts/interfaces.rst
|
||||||
|
|
||||||
.. index:: ! library, callcode, delegatecall
|
.. include:: contracts/libraries.rst
|
||||||
|
|
||||||
.. _libraries:
|
|
||||||
|
|
||||||
*********
|
|
||||||
Libraries
|
|
||||||
*********
|
|
||||||
|
|
||||||
Libraries are similar to contracts, but their purpose is that they are deployed
|
|
||||||
only once at a specific address and their code is reused using the ``DELEGATECALL``
|
|
||||||
(``CALLCODE`` until Homestead)
|
|
||||||
feature of the EVM. This means that if library functions are called, their code
|
|
||||||
is executed in the context of the calling contract, i.e. ``this`` points to the
|
|
||||||
calling contract, and especially the storage from the calling contract can be
|
|
||||||
accessed. As a library is an isolated piece of source code, it can only access
|
|
||||||
state variables of the calling contract if they are explicitly supplied (it
|
|
||||||
would have no way to name them, otherwise). Library functions can only be
|
|
||||||
called directly (i.e. without the use of ``DELEGATECALL``) if they do not modify
|
|
||||||
the state (i.e. if they are ``view`` or ``pure`` functions),
|
|
||||||
because libraries are assumed to be stateless. In particular, it is
|
|
||||||
not possible to destroy a library.
|
|
||||||
|
|
||||||
.. note::
|
|
||||||
Until version 0.4.20, it was possible to destroy libraries by
|
|
||||||
circumventing Solidity's type system. Starting from that version,
|
|
||||||
libraries contain a :ref:`mechanism<call-protection>` that
|
|
||||||
disallows state-modifying functions
|
|
||||||
to be called directly (i.e. without ``DELEGATECALL``).
|
|
||||||
|
|
||||||
Libraries can be seen as implicit base contracts of the contracts that use them.
|
|
||||||
They will not be explicitly visible in the inheritance hierarchy, but calls
|
|
||||||
to library functions look just like calls to functions of explicit base
|
|
||||||
contracts (``L.f()`` if ``L`` is the name of the library). Furthermore,
|
|
||||||
``internal`` functions of libraries are visible in all contracts, just as
|
|
||||||
if the library were a base contract. Of course, calls to internal functions
|
|
||||||
use the internal calling convention, which means that all internal types
|
|
||||||
can be passed and types :ref:`stored in memory <data-location>` will be passed by reference and not copied.
|
|
||||||
To realize this in the EVM, code of internal library functions
|
|
||||||
and all functions called from therein will at compile time be pulled into the calling
|
|
||||||
contract, and a regular ``JUMP`` call will be used instead of a ``DELEGATECALL``.
|
|
||||||
|
|
||||||
.. index:: using for, set
|
|
||||||
|
|
||||||
The following example illustrates how to use libraries (but manual method
|
|
||||||
be sure to check out :ref:`using for <using-for>` for a
|
|
||||||
more advanced example to implement a set).
|
|
||||||
|
|
||||||
::
|
|
||||||
|
|
||||||
pragma solidity >=0.4.22 <0.6.0;
|
|
||||||
|
|
||||||
library Set {
|
|
||||||
// We define a new struct datatype that will be used to
|
|
||||||
// hold its data in the calling contract.
|
|
||||||
struct Data { mapping(uint => bool) flags; }
|
|
||||||
|
|
||||||
// Note that the first parameter is of type "storage
|
|
||||||
// reference" and thus only its storage address and not
|
|
||||||
// its contents is passed as part of the call. This is a
|
|
||||||
// special feature of library functions. It is idiomatic
|
|
||||||
// to call the first parameter `self`, if the function can
|
|
||||||
// be seen as a method of that object.
|
|
||||||
function insert(Data storage self, uint value)
|
|
||||||
public
|
|
||||||
returns (bool)
|
|
||||||
{
|
|
||||||
if (self.flags[value])
|
|
||||||
return false; // already there
|
|
||||||
self.flags[value] = true;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
function remove(Data storage self, uint value)
|
|
||||||
public
|
|
||||||
returns (bool)
|
|
||||||
{
|
|
||||||
if (!self.flags[value])
|
|
||||||
return false; // not there
|
|
||||||
self.flags[value] = false;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
function contains(Data storage self, uint value)
|
|
||||||
public
|
|
||||||
view
|
|
||||||
returns (bool)
|
|
||||||
{
|
|
||||||
return self.flags[value];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
contract C {
|
|
||||||
Set.Data knownValues;
|
|
||||||
|
|
||||||
function register(uint value) public {
|
|
||||||
// The library functions can be called without a
|
|
||||||
// specific instance of the library, since the
|
|
||||||
// "instance" will be the current contract.
|
|
||||||
require(Set.insert(knownValues, value));
|
|
||||||
}
|
|
||||||
// In this contract, we can also directly access knownValues.flags, if we want.
|
|
||||||
}
|
|
||||||
|
|
||||||
Of course, you do not have to follow this way to use
|
|
||||||
libraries: they can also be used without defining struct
|
|
||||||
data types. Functions also work without any storage
|
|
||||||
reference parameters, and they can have multiple storage reference
|
|
||||||
parameters and in any position.
|
|
||||||
|
|
||||||
The calls to ``Set.contains``, ``Set.insert`` and ``Set.remove``
|
|
||||||
are all compiled as calls (``DELEGATECALL``) to an external
|
|
||||||
contract/library. If you use libraries, be aware that an
|
|
||||||
actual external function call is performed.
|
|
||||||
``msg.sender``, ``msg.value`` and ``this`` will retain their values
|
|
||||||
in this call, though (prior to Homestead, because of the use of ``CALLCODE``, ``msg.sender`` and
|
|
||||||
``msg.value`` changed, though).
|
|
||||||
|
|
||||||
The following example shows how to use :ref:`types stored in memory <data-location>` and
|
|
||||||
internal functions in libraries in order to implement
|
|
||||||
custom types without the overhead of external function calls:
|
|
||||||
|
|
||||||
::
|
|
||||||
|
|
||||||
pragma solidity >=0.4.16 <0.6.0;
|
|
||||||
|
|
||||||
library BigInt {
|
|
||||||
struct bigint {
|
|
||||||
uint[] limbs;
|
|
||||||
}
|
|
||||||
|
|
||||||
function fromUint(uint x) internal pure returns (bigint memory r) {
|
|
||||||
r.limbs = new uint[](1);
|
|
||||||
r.limbs[0] = x;
|
|
||||||
}
|
|
||||||
|
|
||||||
function add(bigint memory _a, bigint memory _b) internal pure returns (bigint memory r) {
|
|
||||||
r.limbs = new uint[](max(_a.limbs.length, _b.limbs.length));
|
|
||||||
uint carry = 0;
|
|
||||||
for (uint i = 0; i < r.limbs.length; ++i) {
|
|
||||||
uint a = limb(_a, i);
|
|
||||||
uint b = limb(_b, i);
|
|
||||||
r.limbs[i] = a + b + carry;
|
|
||||||
if (a + b < a || (a + b == uint(-1) && carry > 0))
|
|
||||||
carry = 1;
|
|
||||||
else
|
|
||||||
carry = 0;
|
|
||||||
}
|
|
||||||
if (carry > 0) {
|
|
||||||
// too bad, we have to add a limb
|
|
||||||
uint[] memory newLimbs = new uint[](r.limbs.length + 1);
|
|
||||||
uint i;
|
|
||||||
for (i = 0; i < r.limbs.length; ++i)
|
|
||||||
newLimbs[i] = r.limbs[i];
|
|
||||||
newLimbs[i] = carry;
|
|
||||||
r.limbs = newLimbs;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
function limb(bigint memory _a, uint _limb) internal pure returns (uint) {
|
|
||||||
return _limb < _a.limbs.length ? _a.limbs[_limb] : 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
function max(uint a, uint b) private pure returns (uint) {
|
|
||||||
return a > b ? a : b;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
contract C {
|
|
||||||
using BigInt for BigInt.bigint;
|
|
||||||
|
|
||||||
function f() public pure {
|
|
||||||
BigInt.bigint memory x = BigInt.fromUint(7);
|
|
||||||
BigInt.bigint memory y = BigInt.fromUint(uint(-1));
|
|
||||||
BigInt.bigint memory z = x.add(y);
|
|
||||||
assert(z.limb(1) > 0);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
As the compiler cannot know where the library will be
|
|
||||||
deployed at, these addresses have to be filled into the
|
|
||||||
final bytecode by a linker
|
|
||||||
(see :ref:`commandline-compiler` for how to use the
|
|
||||||
commandline compiler for linking). If the addresses are not
|
|
||||||
given as arguments to the compiler, the compiled hex code
|
|
||||||
will contain placeholders of the form ``__Set______`` (where
|
|
||||||
``Set`` is the name of the library). The address can be filled
|
|
||||||
manually by replacing all those 40 symbols by the hex
|
|
||||||
encoding of the address of the library contract.
|
|
||||||
|
|
||||||
.. note::
|
|
||||||
Manually linking libraries on the generated bytecode is discouraged, because
|
|
||||||
it is restricted to 36 characters.
|
|
||||||
You should ask the compiler to link the libraries at the time
|
|
||||||
a contract is compiled by either using
|
|
||||||
the ``--libraries`` option of ``solc`` or the ``libraries`` key if you use
|
|
||||||
the standard-JSON interface to the compiler.
|
|
||||||
|
|
||||||
Restrictions for libraries in comparison to contracts:
|
|
||||||
|
|
||||||
- No state variables
|
|
||||||
- Cannot inherit nor be inherited
|
|
||||||
- Cannot receive Ether
|
|
||||||
|
|
||||||
(These might be lifted at a later point.)
|
|
||||||
|
|
||||||
.. _call-protection:
|
|
||||||
|
|
||||||
Call Protection For Libraries
|
|
||||||
=============================
|
|
||||||
|
|
||||||
As mentioned in the introduction, if a library's code is executed
|
|
||||||
using a ``CALL`` instead of a ``DELEGATECALL`` or ``CALLCODE``,
|
|
||||||
it will revert unless a ``view`` or ``pure`` function is called.
|
|
||||||
|
|
||||||
The EVM does not provide a direct way for a contract to detect
|
|
||||||
whether it was called using ``CALL`` or not, but a contract
|
|
||||||
can use the ``ADDRESS`` opcode to find out "where" it is
|
|
||||||
currently running. The generated code compares this address
|
|
||||||
to the address used at construction time to determine the mode
|
|
||||||
of calling.
|
|
||||||
|
|
||||||
More specifically, the runtime code of a library always starts
|
|
||||||
with a push instruction, which is a zero of 20 bytes at
|
|
||||||
compilation time. When the deploy code runs, this constant
|
|
||||||
is replaced in memory by the current address and this
|
|
||||||
modified code is stored in the contract. At runtime,
|
|
||||||
this causes the deploy time address to be the first
|
|
||||||
constant to be pushed onto the stack and the dispatcher
|
|
||||||
code compares the current address against this constant
|
|
||||||
for any non-view and non-pure function.
|
|
||||||
|
|
||||||
.. include:: contracts/using-for.rst
|
.. include:: contracts/using-for.rst
|
230
docs/contracts/libraries.rst
Normal file
230
docs/contracts/libraries.rst
Normal file
@ -0,0 +1,230 @@
|
|||||||
|
.. index:: ! library, callcode, delegatecall
|
||||||
|
|
||||||
|
.. _libraries:
|
||||||
|
|
||||||
|
*********
|
||||||
|
Libraries
|
||||||
|
*********
|
||||||
|
|
||||||
|
Libraries are similar to contracts, but their purpose is that they are deployed
|
||||||
|
only once at a specific address and their code is reused using the ``DELEGATECALL``
|
||||||
|
(``CALLCODE`` until Homestead)
|
||||||
|
feature of the EVM. This means that if library functions are called, their code
|
||||||
|
is executed in the context of the calling contract, i.e. ``this`` points to the
|
||||||
|
calling contract, and especially the storage from the calling contract can be
|
||||||
|
accessed. As a library is an isolated piece of source code, it can only access
|
||||||
|
state variables of the calling contract if they are explicitly supplied (it
|
||||||
|
would have no way to name them, otherwise). Library functions can only be
|
||||||
|
called directly (i.e. without the use of ``DELEGATECALL``) if they do not modify
|
||||||
|
the state (i.e. if they are ``view`` or ``pure`` functions),
|
||||||
|
because libraries are assumed to be stateless. In particular, it is
|
||||||
|
not possible to destroy a library.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
Until version 0.4.20, it was possible to destroy libraries by
|
||||||
|
circumventing Solidity's type system. Starting from that version,
|
||||||
|
libraries contain a :ref:`mechanism<call-protection>` that
|
||||||
|
disallows state-modifying functions
|
||||||
|
to be called directly (i.e. without ``DELEGATECALL``).
|
||||||
|
|
||||||
|
Libraries can be seen as implicit base contracts of the contracts that use them.
|
||||||
|
They will not be explicitly visible in the inheritance hierarchy, but calls
|
||||||
|
to library functions look just like calls to functions of explicit base
|
||||||
|
contracts (``L.f()`` if ``L`` is the name of the library). Furthermore,
|
||||||
|
``internal`` functions of libraries are visible in all contracts, just as
|
||||||
|
if the library were a base contract. Of course, calls to internal functions
|
||||||
|
use the internal calling convention, which means that all internal types
|
||||||
|
can be passed and types :ref:`stored in memory <data-location>` will be passed by reference and not copied.
|
||||||
|
To realize this in the EVM, code of internal library functions
|
||||||
|
and all functions called from therein will at compile time be pulled into the calling
|
||||||
|
contract, and a regular ``JUMP`` call will be used instead of a ``DELEGATECALL``.
|
||||||
|
|
||||||
|
.. index:: using for, set
|
||||||
|
|
||||||
|
The following example illustrates how to use libraries (but manual method
|
||||||
|
be sure to check out :ref:`using for <using-for>` for a
|
||||||
|
more advanced example to implement a set).
|
||||||
|
|
||||||
|
::
|
||||||
|
|
||||||
|
pragma solidity >=0.4.22 <0.6.0;
|
||||||
|
|
||||||
|
library Set {
|
||||||
|
// We define a new struct datatype that will be used to
|
||||||
|
// hold its data in the calling contract.
|
||||||
|
struct Data { mapping(uint => bool) flags; }
|
||||||
|
|
||||||
|
// Note that the first parameter is of type "storage
|
||||||
|
// reference" and thus only its storage address and not
|
||||||
|
// its contents is passed as part of the call. This is a
|
||||||
|
// special feature of library functions. It is idiomatic
|
||||||
|
// to call the first parameter `self`, if the function can
|
||||||
|
// be seen as a method of that object.
|
||||||
|
function insert(Data storage self, uint value)
|
||||||
|
public
|
||||||
|
returns (bool)
|
||||||
|
{
|
||||||
|
if (self.flags[value])
|
||||||
|
return false; // already there
|
||||||
|
self.flags[value] = true;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
function remove(Data storage self, uint value)
|
||||||
|
public
|
||||||
|
returns (bool)
|
||||||
|
{
|
||||||
|
if (!self.flags[value])
|
||||||
|
return false; // not there
|
||||||
|
self.flags[value] = false;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
function contains(Data storage self, uint value)
|
||||||
|
public
|
||||||
|
view
|
||||||
|
returns (bool)
|
||||||
|
{
|
||||||
|
return self.flags[value];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
contract C {
|
||||||
|
Set.Data knownValues;
|
||||||
|
|
||||||
|
function register(uint value) public {
|
||||||
|
// The library functions can be called without a
|
||||||
|
// specific instance of the library, since the
|
||||||
|
// "instance" will be the current contract.
|
||||||
|
require(Set.insert(knownValues, value));
|
||||||
|
}
|
||||||
|
// In this contract, we can also directly access knownValues.flags, if we want.
|
||||||
|
}
|
||||||
|
|
||||||
|
Of course, you do not have to follow this way to use
|
||||||
|
libraries: they can also be used without defining struct
|
||||||
|
data types. Functions also work without any storage
|
||||||
|
reference parameters, and they can have multiple storage reference
|
||||||
|
parameters and in any position.
|
||||||
|
|
||||||
|
The calls to ``Set.contains``, ``Set.insert`` and ``Set.remove``
|
||||||
|
are all compiled as calls (``DELEGATECALL``) to an external
|
||||||
|
contract/library. If you use libraries, be aware that an
|
||||||
|
actual external function call is performed.
|
||||||
|
``msg.sender``, ``msg.value`` and ``this`` will retain their values
|
||||||
|
in this call, though (prior to Homestead, because of the use of ``CALLCODE``, ``msg.sender`` and
|
||||||
|
``msg.value`` changed, though).
|
||||||
|
|
||||||
|
The following example shows how to use :ref:`types stored in memory <data-location>` and
|
||||||
|
internal functions in libraries in order to implement
|
||||||
|
custom types without the overhead of external function calls:
|
||||||
|
|
||||||
|
::
|
||||||
|
|
||||||
|
pragma solidity >=0.4.16 <0.6.0;
|
||||||
|
|
||||||
|
library BigInt {
|
||||||
|
struct bigint {
|
||||||
|
uint[] limbs;
|
||||||
|
}
|
||||||
|
|
||||||
|
function fromUint(uint x) internal pure returns (bigint memory r) {
|
||||||
|
r.limbs = new uint[](1);
|
||||||
|
r.limbs[0] = x;
|
||||||
|
}
|
||||||
|
|
||||||
|
function add(bigint memory _a, bigint memory _b) internal pure returns (bigint memory r) {
|
||||||
|
r.limbs = new uint[](max(_a.limbs.length, _b.limbs.length));
|
||||||
|
uint carry = 0;
|
||||||
|
for (uint i = 0; i < r.limbs.length; ++i) {
|
||||||
|
uint a = limb(_a, i);
|
||||||
|
uint b = limb(_b, i);
|
||||||
|
r.limbs[i] = a + b + carry;
|
||||||
|
if (a + b < a || (a + b == uint(-1) && carry > 0))
|
||||||
|
carry = 1;
|
||||||
|
else
|
||||||
|
carry = 0;
|
||||||
|
}
|
||||||
|
if (carry > 0) {
|
||||||
|
// too bad, we have to add a limb
|
||||||
|
uint[] memory newLimbs = new uint[](r.limbs.length + 1);
|
||||||
|
uint i;
|
||||||
|
for (i = 0; i < r.limbs.length; ++i)
|
||||||
|
newLimbs[i] = r.limbs[i];
|
||||||
|
newLimbs[i] = carry;
|
||||||
|
r.limbs = newLimbs;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
function limb(bigint memory _a, uint _limb) internal pure returns (uint) {
|
||||||
|
return _limb < _a.limbs.length ? _a.limbs[_limb] : 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
function max(uint a, uint b) private pure returns (uint) {
|
||||||
|
return a > b ? a : b;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
contract C {
|
||||||
|
using BigInt for BigInt.bigint;
|
||||||
|
|
||||||
|
function f() public pure {
|
||||||
|
BigInt.bigint memory x = BigInt.fromUint(7);
|
||||||
|
BigInt.bigint memory y = BigInt.fromUint(uint(-1));
|
||||||
|
BigInt.bigint memory z = x.add(y);
|
||||||
|
assert(z.limb(1) > 0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
As the compiler cannot know where the library will be
|
||||||
|
deployed at, these addresses have to be filled into the
|
||||||
|
final bytecode by a linker
|
||||||
|
(see :ref:`commandline-compiler` for how to use the
|
||||||
|
commandline compiler for linking). If the addresses are not
|
||||||
|
given as arguments to the compiler, the compiled hex code
|
||||||
|
will contain placeholders of the form ``__Set______`` (where
|
||||||
|
``Set`` is the name of the library). The address can be filled
|
||||||
|
manually by replacing all those 40 symbols by the hex
|
||||||
|
encoding of the address of the library contract.
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
Manually linking libraries on the generated bytecode is discouraged, because
|
||||||
|
it is restricted to 36 characters.
|
||||||
|
You should ask the compiler to link the libraries at the time
|
||||||
|
a contract is compiled by either using
|
||||||
|
the ``--libraries`` option of ``solc`` or the ``libraries`` key if you use
|
||||||
|
the standard-JSON interface to the compiler.
|
||||||
|
|
||||||
|
Restrictions for libraries in comparison to contracts:
|
||||||
|
|
||||||
|
- No state variables
|
||||||
|
- Cannot inherit nor be inherited
|
||||||
|
- Cannot receive Ether
|
||||||
|
|
||||||
|
(These might be lifted at a later point.)
|
||||||
|
|
||||||
|
.. _call-protection:
|
||||||
|
|
||||||
|
Call Protection For Libraries
|
||||||
|
=============================
|
||||||
|
|
||||||
|
As mentioned in the introduction, if a library's code is executed
|
||||||
|
using a ``CALL`` instead of a ``DELEGATECALL`` or ``CALLCODE``,
|
||||||
|
it will revert unless a ``view`` or ``pure`` function is called.
|
||||||
|
|
||||||
|
The EVM does not provide a direct way for a contract to detect
|
||||||
|
whether it was called using ``CALL`` or not, but a contract
|
||||||
|
can use the ``ADDRESS`` opcode to find out "where" it is
|
||||||
|
currently running. The generated code compares this address
|
||||||
|
to the address used at construction time to determine the mode
|
||||||
|
of calling.
|
||||||
|
|
||||||
|
More specifically, the runtime code of a library always starts
|
||||||
|
with a push instruction, which is a zero of 20 bytes at
|
||||||
|
compilation time. When the deploy code runs, this constant
|
||||||
|
is replaced in memory by the current address and this
|
||||||
|
modified code is stored in the contract. At runtime,
|
||||||
|
this causes the deploy time address to be the first
|
||||||
|
constant to be pushed onto the stack and the dispatcher
|
||||||
|
code compares the current address against this constant
|
||||||
|
for any non-view and non-pure function.
|
Loading…
Reference in New Issue
Block a user