basic ecies class

This commit is contained in:
subtly 2014-10-18 05:11:36 +02:00
parent 5693de0f13
commit 224f43bf81
2 changed files with 35 additions and 81 deletions

View File

@ -21,8 +21,6 @@
#pragma once
//#include <ostream>
#pragma warning(push)
#pragma warning(disable:4100 4244)
#pragma GCC diagnostic push

View File

@ -27,27 +27,38 @@
#include <libdevcore/Log.h>
#include <libethereum/Transaction.h>
#include <boost/test/unit_test.hpp>
#include <libdevcrypto/EC.h>
#include <libdevcrypto/ECIES.h>
#include "TestHelperCrypto.h"
using namespace std;
using namespace dev;
namespace dev
{
namespace crypto
{
inline CryptoPP::AutoSeededRandomPool& PRNG() {
static CryptoPP::AutoSeededRandomPool prng;
return prng;
}
}
}
using namespace dev::crypto;
using namespace CryptoPP;
BOOST_AUTO_TEST_SUITE(crypto)
BOOST_AUTO_TEST_SUITE(devcrypto)
BOOST_AUTO_TEST_CASE(ecies)
{
ECKeyPair k = ECKeyPair::create();
string message("Now is the time for all good men to come to the aide of humanity.");
bytes b = bytesConstRef(message).toBytes();
ECIESEncryptor(&k).encrypt(b);
bytesConstRef br(&b);
bytes plain = ECIESDecryptor(&k).decrypt(br);
assert(plain == bytesConstRef(message).toBytes());
}
BOOST_AUTO_TEST_CASE(ecdhe_aes128_ctr_sha3mac)
{
// New connections require new ECDH keypairs
// Every new connection requires a new EC keypair
// Every new trust requires a new EC keypair
// All connections should share seed for PRF (or PRNG) for nonces
}
BOOST_AUTO_TEST_CASE(cryptopp_ecies_message)
{
@ -55,9 +66,7 @@ BOOST_AUTO_TEST_CASE(cryptopp_ecies_message)
string const message("Now is the time for all good men to come to the aide of humanity.");
AutoSeededRandomPool prng;
ECIES<ECP>::Decryptor localDecryptor(prng, ASN1::secp256r1());
ECIES<ECP>::Decryptor localDecryptor(crypto::PRNG(), crypto::secp256k1());
SavePrivateKey(localDecryptor.GetPrivateKey());
ECIES<ECP>::Encryptor localEncryptor(localDecryptor);
@ -65,31 +74,31 @@ BOOST_AUTO_TEST_CASE(cryptopp_ecies_message)
ECIES<ECP>::Decryptor futureDecryptor;
LoadPrivateKey(futureDecryptor.AccessPrivateKey());
futureDecryptor.GetPrivateKey().ThrowIfInvalid(prng, 3);
futureDecryptor.GetPrivateKey().ThrowIfInvalid(crypto::PRNG(), 3);
ECIES<ECP>::Encryptor futureEncryptor;
LoadPublicKey(futureEncryptor.AccessPublicKey());
futureEncryptor.GetPublicKey().ThrowIfInvalid(prng, 3);
futureEncryptor.GetPublicKey().ThrowIfInvalid(crypto::PRNG(), 3);
// encrypt/decrypt with local
string cipherLocal;
StringSource ss1 (message, true, new PK_EncryptorFilter(prng, localEncryptor, new StringSink(cipherLocal) ) );
StringSource ss1 (message, true, new PK_EncryptorFilter(crypto::PRNG(), localEncryptor, new StringSink(cipherLocal) ) );
string plainLocal;
StringSource ss2 (cipherLocal, true, new PK_DecryptorFilter(prng, localDecryptor, new StringSink(plainLocal) ) );
StringSource ss2 (cipherLocal, true, new PK_DecryptorFilter(crypto::PRNG(), localDecryptor, new StringSink(plainLocal) ) );
// encrypt/decrypt with future
string cipherFuture;
StringSource ss3 (message, true, new PK_EncryptorFilter(prng, futureEncryptor, new StringSink(cipherFuture) ) );
StringSource ss3 (message, true, new PK_EncryptorFilter(crypto::PRNG(), futureEncryptor, new StringSink(cipherFuture) ) );
string plainFuture;
StringSource ss4 (cipherFuture, true, new PK_DecryptorFilter(prng, futureDecryptor, new StringSink(plainFuture) ) );
StringSource ss4 (cipherFuture, true, new PK_DecryptorFilter(crypto::PRNG(), futureDecryptor, new StringSink(plainFuture) ) );
// decrypt local w/future
string plainFutureFromLocal;
StringSource ss5 (cipherLocal, true, new PK_DecryptorFilter(prng, futureDecryptor, new StringSink(plainFutureFromLocal) ) );
StringSource ss5 (cipherLocal, true, new PK_DecryptorFilter(crypto::PRNG(), futureDecryptor, new StringSink(plainFutureFromLocal) ) );
// decrypt future w/local
string plainLocalFromFuture;
StringSource ss6 (cipherFuture, true, new PK_DecryptorFilter(prng, localDecryptor, new StringSink(plainLocalFromFuture) ) );
StringSource ss6 (cipherFuture, true, new PK_DecryptorFilter(crypto::PRNG(), localDecryptor, new StringSink(plainLocalFromFuture) ) );
assert(plainLocal == message);
@ -174,59 +183,6 @@ BOOST_AUTO_TEST_CASE(cryptopp_aes128_cbc)
assert(string192 == plainOriginal);
}
BOOST_AUTO_TEST_CASE(cryptopp_ecdh_aes128_cbc_noauth)
{
// ECDH gives 256-bit shared while aes uses 128-bits
// Use first 128-bits of shared secret as symmetric key
// IV is 0
// New connections require new ECDH keypairs
}
BOOST_AUTO_TEST_CASE(cryptopp_eth_fbba)
{
// Initial Authentication:
//
// New/Known Peer:
// pubkeyL = knownR? ? myKnown : myECDH
// pubkeyR = knownR? ? theirKnown : theirECDH
//
// Initial message = hmac(k=sha3(shared-secret[128..255]), address(pubkeyL)) || ECIES encrypt(pubkeyR, pubkeyL)
//
// Key Exchange (this could occur after handshake messages):
// If peers do not know each other they will need to exchange public keys.
//
// Drop ECDH (this could occur after handshake messages):
// After authentication and/or key exchange, both sides generate shared key
// from their 'known' keys and use this to encrypt all future messages.
//
// v2: If one side doesn't trust the other then a single-use key maybe sent.
// This will need to be tracked for future connections; when non-trusting peer
// wants to trust the other, it can request that it's old, 'new', public key be
// accepted. And, if the peer *really* doesn't trust the other side, it can request
// that a new, 'new', public key be accepted.
//
// Handshake (all or nothing, padded):
// All Peers (except blacklisted):
//
//
// New Peer:
//
//
// Known Untrusted Peer:
//
//
// Known Trusted Peer:
//
//
// Blacklisted Peeer:
// Already dropped by now.
//
//
// MAC:
// ...
}
BOOST_AUTO_TEST_CASE(eth_keypairs)
{
cnote << "Testing Crypto...";