[yul-phaser] Mutations: Add two-point and uniform crossover operators

This commit is contained in:
Kamil Śliwak 2020-03-11 03:49:16 +01:00
parent 55483445e9
commit 1ada2a52fb
3 changed files with 331 additions and 1 deletions

View File

@ -18,15 +18,17 @@
#include <test/yulPhaser/TestHelpers.h> #include <test/yulPhaser/TestHelpers.h>
#include <tools/yulPhaser/Mutations.h> #include <tools/yulPhaser/Mutations.h>
#include <tools/yulPhaser/SimulationRNG.h> #include <tools/yulPhaser/SimulationRNG.h>
#include <libsolutil/CommonIO.h>
#include <boost/test/unit_test.hpp> #include <boost/test/unit_test.hpp>
#include <algorithm> #include <algorithm>
#include <vector> #include <vector>
using namespace std; using namespace std;
using namespace solidity::util;
namespace solidity::phaser::test namespace solidity::phaser::test
{ {
@ -434,6 +436,181 @@ BOOST_AUTO_TEST_CASE(fixedPointCrossover_should_always_use_position_zero_as_spli
BOOST_CHECK(crossover10(empty, splittable) == splittable); BOOST_CHECK(crossover10(empty, splittable) == splittable);
} }
BOOST_AUTO_TEST_CASE(randomTwoPointCrossover_should_swap_chromosome_parts_between_two_random_points)
{
function<Crossover> crossover = randomTwoPointCrossover();
SimulationRNG::reset(1);
Chromosome result1 = crossover(Chromosome("aaaaaaaaaa"), Chromosome("cccccc"));
BOOST_TEST(result1 == Chromosome("aaacccaaaa"));
SimulationRNG::reset(1);
Chromosome result2 = crossover(Chromosome("cccccc"), Chromosome("aaaaaaaaaa"));
BOOST_TEST(result2 == Chromosome("cccaaa"));
}
BOOST_AUTO_TEST_CASE(symmetricRandomTwoPointCrossover_should_swap_chromosome_parts_at_random_point)
{
function<SymmetricCrossover> crossover = symmetricRandomTwoPointCrossover();
SimulationRNG::reset(1);
tuple<Chromosome, Chromosome> result1 = crossover(Chromosome("aaaaaaaaaa"), Chromosome("cccccc"));
tuple<Chromosome, Chromosome> expectedPair1 = {Chromosome("aaacccaaaa"), Chromosome("cccaaa")};
BOOST_TEST(result1 == expectedPair1);
tuple<Chromosome, Chromosome> result2 = crossover(Chromosome("cccccc"), Chromosome("aaaaaaaaaa"));
tuple<Chromosome, Chromosome> expectedPair2 = {Chromosome("ccccca"), Chromosome("aaaaacaaaa")};
BOOST_TEST(result2 == expectedPair2);
}
BOOST_AUTO_TEST_CASE(randomTwoPointCrossover_should_only_consider_points_available_on_both_chromosomes)
{
function<Crossover> crossover = randomTwoPointCrossover();
for (size_t i = 0; i < 30; ++i)
{
Chromosome result1 = crossover(Chromosome("aaa"), Chromosome("TTTTTTTTTTTTTTTTTTTT"));
Chromosome result2 = crossover(Chromosome("TTTTTTTTTTTTTTTTTTTT"), Chromosome("aaa"));
BOOST_TEST((
result1 == Chromosome("aaa") ||
result1 == Chromosome("Taa") ||
result1 == Chromosome("TTa") ||
result1 == Chromosome("TTT") ||
result1 == Chromosome("aTa") ||
result1 == Chromosome("aTT") ||
result1 == Chromosome("aaT")
));
BOOST_TEST((
result2 == Chromosome("TTTTTTTTTTTTTTTTTTTT") ||
result2 == Chromosome("aTTTTTTTTTTTTTTTTTTT") ||
result2 == Chromosome("aaTTTTTTTTTTTTTTTTTT") ||
result2 == Chromosome("aaaTTTTTTTTTTTTTTTTT") ||
result2 == Chromosome("TaTTTTTTTTTTTTTTTTTT") ||
result2 == Chromosome("TaaTTTTTTTTTTTTTTTTT") ||
result2 == Chromosome("TTaTTTTTTTTTTTTTTTTT")
));
}
}
BOOST_AUTO_TEST_CASE(uniformCrossover_should_swap_randomly_selected_genes)
{
function<Crossover> crossover = uniformCrossover(0.7);
SimulationRNG::reset(1);
Chromosome result1 = crossover(Chromosome("aaaaaaaaaa"), Chromosome("cccccc"));
BOOST_TEST(result1 == Chromosome("caaacc"));
SimulationRNG::reset(1);
Chromosome result2 = crossover(Chromosome("cccccc"), Chromosome("aaaaaaaaaa"));
BOOST_TEST(result2 == Chromosome("acccaaaaaa"));
}
BOOST_AUTO_TEST_CASE(symmetricUniformCrossover_should_swap_randomly_selected_genes)
{
function<SymmetricCrossover> crossover = symmetricUniformCrossover(0.7);
SimulationRNG::reset(1);
tuple<Chromosome, Chromosome> result1 = crossover(Chromosome("aaaaaaaaaa"), Chromosome("cccccc"));
tuple<Chromosome, Chromosome> expectedPair1 = {Chromosome("caaacc"), Chromosome("acccaaaaaa")};
BOOST_TEST(result1 == expectedPair1);
tuple<Chromosome, Chromosome> result2 = crossover(Chromosome("cccccc"), Chromosome("aaaaaaaaaa"));
tuple<Chromosome, Chromosome> expectedPair2 = {Chromosome("caaaaaaaaa"), Chromosome("accccc")};
BOOST_TEST(result2 == expectedPair2);
}
BOOST_AUTO_TEST_CASE(uniformCrossover_should_only_consider_points_available_on_both_chromosomes)
{
function<Crossover> crossover = uniformCrossover(0.7);
set<string> expectedPatterns = {
"TTTTTTTTTTTTTTTTTTTT",
"aTTTTTTTTTTTTTTTTTTT",
"TaTTTTTTTTTTTTTTTTTT",
"TTaTTTTTTTTTTTTTTTTT",
"aaTTTTTTTTTTTTTTTTTT",
"TaaTTTTTTTTTTTTTTTTT",
"aTaTTTTTTTTTTTTTTTTT",
"aaaTTTTTTTTTTTTTTTTT",
"aaa",
"Taa",
"aTa",
"aaT",
"TTa",
"aTT",
"TaT",
"TTT",
};
for (size_t i = 0; i < 30; ++i)
{
Chromosome result1 = crossover(Chromosome("aaa"), Chromosome("TTTTTTTTTTTTTTTTTTTT"));
Chromosome result2 = crossover(Chromosome("TTTTTTTTTTTTTTTTTTTT"), Chromosome("aaa"));
BOOST_TEST(expectedPatterns.count(toString(result1)) == 1);
BOOST_TEST(expectedPatterns.count(toString(result2)) == 1);
}
}
BOOST_AUTO_TEST_CASE(uniformCrossover_should_not_swap_anything_if_chance_is_zero)
{
BOOST_TEST(uniformCrossover(0.0)(Chromosome("aaaaaaaaaa"), Chromosome("cccccc")) == Chromosome("aaaaaaaaaa"));
BOOST_TEST(uniformCrossover(0.0)(Chromosome("cccccc"), Chromosome("aaaaaaaaaa")) == Chromosome("cccccc"));
}
BOOST_AUTO_TEST_CASE(uniformCrossover_should_swap_whole_chromosomes_if_chance_is_one)
{
BOOST_TEST(uniformCrossover(1.0)(Chromosome("aaaaaaaaaa"), Chromosome("cccccc")) == Chromosome("cccccc"));
BOOST_TEST(uniformCrossover(1.0)(Chromosome("cccccc"), Chromosome("aaaaaaaaaa")) == Chromosome("aaaaaaaaaa"));
}
BOOST_AUTO_TEST_CASE(uniformCrossover_should_swap_genes_with_uniform_probability)
{
constexpr size_t operationCount = 1000;
constexpr double swapChance = 0.8;
constexpr double relativeTolerance = 0.05;
double const expectedValue = swapChance;
double const variance = swapChance * (1 - swapChance);
function<Crossover> crossover = uniformCrossover(swapChance);
Chromosome chromosome1("aaaaaaaaaa");
Chromosome chromosome2("cccccccccc");
vector<size_t> bernoulliTrials;
for (size_t i = 0; i < operationCount; ++i)
{
string genes = toString(crossover(chromosome1, chromosome2));
for (size_t j = 0; j < chromosome1.length(); ++j)
bernoulliTrials.push_back(static_cast<size_t>(genes[j] == 'c'));
}
BOOST_TEST(abs(mean(bernoulliTrials) - expectedValue) < expectedValue * relativeTolerance);
BOOST_TEST(abs(meanSquaredError(bernoulliTrials, expectedValue) - variance) < variance * relativeTolerance);
}
BOOST_AUTO_TEST_CASE(uniformCrossover_should_swap_tail_with_uniform_probability)
{
constexpr size_t operationCount = 1000;
constexpr double swapChance = 0.3;
constexpr double relativeTolerance = 0.05;
double const expectedValue = swapChance;
double const variance = swapChance * (1 - swapChance);
function<Crossover> crossover = uniformCrossover(swapChance);
Chromosome chromosome1("aaaaa");
Chromosome chromosome2("cccccccccc");
vector<size_t> bernoulliTrials;
for (size_t i = 0; i < operationCount; ++i)
{
string genes = toString(crossover(chromosome1, chromosome2));
BOOST_REQUIRE(genes.size() == 5 || genes.size() == 10);
bernoulliTrials.push_back(static_cast<size_t>(genes.size() == 10));
}
BOOST_TEST(abs(mean(bernoulliTrials) - expectedValue) < expectedValue * relativeTolerance);
BOOST_TEST(abs(meanSquaredError(bernoulliTrials, expectedValue) - variance) < variance * relativeTolerance);
}
BOOST_AUTO_TEST_SUITE_END() BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END() BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END() BOOST_AUTO_TEST_SUITE_END()

View File

@ -180,3 +180,138 @@ function<Crossover> phaser::fixedPointCrossover(double _crossoverPoint)
return get<0>(fixedPointSwap(_chromosome1, _chromosome2, concretePoint)); return get<0>(fixedPointSwap(_chromosome1, _chromosome2, concretePoint));
}; };
} }
namespace
{
ChromosomePair fixedTwoPointSwap(
Chromosome const& _chromosome1,
Chromosome const& _chromosome2,
size_t _crossoverPoint1,
size_t _crossoverPoint2
)
{
assert(_crossoverPoint1 <= _chromosome1.length());
assert(_crossoverPoint1 <= _chromosome2.length());
assert(_crossoverPoint2 <= _chromosome1.length());
assert(_crossoverPoint2 <= _chromosome2.length());
size_t lowPoint = min(_crossoverPoint1, _crossoverPoint2);
size_t highPoint = max(_crossoverPoint1, _crossoverPoint2);
auto begin1 = _chromosome1.optimisationSteps().begin();
auto begin2 = _chromosome2.optimisationSteps().begin();
auto end1 = _chromosome1.optimisationSteps().end();
auto end2 = _chromosome2.optimisationSteps().end();
return {
Chromosome(
vector<string>(begin1, begin1 + lowPoint) +
vector<string>(begin2 + lowPoint, begin2 + highPoint) +
vector<string>(begin1 + highPoint, end1)
),
Chromosome(
vector<string>(begin2, begin2 + lowPoint) +
vector<string>(begin1 + lowPoint, begin1 + highPoint) +
vector<string>(begin2 + highPoint, end2)
),
};
}
}
function<Crossover> phaser::randomTwoPointCrossover()
{
return [=](Chromosome const& _chromosome1, Chromosome const& _chromosome2)
{
size_t minLength = min(_chromosome1.length(), _chromosome2.length());
// Don't use position 0 (because this just swaps the values) unless it's the only choice.
size_t minPoint = (minLength > 0 ? 1 : 0);
assert(minPoint <= minLength);
size_t randomPoint1 = SimulationRNG::uniformInt(minPoint, minLength);
size_t randomPoint2 = SimulationRNG::uniformInt(randomPoint1, minLength);
return get<0>(fixedTwoPointSwap(_chromosome1, _chromosome2, randomPoint1, randomPoint2));
};
}
function<SymmetricCrossover> phaser::symmetricRandomTwoPointCrossover()
{
return [=](Chromosome const& _chromosome1, Chromosome const& _chromosome2)
{
size_t minLength = min(_chromosome1.length(), _chromosome2.length());
// Don't use position 0 (because this just swaps the values) unless it's the only choice.
size_t minPoint = (minLength > 0 ? 1 : 0);
assert(minPoint <= minLength);
size_t randomPoint1 = SimulationRNG::uniformInt(minPoint, minLength);
size_t randomPoint2 = SimulationRNG::uniformInt(randomPoint1, minLength);
return fixedTwoPointSwap(_chromosome1, _chromosome2, randomPoint1, randomPoint2);
};
}
namespace
{
ChromosomePair uniformSwap(Chromosome const& _chromosome1, Chromosome const& _chromosome2, double _swapChance)
{
vector<string> steps1;
vector<string> steps2;
size_t minLength = min(_chromosome1.length(), _chromosome2.length());
for (size_t i = 0; i < minLength; ++i)
if (SimulationRNG::bernoulliTrial(_swapChance))
{
steps1.push_back(_chromosome2.optimisationSteps()[i]);
steps2.push_back(_chromosome1.optimisationSteps()[i]);
}
else
{
steps1.push_back(_chromosome1.optimisationSteps()[i]);
steps2.push_back(_chromosome2.optimisationSteps()[i]);
}
auto begin1 = _chromosome1.optimisationSteps().begin();
auto begin2 = _chromosome2.optimisationSteps().begin();
auto end1 = _chromosome1.optimisationSteps().end();
auto end2 = _chromosome2.optimisationSteps().end();
bool swapTail = SimulationRNG::bernoulliTrial(_swapChance);
if (_chromosome1.length() > minLength)
{
if (swapTail)
steps2.insert(steps2.end(), begin1 + minLength, end1);
else
steps1.insert(steps1.end(), begin1 + minLength, end1);
}
if (_chromosome2.length() > minLength)
{
if (swapTail)
steps1.insert(steps1.end(), begin2 + minLength, end2);
else
steps2.insert(steps2.end(), begin2 + minLength, end2);
}
return {Chromosome(steps1), Chromosome(steps2)};
}
}
function<Crossover> phaser::uniformCrossover(double _swapChance)
{
return [=](Chromosome const& _chromosome1, Chromosome const& _chromosome2)
{
return get<0>(uniformSwap(_chromosome1, _chromosome2, _swapChance));
};
}
function<SymmetricCrossover> phaser::symmetricUniformCrossover(double _swapChance)
{
return [=](Chromosome const& _chromosome1, Chromosome const& _chromosome2)
{
return uniformSwap(_chromosome1, _chromosome2, _swapChance);
};
}

View File

@ -80,4 +80,22 @@ std::function<SymmetricCrossover> symmetricRandomPointCrossover();
/// unless there is no other choice (i.e. one of the chromosomes is empty). /// unless there is no other choice (i.e. one of the chromosomes is empty).
std::function<Crossover> fixedPointCrossover(double _crossoverPoint); std::function<Crossover> fixedPointCrossover(double _crossoverPoint);
/// Creates a crossover operator that randomly selects two points between 0 and 1 and swaps genes
/// from the resulting interval. The interval may be empty in which case no genes are swapped.
std::function<Crossover> randomTwoPointCrossover();
/// Symmetric version of @a randomTwoPointCrossover(). Creates an operator that returns a pair
/// containing both possible results for the same crossover points.
std::function<SymmetricCrossover> symmetricRandomTwoPointCrossover();
/// Creates a crossover operator that goes over the length of the shorter chromosomes and for
/// each gene independently decides whether to swap it or not (with probability given by
/// @a _swapChance). The tail of the longer chromosome (the part that's past the length of the
/// shorter one) is treated as a single gene and can potentially be swapped too.
std::function<Crossover> uniformCrossover(double _swapChance);
/// Symmetric version of @a uniformCrossover(). Creates an operator that returns a pair
/// containing both possible results for the same set or swap decisions.
std::function<SymmetricCrossover> symmetricUniformCrossover(double _swapChance);
} }