fixup! User-defined literal suffixes: Code generation

This commit is contained in:
Kamil Śliwak 2023-04-12 12:22:59 +02:00
parent b5f4fcc9b1
commit 134c5a951f
2 changed files with 24 additions and 53 deletions

View File

@ -698,33 +698,20 @@ bool ExpressionCompiler::visit(FunctionCall const& _functionCall)
evmasm::AssemblyItem returnLabel = m_context.pushNewTag();
if (!_functionCall.isSuffixCall())
if (!_functionCall.isSuffixCall() || parameterTypes.size() == 1)
{
for (unsigned i = 0; i < arguments.size(); ++i)
acceptAndConvert(*arguments[i], *parameterTypes[i]);
}
else
{
solAssert(arguments.size() == 1);
solAssert(arguments[0]);
solAssert(parameterTypes.size() == 2);
solAssert(arguments.size() == 1 && arguments[0]);
auto const* literal = dynamic_cast<Literal const*>(arguments[0].get());
Type const& literalType = *literal->annotation().type;
solAssert(literal);
solAssert(literal->annotation().type);
if (parameterTypes.size() == 1)
{
if (literalType.category() != Type::Category::StringLiteral)
// NOTE: For string literals we do not need to define the variable. The variable
// value will be embedded inside the conversion function.
m_context << literalType.literalValue(literal);
utils().convertType(literalType, *parameterTypes.at(0));
}
else
{
solAssert(parameterTypes.size() == 2);
auto const* rationalNumberType = dynamic_cast<RationalNumberType const*>(&literalType);
auto const* rationalNumberType = dynamic_cast<RationalNumberType const*>(literal->annotation().type);
solAssert(rationalNumberType);
auto&& [mantissa, exponent] = rationalNumberType->fractionalDecomposition();
@ -734,7 +721,6 @@ bool ExpressionCompiler::visit(FunctionCall const& _functionCall)
m_context << exponent->literalValue(nullptr);
utils().convertType(*exponent, *parameterTypes.at(1));
}
}
_functionCall.expression().accept(*this);

View File

@ -1003,7 +1003,7 @@ void IRGeneratorForStatements::endVisit(FunctionCall const& _functionCall)
vector<string> args;
FunctionDefinition const* functionDef = nullptr;
if (!_functionCall.isSuffixCall())
if (!_functionCall.isSuffixCall() || parameterTypes.size() == 1)
{
functionDef = ASTNode::resolveFunctionCall(_functionCall, &m_context.mostDerivedContract());
@ -1020,16 +1020,13 @@ void IRGeneratorForStatements::endVisit(FunctionCall const& _functionCall)
solAssert(!functionDef->virtualSemantics());
solAssert(!functionType->hasBoundFirstArgument());
solAssert(arguments.size() == 1);
solAssert(arguments[0]);
solAssert(parameterTypes.size() == 2);
solAssert(arguments.size() == 1 && arguments[0]);
auto const* literal = dynamic_cast<Literal const*>(arguments[0].get());
Type const& literalType = *literal->annotation().type;
solAssert(literal);
solAssert(literal->annotation().type);
if (parameterTypes.size() == 2)
{
auto const* literalRationalType = dynamic_cast<RationalNumberType const*>(&literalType);
auto const* literalRationalType = dynamic_cast<RationalNumberType const*>(literal->annotation().type);
solAssert(literalRationalType);
auto&& [mantissa, exponent] = literalRationalType->fractionalDecomposition();
@ -1043,18 +1040,6 @@ void IRGeneratorForStatements::endVisit(FunctionCall const& _functionCall)
define(exponentVar) << toCompactHexWithPrefix(exponent->literalValue(literal)) << "\n";
args += convert(exponentVar, *parameterTypes[1]).stackSlots();
}
else
{
solAssert(parameterTypes.size() == 1);
IRVariable value(m_context.newYulVariable(), literalType);
if (literalType.category() != Type::Category::StringLiteral)
// NOTE: For string literals we do not need to define the variable. The variable
// value will be embedded inside the conversion function.
define(value) << toCompactHexWithPrefix(literalType.literalValue(literal)) << "\n";
args += convert(value, *parameterTypes[0]).stackSlots();
}
}
if (functionDef)
{