Adding VSIDS variable picking, restarts, and polarity caching

This commit is contained in:
Mate Soos 2022-03-21 17:46:40 +01:00
parent dd777baabf
commit 09e3980b20
3 changed files with 322 additions and 15 deletions

View File

@ -35,7 +35,8 @@ CDCL::CDCL(
std::function<std::optional<Clause>(std::map<size_t, bool> const&)> _theorySolver
):
m_theorySolver(_theorySolver),
m_variables(move(_variables))
m_variables(move(_variables)),
order(VarOrderLt(activity))
{
for (Clause const& clause: _clauses)
addClause(clause);
@ -45,11 +46,25 @@ CDCL::CDCL(
optional<CDCL::Model> CDCL::solve()
{
// cout << "====" << endl;
// for (unique_ptr<Clause> const& c: m_clauses)
// cout << toString(*c) << endl;
// cout << "====" << endl;
while (true)
CDCL::Model model;
int solution;
uint32_t max_conflicts = 100;
bool solved = false;
while(!solved) {
solution = 3;
solved = solve_loop(max_conflicts, model, solution);
max_conflicts = uint32_t((double)max_conflicts * 1.2);
}
assert(solution != 3);
if (solution) return model;
else return nullopt;
}
bool CDCL::solve_loop(const uint32_t max_conflicts, CDCL::Model& model, int& solution)
{
assert (max_conflicts > 0);
uint32_t conflicts = 0;
while (conflicts < max_conflicts)
{
optional<Clause> conflictClause = propagate();
if (!conflictClause && m_theorySolver)
@ -60,10 +75,12 @@ optional<CDCL::Model> CDCL::solve()
}
if (conflictClause)
{
conflicts++;
if (currentDecisionLevel() == 0)
{
// cout << "Unsatisfiable" << endl;
return nullopt;
solution = 0;
return true;
}
auto&& [learntClause, backtrackLevel] = analyze(move(*conflictClause));
cancelUntil(backtrackLevel);
@ -83,17 +100,25 @@ optional<CDCL::Model> CDCL::solve()
cout << ((m_assignments.size() * 100) / m_variables.size()) << "% of variables assigned." << endl;
m_decisionPoints.emplace_back(m_assignmentTrail.size());
// cout << "Deciding on " << m_variables.at(*variable) << " @" << currentDecisionLevel() << endl;
enqueue(Literal{false, *variable}, nullptr);
// Polarity caching below
bool positive = false;
auto const& found = m_assignments_cache.find(*variable);
if (found != m_assignments_cache.end()) positive = found->second;
enqueue(Literal{positive, *variable}, nullptr);
}
else
{
//cout << "satisfiable." << endl;
//for (auto&& [i, value]: m_assignments | ranges::view::enumerate())
// cout << " " << m_variables.at(i) << ": " << value.toString() << endl;
return m_assignments;
solution = 1;
model = m_assignments;
return true;
}
}
}
return false;
}
void CDCL::setupWatches(Clause& _clause)
@ -200,6 +225,7 @@ std::pair<Clause, size_t> CDCL::analyze(Clause _conflictClause)
else
{
//cout << " adding " << toString(literal) << " @" << variableLevel << " to learnt clause." << endl;
vsids_bump_var_act((uint32_t)literal.variable);
learntClause.push_back(literal);
backtrackLevel = max(backtrackLevel, variableLevel);
}
@ -234,6 +260,19 @@ std::pair<Clause, size_t> CDCL::analyze(Clause _conflictClause)
void CDCL::addClause(Clause _clause)
{
uint64_t max_var = (uint32_t)activity.size();
uint64_t new_max_var = 0;
for(auto const& l: _clause) {
new_max_var = std::max<uint64_t>(l.variable+1, max_var);
}
int64_t to_add = (int64_t)new_max_var - (int64_t)max_var;
if (to_add > 0) {
activity.insert(activity.end(), (uint64_t)to_add, 0.0);
}
for(auto const& l: _clause) {
if (!order.inHeap((int)l.variable)) order.insert((int)l.variable);
}
m_clauses.push_back(make_unique<Clause>(move(_clause)));
setupWatches(*m_clauses.back());
}
@ -248,8 +287,10 @@ void CDCL::enqueue(Literal const& _literal, Clause const* _reason)
// TODO assert that assignmnets was unknown
m_assignments[_literal.variable] = _literal.positive;
m_levelForVariable[_literal.variable] = currentDecisionLevel();
if (_reason)
if (_reason) {
m_reason[_literal] = _reason;
m_assignments_cache[_literal.variable] = _literal.positive;
}
m_assignmentTrail.push_back(_literal);
}
@ -268,17 +309,20 @@ void CDCL::cancelUntil(size_t _backtrackLevel)
m_reason.erase(l);
// TODO maybe could do without.
m_levelForVariable.erase(l.variable);
order.insert((int)l.variable);
}
m_decisionPoints.resize(_backtrackLevel);
m_assignmentQueuePointer = m_assignmentTrail.size();
solAssert(currentDecisionLevel() == _backtrackLevel);
}
optional<size_t> CDCL::nextDecisionVariable() const
optional<size_t> CDCL::nextDecisionVariable()
{
for (size_t i = 0; i < m_variables.size(); i++)
if (!m_assignments.count(i))
return i;
while(true) {
if (order.empty()) return nullopt;
size_t i = (size_t)order.removeMin();
if (!m_assignments.count(i)) return i;
}
return nullopt;
}

View File

@ -24,6 +24,7 @@
#include <functional>
#include <memory>
#include <optional>
#include "heap.h"
namespace solidity::util
{
@ -64,6 +65,20 @@ public:
std::optional<Model> solve();
private:
struct VarOrderLt { ///Order variables according to their activities
const std::vector<double>& activities;
bool operator () (const int x, const int y) const
{
return activities[(size_t)x] > activities[(size_t)y];
}
explicit VarOrderLt(const std::vector<double>& _activities) :
activities(_activities)
{}
};
bool solve_loop(const uint32_t max_conflicts, CDCL::Model& model, int& solution);
void setupWatches(Clause& _clause);
std::optional<Clause> propagate();
std::pair<Clause, size_t> analyze(Clause _conflictClause);
@ -75,7 +90,7 @@ private:
void cancelUntil(size_t _backtrackLevel);
std::optional<size_t> nextDecisionVariable() const;
std::optional<size_t> nextDecisionVariable();
bool isAssigned(Literal const& _literal) const;
bool isAssignedTrue(Literal const& _literal) const;
@ -103,10 +118,38 @@ private:
/// Current assignments.
std::map<size_t, bool> m_assignments;
std::map<size_t, bool> m_assignments_cache; // Polarity caching. All propagated values end up here
std::map<size_t, size_t> m_levelForVariable;
/// TODO wolud be good to not have to copy the clauses
std::map<Literal, Clause const*> m_reason;
// Var activity
Heap<VarOrderLt> order;
std::vector<double> activity;
double var_inc_vsids = 1;
double var_decay = 0.95;
void vsids_decay_var_act()
{
var_inc_vsids *= (1.0 / var_decay);
}
void vsids_bump_var_act(uint32_t var)
{
assert(activity.size() > var);
activity[var] += var_inc_vsids;
bool rescaled = false;
if (activity[var] > 1e100) {
// Rescale
for (auto& a: activity) a *= 1e-100;
rescaled = true;
var_inc_vsids *= 1e-100;
}
// Update order_heap with respect to new activity:
if (order.inHeap((int)var)) order.decrease((int)var);
if (rescaled) assert(order.heap_property());
}
// TODO group those into a class
std::vector<Literal> m_assignmentTrail;

220
libsolutil/heap.h Normal file
View File

@ -0,0 +1,220 @@
/******************************************************************************************[Heap.h]
Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
Copyright (c) 2007-2010, Niklas Sorensson
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
#ifndef Glucose_Heap_h
#define Glucose_Heap_h
#include <vector>
#include <cassert>
#include <iostream>
//=================================================================================================
// A heap implementation with support for decrease/increase key.
template<class Comp>
class Heap {
Comp lt; // The heap is a minimum-heap with respect to this comparator
std::vector<int> heap; // Heap of integers
std::vector<int> indices; // Each integers position (index) in the Heap
// Index "traversal" functions
static inline int left (int i)
{
return i * 2 + 1;
}
static inline int right (int i)
{
return (i + 1) * 2;
}
static inline int parent(int i)
{
return (i - 1) >> 1;
}
void percolateUp(int i)
{
int x = heap[(size_t)i];
int p = parent(i);
while (i != 0 && lt(x, heap[(size_t)p])) {
heap[(size_t)i] = heap[(size_t)p];
indices[(size_t)heap[(size_t)p]] = i;
i = p;
p = parent(p);
}
heap [(size_t)i] = x;
indices[(size_t)x] = i;
}
void percolateDown(int i)
{
int x = heap[(size_t)i];
while (left(i) < (int)heap.size()) {
int child = right(i) < (int)heap.size() && lt(heap[(size_t)right(i)], heap[(size_t)left(i)]) ? right(i) : left(i);
if (!lt(heap[(size_t)child], x)) {
break;
}
heap[(size_t)i] = heap[(size_t)child];
indices[(size_t)heap[(size_t)i]] = i;
i = child;
}
heap [(size_t)i] = x;
indices[(size_t)x] = i;
}
public:
Heap(const Comp& c) : lt(c) { }
void print_heap() {
std::cout << "heap:";
for(auto x: heap) {
std::cout << x << " ";
}
std::cout << std::endl;
std::cout << "ind:";
for(auto x: indices) {
std::cout << x << " ";
}
std::cout << std::endl;
}
uint32_t size () const
{
return heap.size();
}
bool empty () const
{
return heap.size() == 0;
}
bool inHeap (int n) const
{
return n < (int)indices.size() && indices[(size_t)n] >= 0;
}
int operator[](int index) const
{
assert(index < (int)heap.size());
return heap[index];
}
void decrease (int n)
{
assert(inHeap(n));
percolateUp (indices[(size_t)n]);
}
void increase (int n)
{
assert(inHeap(n));
percolateDown(indices[n]);
}
// Safe variant of insert/decrease/increase:
void update(int n)
{
if (!inHeap(n)) {
insert(n);
} else {
percolateUp(indices[n]);
percolateDown(indices[n]);
}
}
void insert(int n)
{
indices.resize((size_t)n + 1, -1);
assert(!inHeap(n));
indices[(size_t)n] = (int)heap.size();
heap.push_back(n);
percolateUp(indices[(size_t)n]);
}
int removeMin()
{
int x = heap[0];
heap[0] = (int)heap.back();
indices[(size_t)heap[0]] = 0;
indices[(size_t)x] = -1;
heap.pop_back();
if (heap.size() > 1) {
percolateDown(0);
}
return x;
}
// Rebuild the heap from scratch, using the elements in 'ns':
template<typename T>
void build(const T& ns)
{
for (int i = 0; i < (int)heap.size(); i++) {
indices[heap[i]] = -1;
}
heap.clear();
for (uint32_t i = 0; i < ns.size(); i++) {
indices[ns[i]] = i;
heap.push_back(ns[i]);
}
for (int i = (int)heap.size() / 2 - 1; i >= 0; i--) {
percolateDown(i);
}
}
void clear(bool dealloc = false)
{
for (int i = 0; i < (int)heap.size(); i++) {
indices[heap[i]] = -1;
}
heap.clear();
}
size_t mem_used() const
{
size_t mem = 0;
mem += heap.capacity()*sizeof(uint32_t);
mem += indices.capacity()*sizeof(uint32_t);
return mem;
}
bool heap_property (uint32_t i) const {
return i >= heap.size()
|| ( (i == 0 || !lt(heap[i], heap[(size_t)parent((int)i)]))
&& heap_property( (uint32_t)left((int)i) )
&& heap_property( (uint32_t)right((int)i) )
);
}
bool heap_property() const {
return heap_property(0);
}
};
#endif