solidity/test/compilationTests/stringutils/strings.sol

717 lines
25 KiB
Solidity
Raw Normal View History

2017-07-05 10:28:15 +00:00
/*
* @title String & slice utility library for Solidity contracts.
* @author Nick Johnson <arachnid@notdot.net>
*
* @dev Functionality in this library is largely implemented using an
* abstraction called a 'slice'. A slice represents a part of a string -
* anything from the entire string to a single character, or even no
* characters at all (a 0-length slice). Since a slice only has to specify
* an offset and a length, copying and manipulating slices is a lot less
* expensive than copying and manipulating the strings they reference.
*
* To further reduce gas costs, most functions on slice that need to return
* a slice modify the original one instead of allocating a new one; for
* instance, `s.split(".")` will return the text up to the first '.',
* modifying s to only contain the remainder of the string after the '.'.
* In situations where you do not want to modify the original slice, you
* can make a copy first with `.copy()`, for example:
* `s.copy().split(".")`. Try and avoid using this idiom in loops; since
* Solidity has no memory management, it will result in allocating many
* short-lived slices that are later discarded.
*
* Functions that return two slices come in two versions: a non-allocating
* version that takes the second slice as an argument, modifying it in
* place, and an allocating version that allocates and returns the second
* slice; see `nextRune` for example.
*
* Functions that have to copy string data will return strings rather than
* slices; these can be cast back to slices for further processing if
* required.
*
* For convenience, some functions are provided with non-modifying
* variants that create a new slice and return both; for instance,
* `s.splitNew('.')` leaves s unmodified, and returns two values
* corresponding to the left and right parts of the string.
*/
2018-07-23 14:56:54 +00:00
2018-10-24 12:52:11 +00:00
pragma solidity >=0.0;
2018-07-23 14:56:54 +00:00
2017-07-05 10:28:15 +00:00
library strings {
struct slice {
uint _len;
uint _ptr;
}
2018-07-23 14:56:54 +00:00
function memcpy(uint dest, uint src, uint len) private pure {
2017-07-05 10:28:15 +00:00
// Copy word-length chunks while possible
for(; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
// Copy remaining bytes
uint mask = 256 ** (32 - len) - 1;
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
/*
* @dev Returns a slice containing the entire string.
* @param self The string to make a slice from.
* @return A newly allocated slice containing the entire string.
*/
2018-07-23 14:56:54 +00:00
function toSlice(string memory self) internal pure returns (slice memory) {
2017-07-05 10:28:15 +00:00
uint ptr;
assembly {
ptr := add(self, 0x20)
}
return slice(bytes(self).length, ptr);
}
/*
* @dev Returns the length of a null-terminated bytes32 string.
* @param self The value to find the length of.
* @return The length of the string, from 0 to 32.
*/
2018-07-23 14:56:54 +00:00
function len(bytes32 self) internal pure returns (uint) {
2017-07-05 10:28:15 +00:00
uint ret;
if (self == 0)
return 0;
if (uint256(self) & 0xffffffffffffffffffffffffffffffff == 0) {
2017-07-05 10:28:15 +00:00
ret += 16;
self = bytes32(uint(self) / 0x100000000000000000000000000000000);
}
if (uint256(self) & 0xffffffffffffffff == 0) {
2017-07-05 10:28:15 +00:00
ret += 8;
self = bytes32(uint(self) / 0x10000000000000000);
}
if (uint256(self) & 0xffffffff == 0) {
2017-07-05 10:28:15 +00:00
ret += 4;
self = bytes32(uint(self) / 0x100000000);
}
if (uint256(self) & 0xffff == 0) {
2017-07-05 10:28:15 +00:00
ret += 2;
self = bytes32(uint(self) / 0x10000);
}
if (uint256(self) & 0xff == 0) {
2017-07-05 10:28:15 +00:00
ret += 1;
}
return 32 - ret;
}
/*
* @dev Returns a slice containing the entire bytes32, interpreted as a
2018-07-23 14:56:54 +00:00
* null-terminated utf-8 string.
2017-07-05 10:28:15 +00:00
* @param self The bytes32 value to convert to a slice.
* @return A new slice containing the value of the input argument up to the
* first null.
*/
2018-07-23 14:56:54 +00:00
function toSliceB32(bytes32 self) internal pure returns (slice memory ret) {
2017-07-05 10:28:15 +00:00
// Allocate space for `self` in memory, copy it there, and point ret at it
assembly {
let ptr := mload(0x40)
mstore(0x40, add(ptr, 0x20))
mstore(ptr, self)
mstore(add(ret, 0x20), ptr)
}
ret._len = len(self);
}
/*
* @dev Returns a new slice containing the same data as the current slice.
* @param self The slice to copy.
* @return A new slice containing the same data as `self`.
*/
2018-07-23 14:56:54 +00:00
function copy(slice memory self) internal pure returns (slice memory) {
2017-07-05 10:28:15 +00:00
return slice(self._len, self._ptr);
}
/*
* @dev Copies a slice to a new string.
* @param self The slice to copy.
* @return A newly allocated string containing the slice's text.
*/
2018-07-23 14:56:54 +00:00
function toString(slice memory self) internal pure returns (string memory) {
string memory ret = new string(self._len);
2017-07-05 10:28:15 +00:00
uint retptr;
assembly { retptr := add(ret, 32) }
memcpy(retptr, self._ptr, self._len);
return ret;
}
/*
* @dev Returns the length in runes of the slice. Note that this operation
* takes time proportional to the length of the slice; avoid using it
* in loops, and call `slice.empty()` if you only need to know whether
* the slice is empty or not.
* @param self The slice to operate on.
* @return The length of the slice in runes.
*/
2018-07-23 14:56:54 +00:00
function len(slice memory self) internal pure returns (uint l) {
2017-07-05 10:28:15 +00:00
// Starting at ptr-31 means the LSB will be the byte we care about
uint ptr = self._ptr - 31;
uint end = ptr + self._len;
2018-07-23 14:56:54 +00:00
for (l = 0; ptr < end; l++) {
2017-07-05 10:28:15 +00:00
uint8 b;
assembly { b := and(mload(ptr), 0xFF) }
if (b < 0x80) {
ptr += 1;
} else if(b < 0xE0) {
ptr += 2;
} else if(b < 0xF0) {
ptr += 3;
} else if(b < 0xF8) {
ptr += 4;
} else if(b < 0xFC) {
ptr += 5;
} else {
ptr += 6;
}
}
}
/*
* @dev Returns true if the slice is empty (has a length of 0).
* @param self The slice to operate on.
* @return True if the slice is empty, False otherwise.
*/
2018-07-23 14:56:54 +00:00
function empty(slice memory self) internal pure returns (bool) {
2017-07-05 10:28:15 +00:00
return self._len == 0;
}
/*
* @dev Returns a positive number if `other` comes lexicographically after
* `self`, a negative number if it comes before, or zero if the
* contents of the two slices are equal. Comparison is done per-rune,
* on unicode codepoints.
* @param self The first slice to compare.
* @param other The second slice to compare.
* @return The result of the comparison.
*/
2018-07-23 14:56:54 +00:00
function compare(slice memory self, slice memory other) internal pure returns (int) {
2017-07-05 10:28:15 +00:00
uint shortest = self._len;
if (other._len < self._len)
shortest = other._len;
uint selfptr = self._ptr;
uint otherptr = other._ptr;
2017-07-05 10:28:15 +00:00
for (uint idx = 0; idx < shortest; idx += 32) {
uint a;
uint b;
assembly {
a := mload(selfptr)
b := mload(otherptr)
}
if (a != b) {
// Mask out irrelevant bytes and check again
uint256 mask = type(uint256).max; // 0xffff...
2018-07-23 14:56:54 +00:00
if(shortest < 32) {
mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);
}
uint256 diff = (a & mask) - (b & mask);
2017-07-05 10:28:15 +00:00
if (diff != 0)
return int(diff);
}
selfptr += 32;
otherptr += 32;
}
return int(self._len) - int(other._len);
}
/*
* @dev Returns true if the two slices contain the same text.
* @param self The first slice to compare.
* @param self The second slice to compare.
* @return True if the slices are equal, false otherwise.
*/
2018-07-23 14:56:54 +00:00
function equals(slice memory self, slice memory other) internal pure returns (bool) {
2017-07-05 10:28:15 +00:00
return compare(self, other) == 0;
}
/*
* @dev Extracts the first rune in the slice into `rune`, advancing the
* slice to point to the next rune and returning `self`.
* @param self The slice to operate on.
* @param rune The slice that will contain the first rune.
* @return `rune`.
*/
2018-07-23 14:56:54 +00:00
function nextRune(slice memory self, slice memory rune) internal pure returns (slice memory) {
2017-07-05 10:28:15 +00:00
rune._ptr = self._ptr;
if (self._len == 0) {
rune._len = 0;
return rune;
}
2018-07-23 14:56:54 +00:00
uint l;
2017-07-05 10:28:15 +00:00
uint b;
// Load the first byte of the rune into the LSBs of b
assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }
if (b < 0x80) {
2018-07-23 14:56:54 +00:00
l = 1;
2017-07-05 10:28:15 +00:00
} else if(b < 0xE0) {
2018-07-23 14:56:54 +00:00
l = 2;
2017-07-05 10:28:15 +00:00
} else if(b < 0xF0) {
2018-07-23 14:56:54 +00:00
l = 3;
2017-07-05 10:28:15 +00:00
} else {
2018-07-23 14:56:54 +00:00
l = 4;
2017-07-05 10:28:15 +00:00
}
// Check for truncated codepoints
2018-07-23 14:56:54 +00:00
if (l > self._len) {
2017-07-05 10:28:15 +00:00
rune._len = self._len;
self._ptr += self._len;
self._len = 0;
return rune;
}
2018-07-23 14:56:54 +00:00
self._ptr += l;
self._len -= l;
rune._len = l;
2017-07-05 10:28:15 +00:00
return rune;
}
/*
* @dev Returns the first rune in the slice, advancing the slice to point
* to the next rune.
* @param self The slice to operate on.
* @return A slice containing only the first rune from `self`.
*/
2018-07-23 14:56:54 +00:00
function nextRune(slice memory self) internal pure returns (slice memory ret) {
2017-07-05 10:28:15 +00:00
nextRune(self, ret);
}
/*
* @dev Returns the number of the first codepoint in the slice.
* @param self The slice to operate on.
* @return The number of the first codepoint in the slice.
*/
2018-07-23 14:56:54 +00:00
function ord(slice memory self) internal pure returns (uint ret) {
2017-07-05 10:28:15 +00:00
if (self._len == 0) {
return 0;
}
uint word;
2018-07-23 14:56:54 +00:00
uint length;
uint divisor = 2 ** 248;
2017-07-05 10:28:15 +00:00
// Load the rune into the MSBs of b
assembly { word:= mload(mload(add(self, 32))) }
2018-07-23 14:56:54 +00:00
uint b = word / divisor;
2017-07-05 10:28:15 +00:00
if (b < 0x80) {
ret = b;
2018-07-23 14:56:54 +00:00
length = 1;
2017-07-05 10:28:15 +00:00
} else if(b < 0xE0) {
ret = b & 0x1F;
2018-07-23 14:56:54 +00:00
length = 2;
2017-07-05 10:28:15 +00:00
} else if(b < 0xF0) {
ret = b & 0x0F;
2018-07-23 14:56:54 +00:00
length = 3;
2017-07-05 10:28:15 +00:00
} else {
ret = b & 0x07;
2018-07-23 14:56:54 +00:00
length = 4;
2017-07-05 10:28:15 +00:00
}
// Check for truncated codepoints
2018-07-23 14:56:54 +00:00
if (length > self._len) {
2017-07-05 10:28:15 +00:00
return 0;
}
2018-07-23 14:56:54 +00:00
for (uint i = 1; i < length; i++) {
divisor = divisor / 256;
b = (word / divisor) & 0xFF;
2017-07-05 10:28:15 +00:00
if (b & 0xC0 != 0x80) {
// Invalid UTF-8 sequence
return 0;
}
ret = (ret * 64) | (b & 0x3F);
}
return ret;
}
/*
* @dev Returns the keccak-256 hash of the slice.
* @param self The slice to hash.
* @return The hash of the slice.
*/
2018-07-23 14:56:54 +00:00
function keccak(slice memory self) internal pure returns (bytes32 ret) {
2017-07-05 10:28:15 +00:00
assembly {
ret := keccak256(mload(add(self, 32)), mload(self))
2017-07-05 10:28:15 +00:00
}
}
/*
* @dev Returns true if `self` starts with `needle`.
* @param self The slice to operate on.
* @param needle The slice to search for.
* @return True if the slice starts with the provided text, false otherwise.
*/
2018-07-23 14:56:54 +00:00
function startsWith(slice memory self, slice memory needle) internal pure returns (bool) {
2017-07-05 10:28:15 +00:00
if (self._len < needle._len) {
return false;
}
if (self._ptr == needle._ptr) {
return true;
}
bool equal;
assembly {
2018-07-23 14:56:54 +00:00
let length := mload(needle)
2017-07-05 10:28:15 +00:00
let selfptr := mload(add(self, 0x20))
let needleptr := mload(add(needle, 0x20))
2018-07-23 14:56:54 +00:00
equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
2017-07-05 10:28:15 +00:00
}
return equal;
}
/*
* @dev If `self` starts with `needle`, `needle` is removed from the
* beginning of `self`. Otherwise, `self` is unmodified.
* @param self The slice to operate on.
* @param needle The slice to search for.
* @return `self`
*/
2018-07-23 14:56:54 +00:00
function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) {
2017-07-05 10:28:15 +00:00
if (self._len < needle._len) {
return self;
}
bool equal = true;
if (self._ptr != needle._ptr) {
assembly {
2018-07-23 14:56:54 +00:00
let length := mload(needle)
2017-07-05 10:28:15 +00:00
let selfptr := mload(add(self, 0x20))
let needleptr := mload(add(needle, 0x20))
2018-07-23 14:56:54 +00:00
equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
2017-07-05 10:28:15 +00:00
}
}
if (equal) {
self._len -= needle._len;
self._ptr += needle._len;
}
return self;
}
/*
* @dev Returns true if the slice ends with `needle`.
* @param self The slice to operate on.
* @param needle The slice to search for.
* @return True if the slice starts with the provided text, false otherwise.
*/
2018-07-23 14:56:54 +00:00
function endsWith(slice memory self, slice memory needle) internal pure returns (bool) {
2017-07-05 10:28:15 +00:00
if (self._len < needle._len) {
return false;
}
uint selfptr = self._ptr + self._len - needle._len;
2017-07-05 10:28:15 +00:00
if (selfptr == needle._ptr) {
return true;
}
bool equal;
assembly {
2018-07-23 14:56:54 +00:00
let length := mload(needle)
2017-07-05 10:28:15 +00:00
let needleptr := mload(add(needle, 0x20))
2018-07-23 14:56:54 +00:00
equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
2017-07-05 10:28:15 +00:00
}
return equal;
}
/*
* @dev If `self` ends with `needle`, `needle` is removed from the
* end of `self`. Otherwise, `self` is unmodified.
* @param self The slice to operate on.
* @param needle The slice to search for.
* @return `self`
*/
2018-07-23 14:56:54 +00:00
function until(slice memory self, slice memory needle) internal pure returns (slice memory) {
2017-07-05 10:28:15 +00:00
if (self._len < needle._len) {
return self;
}
uint selfptr = self._ptr + self._len - needle._len;
2017-07-05 10:28:15 +00:00
bool equal = true;
if (selfptr != needle._ptr) {
assembly {
2018-07-23 14:56:54 +00:00
let length := mload(needle)
2017-07-05 10:28:15 +00:00
let needleptr := mload(add(needle, 0x20))
2018-07-23 14:56:54 +00:00
equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
2017-07-05 10:28:15 +00:00
}
}
if (equal) {
self._len -= needle._len;
}
return self;
}
// Returns the memory address of the first byte of the first occurrence of
// `needle` in `self`, or the first byte after `self` if not found.
2018-07-23 14:56:54 +00:00
function findPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
uint ptr = selfptr;
2017-07-05 10:28:15 +00:00
uint idx;
if (needlelen <= selflen) {
if (needlelen <= 32) {
2018-07-23 14:56:54 +00:00
bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));
bytes32 needledata;
assembly { needledata := and(mload(needleptr), mask) }
uint end = selfptr + selflen - needlelen;
bytes32 ptrdata;
assembly { ptrdata := and(mload(ptr), mask) }
while (ptrdata != needledata) {
if (ptr >= end)
return selfptr + selflen;
ptr++;
assembly { ptrdata := and(mload(ptr), mask) }
2017-07-05 10:28:15 +00:00
}
return ptr;
} else {
// For long needles, use hashing
bytes32 hash;
assembly { hash := keccak256(needleptr, needlelen) }
2018-07-23 14:56:54 +00:00
2017-07-05 10:28:15 +00:00
for (idx = 0; idx <= selflen - needlelen; idx++) {
bytes32 testHash;
assembly { testHash := keccak256(ptr, needlelen) }
2017-07-05 10:28:15 +00:00
if (hash == testHash)
return ptr;
ptr += 1;
}
}
}
return selfptr + selflen;
}
// Returns the memory address of the first byte after the last occurrence of
// `needle` in `self`, or the address of `self` if not found.
2018-07-23 14:56:54 +00:00
function rfindPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
2017-07-05 10:28:15 +00:00
uint ptr;
if (needlelen <= selflen) {
if (needlelen <= 32) {
2018-07-23 14:56:54 +00:00
bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));
bytes32 needledata;
assembly { needledata := and(mload(needleptr), mask) }
ptr = selfptr + selflen - needlelen;
bytes32 ptrdata;
assembly { ptrdata := and(mload(ptr), mask) }
while (ptrdata != needledata) {
if (ptr <= selfptr)
return selfptr;
ptr--;
assembly { ptrdata := and(mload(ptr), mask) }
2017-07-05 10:28:15 +00:00
}
2018-07-23 14:56:54 +00:00
return ptr + needlelen;
2017-07-05 10:28:15 +00:00
} else {
// For long needles, use hashing
bytes32 hash;
assembly { hash := keccak256(needleptr, needlelen) }
2017-07-05 10:28:15 +00:00
ptr = selfptr + (selflen - needlelen);
while (ptr >= selfptr) {
bytes32 testHash;
assembly { testHash := keccak256(ptr, needlelen) }
2017-07-05 10:28:15 +00:00
if (hash == testHash)
return ptr + needlelen;
ptr -= 1;
}
}
}
return selfptr;
}
/*
* @dev Modifies `self` to contain everything from the first occurrence of
* `needle` to the end of the slice. `self` is set to the empty slice
* if `needle` is not found.
* @param self The slice to search and modify.
* @param needle The text to search for.
* @return `self`.
*/
2018-07-23 14:56:54 +00:00
function find(slice memory self, slice memory needle) internal pure returns (slice memory) {
2017-07-05 10:28:15 +00:00
uint ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr);
self._len -= ptr - self._ptr;
self._ptr = ptr;
return self;
}
/*
* @dev Modifies `self` to contain the part of the string from the start of
* `self` to the end of the first occurrence of `needle`. If `needle`
* is not found, `self` is set to the empty slice.
* @param self The slice to search and modify.
* @param needle The text to search for.
* @return `self`.
*/
2018-07-23 14:56:54 +00:00
function rfind(slice memory self, slice memory needle) internal pure returns (slice memory) {
2017-07-05 10:28:15 +00:00
uint ptr = rfindPtr(self._len, self._ptr, needle._len, needle._ptr);
self._len = ptr - self._ptr;
return self;
}
/*
* @dev Splits the slice, setting `self` to everything after the first
* occurrence of `needle`, and `token` to everything before it. If
* `needle` does not occur in `self`, `self` is set to the empty slice,
* and `token` is set to the entirety of `self`.
* @param self The slice to split.
* @param needle The text to search for in `self`.
* @param token An output parameter to which the first token is written.
* @return `token`.
*/
2018-07-23 14:56:54 +00:00
function split(slice memory self, slice memory needle, slice memory token) internal pure returns (slice memory) {
2017-07-05 10:28:15 +00:00
uint ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr);
token._ptr = self._ptr;
token._len = ptr - self._ptr;
if (ptr == self._ptr + self._len) {
// Not found
self._len = 0;
} else {
self._len -= token._len + needle._len;
self._ptr = ptr + needle._len;
}
return token;
}
/*
* @dev Splits the slice, setting `self` to everything after the first
* occurrence of `needle`, and returning everything before it. If
* `needle` does not occur in `self`, `self` is set to the empty slice,
* and the entirety of `self` is returned.
* @param self The slice to split.
* @param needle The text to search for in `self`.
* @return The part of `self` up to the first occurrence of `delim`.
*/
2018-07-23 14:56:54 +00:00
function split(slice memory self, slice memory needle) internal pure returns (slice memory token) {
2017-07-05 10:28:15 +00:00
split(self, needle, token);
}
/*
* @dev Splits the slice, setting `self` to everything before the last
* occurrence of `needle`, and `token` to everything after it. If
* `needle` does not occur in `self`, `self` is set to the empty slice,
* and `token` is set to the entirety of `self`.
* @param self The slice to split.
* @param needle The text to search for in `self`.
* @param token An output parameter to which the first token is written.
* @return `token`.
*/
2018-07-23 14:56:54 +00:00
function rsplit(slice memory self, slice memory needle, slice memory token) internal pure returns (slice memory) {
2017-07-05 10:28:15 +00:00
uint ptr = rfindPtr(self._len, self._ptr, needle._len, needle._ptr);
token._ptr = ptr;
token._len = self._len - (ptr - self._ptr);
if (ptr == self._ptr) {
// Not found
self._len = 0;
} else {
self._len -= token._len + needle._len;
}
return token;
}
/*
* @dev Splits the slice, setting `self` to everything before the last
* occurrence of `needle`, and returning everything after it. If
* `needle` does not occur in `self`, `self` is set to the empty slice,
* and the entirety of `self` is returned.
* @param self The slice to split.
* @param needle The text to search for in `self`.
* @return The part of `self` after the last occurrence of `delim`.
*/
2018-07-23 14:56:54 +00:00
function rsplit(slice memory self, slice memory needle) internal pure returns (slice memory token) {
2017-07-05 10:28:15 +00:00
rsplit(self, needle, token);
}
/*
* @dev Counts the number of nonoverlapping occurrences of `needle` in `self`.
* @param self The slice to search.
* @param needle The text to search for in `self`.
* @return The number of occurrences of `needle` found in `self`.
*/
2018-07-23 14:56:54 +00:00
function count(slice memory self, slice memory needle) internal pure returns (uint cnt) {
2017-07-05 10:28:15 +00:00
uint ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr) + needle._len;
while (ptr <= self._ptr + self._len) {
2018-07-23 14:56:54 +00:00
cnt++;
2017-07-05 10:28:15 +00:00
ptr = findPtr(self._len - (ptr - self._ptr), ptr, needle._len, needle._ptr) + needle._len;
}
}
/*
* @dev Returns True if `self` contains `needle`.
* @param self The slice to search.
* @param needle The text to search for in `self`.
* @return True if `needle` is found in `self`, false otherwise.
*/
2018-07-23 14:56:54 +00:00
function contains(slice memory self, slice memory needle) internal pure returns (bool) {
2017-07-05 10:28:15 +00:00
return rfindPtr(self._len, self._ptr, needle._len, needle._ptr) != self._ptr;
}
/*
* @dev Returns a newly allocated string containing the concatenation of
* `self` and `other`.
* @param self The first slice to concatenate.
* @param other The second slice to concatenate.
* @return The concatenation of the two strings.
*/
2018-07-23 14:56:54 +00:00
function concat(slice memory self, slice memory other) internal pure returns (string memory) {
string memory ret = new string(self._len + other._len);
2017-07-05 10:28:15 +00:00
uint retptr;
assembly { retptr := add(ret, 32) }
memcpy(retptr, self._ptr, self._len);
memcpy(retptr + self._len, other._ptr, other._len);
return ret;
}
/*
* @dev Joins an array of slices, using `self` as a delimiter, returning a
* newly allocated string.
* @param self The delimiter to use.
* @param parts A list of slices to join.
* @return A newly allocated string containing all the slices in `parts`,
* joined with `self`.
*/
2018-07-23 14:56:54 +00:00
function join(slice memory self, slice[] memory parts) internal pure returns (string memory) {
2017-07-05 10:28:15 +00:00
if (parts.length == 0)
return "";
2018-07-23 14:56:54 +00:00
uint length = self._len * (parts.length - 1);
2017-07-05 10:28:15 +00:00
for(uint i = 0; i < parts.length; i++)
2018-07-23 14:56:54 +00:00
length += parts[i]._len;
2017-07-05 10:28:15 +00:00
2018-07-23 14:56:54 +00:00
string memory ret = new string(length);
2017-07-05 10:28:15 +00:00
uint retptr;
assembly { retptr := add(ret, 32) }
2018-07-23 14:58:53 +00:00
for(uint i = 0; i < parts.length; i++) {
2017-07-05 10:28:15 +00:00
memcpy(retptr, parts[i]._ptr, parts[i]._len);
retptr += parts[i]._len;
if (i < parts.length - 1) {
memcpy(retptr, self._ptr, self._len);
retptr += self._len;
}
}
return ret;
}
}