solidity/libsolidity/experimental/codegen/IRGeneratorForStatements.cpp

388 lines
15 KiB
C++
Raw Normal View History

2023-06-14 10:48:38 +00:00
/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
#include <libsolidity/experimental/codegen/IRGeneratorForStatements.h>
#include <libsolidity/experimental/analysis/Analysis.h>
#include <libsolidity/experimental/analysis/TypeInference.h>
#include <libsolidity/experimental/analysis/TypeRegistration.h>
#include <libsolidity/experimental/ast/TypeSystemHelper.h>
#include <libyul/YulStack.h>
#include <libyul/AsmPrinter.h>
#include <libyul/AST.h>
#include <libyul/optimiser/ASTCopier.h>
#include <libsolidity/experimental/codegen/Common.h>
#include <range/v3/view/drop_last.hpp>
using namespace solidity;
using namespace solidity::util;
using namespace solidity::frontend;
using namespace solidity::frontend::experimental;
using namespace std::string_literals;
std::string IRGeneratorForStatements::generate(ASTNode const& _node)
{
_node.accept(*this);
return m_code.str();
}
namespace {
struct CopyTranslate: public yul::ASTCopier
{
CopyTranslate(
IRGenerationContext const& _context,
yul::Dialect const& _dialect,
2023-08-22 13:05:39 +00:00
std::map<yul::Identifier const*, InlineAssemblyAnnotation::ExternalIdentifierInfo> _references
2023-06-14 10:48:38 +00:00
): m_context(_context), m_dialect(_dialect), m_references(std::move(_references)) {}
using ASTCopier::operator();
yul::Expression operator()(yul::Identifier const& _identifier) override
{
// The operator() function is only called in lvalue context. In rvalue context,
// only translate(yul::Identifier) is called.
if (m_references.count(&_identifier))
return translateReference(_identifier);
else
return ASTCopier::operator()(_identifier);
}
yul::YulString translateIdentifier(yul::YulString _name) override
{
if (m_dialect.builtin(_name))
return _name;
else
return yul::YulString{"usr$" + _name.str()};
}
yul::Identifier translate(yul::Identifier const& _identifier) override
{
if (!m_references.count(&_identifier))
return ASTCopier::translate(_identifier);
yul::Expression translated = translateReference(_identifier);
2023-08-22 13:05:39 +00:00
solAssert(std::holds_alternative<yul::Identifier>(translated));
return std::get<yul::Identifier>(std::move(translated));
2023-06-14 10:48:38 +00:00
}
private:
/// Translates a reference to a local variable, potentially including
/// a suffix. Might return a literal, which causes this to be invalid in
/// lvalue-context.
yul::Expression translateReference(yul::Identifier const& _identifier)
{
auto const& reference = m_references.at(&_identifier);
auto const varDecl = dynamic_cast<VariableDeclaration const*>(reference.declaration);
solAssert(varDecl, "External reference in inline assembly to something that is not a variable declaration.");
auto type = m_context.analysis.annotation<TypeInference>(*varDecl).type;
solAssert(type);
solAssert(m_context.env->typeEquals(*type, m_context.analysis.typeSystem().type(PrimitiveType::Word, {})));
2023-08-22 13:05:39 +00:00
std::string value = IRNames::localVariable(*varDecl);
2023-06-14 10:48:38 +00:00
return yul::Identifier{_identifier.debugData, yul::YulString{value}};
}
IRGenerationContext const& m_context;
yul::Dialect const& m_dialect;
2023-08-22 13:05:39 +00:00
std::map<yul::Identifier const*, InlineAssemblyAnnotation::ExternalIdentifierInfo> m_references;
2023-06-14 10:48:38 +00:00
};
}
bool IRGeneratorForStatements::visit(TupleExpression const& _tupleExpression)
{
2023-08-22 13:05:39 +00:00
std::vector<std::string> components;
2023-06-14 10:48:38 +00:00
for (auto const& component: _tupleExpression.components())
{
solUnimplementedAssert(component);
component->accept(*this);
components.emplace_back(IRNames::localVariable(*component));
}
solUnimplementedAssert(false, "No support for tuples.");
return false;
}
bool IRGeneratorForStatements::visit(InlineAssembly const& _assembly)
{
CopyTranslate bodyCopier{m_context, _assembly.dialect(), _assembly.annotation().externalReferences};
yul::Statement modified = bodyCopier(_assembly.operations());
2023-08-22 13:05:39 +00:00
solAssert(std::holds_alternative<yul::Block>(modified));
2023-06-14 10:48:38 +00:00
m_code << yul::AsmPrinter()(std::get<yul::Block>(modified)) << "\n";
return false;
}
bool IRGeneratorForStatements::visit(VariableDeclarationStatement const& _variableDeclarationStatement)
{
if (_variableDeclarationStatement.initialValue())
_variableDeclarationStatement.initialValue()->accept(*this);
solAssert(_variableDeclarationStatement.declarations().size() == 1, "multi variable declarations not supported");
VariableDeclaration const* variableDeclaration = _variableDeclarationStatement.declarations().front().get();
solAssert(variableDeclaration);
// TODO: check the type of the variable; register local variable; initialize
m_code << "let " << IRNames::localVariable(*variableDeclaration);
if (_variableDeclarationStatement.initialValue())
m_code << " := " << IRNames::localVariable(*_variableDeclarationStatement.initialValue());
m_code << "\n";
return false;
}
bool IRGeneratorForStatements::visit(ExpressionStatement const&)
{
return true;
}
bool IRGeneratorForStatements::visit(Identifier const& _identifier)
{
if (auto const* var = dynamic_cast<VariableDeclaration const*>(_identifier.annotation().referencedDeclaration))
{
m_code << "let " << IRNames::localVariable(_identifier) << " := " << IRNames::localVariable(*var) << "\n";
}
else if (auto const* function = dynamic_cast<FunctionDefinition const*>(_identifier.annotation().referencedDeclaration))
solAssert(m_expressionDeclaration.emplace(&_identifier, function).second);
else if (auto const* typeClass = dynamic_cast<TypeClassDefinition const*>(_identifier.annotation().referencedDeclaration))
solAssert(m_expressionDeclaration.emplace(&_identifier, typeClass).second);
else if (auto const* typeDefinition = dynamic_cast<TypeDefinition const*>(_identifier.annotation().referencedDeclaration))
solAssert(m_expressionDeclaration.emplace(&_identifier, typeDefinition).second);
else
solAssert(false, "Unsupported Identifier");
return false;
}
void IRGeneratorForStatements::endVisit(Return const& _return)
{
if (Expression const* value = _return.expression())
{
solAssert(_return.annotation().function, "Invalid return.");
solAssert(_return.annotation().function->experimentalReturnExpression(), "Invalid return.");
m_code << IRNames::localVariable(*_return.annotation().function->experimentalReturnExpression()) << " := " << IRNames::localVariable(*value) << "\n";
}
m_code << "leave\n";
}
experimental::Type IRGeneratorForStatements::type(ASTNode const& _node) const
{
auto type = m_context.analysis.annotation<TypeInference>(_node).type;
solAssert(type);
return *type;
}
void IRGeneratorForStatements::endVisit(BinaryOperation const& _binaryOperation)
{
TypeSystemHelpers helper{m_context.analysis.typeSystem()};
Type leftType = type(_binaryOperation.leftExpression());
Type rightType = type(_binaryOperation.rightExpression());
Type resultType = type(_binaryOperation);
Type functionType = helper.functionType(helper.tupleType({leftType, rightType}), resultType);
auto [typeClass, memberName] = m_context.analysis.annotation<TypeInference>().operators.at(_binaryOperation.getOperator());
auto const& functionDefinition = resolveTypeClassFunction(typeClass, memberName, functionType);
// TODO: deduplicate with FunctionCall
// TODO: get around resolveRecursive by passing the environment further down?
functionType = m_context.env->resolveRecursive(functionType);
m_context.enqueueFunctionDefinition(&functionDefinition, functionType);
// TODO: account for return stack size
m_code << "let " << IRNames::localVariable(_binaryOperation) << " := " << IRNames::function(*m_context.env, functionDefinition, functionType) << "("
<< IRNames::localVariable(_binaryOperation.leftExpression()) << ", " << IRNames::localVariable(_binaryOperation.rightExpression()) << ")\n";
}
namespace
{
TypeRegistration::TypeClassInstantiations const& typeClassInstantiations(IRGenerationContext const& _context, TypeClass _class)
{
auto const* typeClassDeclaration = _context.analysis.typeSystem().typeClassDeclaration(_class);
if (typeClassDeclaration)
return _context.analysis.annotation<TypeRegistration>(*typeClassDeclaration).instantiations;
// TODO: better mechanism than fetching by name.
auto& instantiations = _context.analysis.annotation<TypeRegistration>().builtinClassInstantiations;
auto& builtinClassesByName = _context.analysis.annotation<TypeInference>().builtinClassesByName;
return instantiations.at(builtinClassesByName.at(_context.analysis.typeSystem().typeClassName(_class)));
}
}
2023-08-22 13:05:39 +00:00
FunctionDefinition const& IRGeneratorForStatements::resolveTypeClassFunction(TypeClass _class, std::string _name, Type _type)
2023-06-14 10:48:38 +00:00
{
TypeSystemHelpers helper{m_context.analysis.typeSystem()};
TypeEnvironment env = m_context.env->clone();
Type genericFunctionType = env.fresh(m_context.analysis.annotation<TypeInference>().typeClassFunctions.at(_class).at(_name));
auto typeVars = TypeEnvironmentHelpers{env}.typeVars(genericFunctionType);
solAssert(typeVars.size() == 1);
solAssert(env.unify(genericFunctionType, _type).empty());
2023-08-22 13:05:39 +00:00
auto typeClassInstantiation = std::get<0>(helper.destTypeConstant(env.resolve(typeVars.front())));
2023-06-14 10:48:38 +00:00
auto const& instantiations = typeClassInstantiations(m_context, _class);
TypeClassInstantiation const* instantiation = instantiations.at(typeClassInstantiation);
FunctionDefinition const* functionDefinition = nullptr;
for (auto const& node: instantiation->subNodes())
{
auto const* def = dynamic_cast<FunctionDefinition const*>(node.get());
solAssert(def);
if (def->name() == _name)
{
functionDefinition = def;
break;
}
}
solAssert(functionDefinition);
return *functionDefinition;
}
void IRGeneratorForStatements::endVisit(MemberAccess const& _memberAccess)
{
TypeSystemHelpers helper{m_context.analysis.typeSystem()};
// TODO: avoid resolve?
auto expressionType = m_context.env->resolve(type(_memberAccess.expression()));
auto constructor = std::get<0>(helper.destTypeConstant(expressionType));
auto memberAccessType = type(_memberAccess);
// TODO: better mechanism
if (constructor == m_context.analysis.typeSystem().constructor(PrimitiveType::Bool))
{
if (_memberAccess.memberName() == "abs")
solAssert(m_expressionDeclaration.emplace(&_memberAccess, Builtins::ToBool).second);
else if (_memberAccess.memberName() == "rep")
solAssert(m_expressionDeclaration.emplace(&_memberAccess, Builtins::FromBool).second);
return;
}
auto const* declaration = m_context.analysis.typeSystem().constructorInfo(constructor).typeDeclaration;
solAssert(declaration);
if (auto const* typeClassDefinition = dynamic_cast<TypeClassDefinition const*>(declaration))
{
2023-08-22 13:05:39 +00:00
std::optional<TypeClass> typeClass = m_context.analysis.annotation<TypeInference>(*typeClassDefinition).typeClass;
2023-06-14 10:48:38 +00:00
solAssert(typeClass);
solAssert(m_expressionDeclaration.emplace(
&_memberAccess,
&resolveTypeClassFunction(*typeClass, _memberAccess.memberName(), memberAccessType)
).second);
}
else if (dynamic_cast<TypeDefinition const*>(declaration))
{
if (_memberAccess.memberName() == "abs" || _memberAccess.memberName() == "rep")
solAssert(m_expressionDeclaration.emplace(&_memberAccess, Builtins::Identity).second);
else
solAssert(false);
}
else
solAssert(false);
}
bool IRGeneratorForStatements::visit(ElementaryTypeNameExpression const&)
{
// TODO: is this always a no-op?
return false;
}
void IRGeneratorForStatements::endVisit(FunctionCall const& _functionCall)
{
Type functionType = type(_functionCall.expression());
auto declaration = m_expressionDeclaration.at(&_functionCall.expression());
2023-08-22 13:05:39 +00:00
if (auto builtin = std::get_if<Builtins>(&declaration))
2023-06-14 10:48:38 +00:00
{
switch(*builtin)
{
case Builtins::FromBool:
case Builtins::Identity:
solAssert(_functionCall.arguments().size() == 1);
m_code << "let " << IRNames::localVariable(_functionCall) << " := " << IRNames::localVariable(*_functionCall.arguments().front()) << "\n";
return;
case Builtins::ToBool:
solAssert(_functionCall.arguments().size() == 1);
m_code << "let " << IRNames::localVariable(_functionCall) << " := iszero(iszero(" << IRNames::localVariable(*_functionCall.arguments().front()) << "))\n";
return;
}
solAssert(false);
}
2023-08-22 13:05:39 +00:00
FunctionDefinition const* functionDefinition = dynamic_cast<FunctionDefinition const*>(std::get<Declaration const*>(declaration));
2023-06-14 10:48:38 +00:00
solAssert(functionDefinition);
// TODO: get around resolveRecursive by passing the environment further down?
functionType = m_context.env->resolveRecursive(functionType);
m_context.enqueueFunctionDefinition(functionDefinition, functionType);
// TODO: account for return stack size
m_code << "let " << IRNames::localVariable(_functionCall) << " := " << IRNames::function(*m_context.env, *functionDefinition, functionType) << "(";
auto const& arguments = _functionCall.arguments();
if (arguments.size() > 1)
for (auto arg: arguments | ranges::views::drop_last(1))
m_code << IRNames::localVariable(*arg) << ", ";
if (!arguments.empty())
m_code << IRNames::localVariable(*arguments.back());
m_code << ")\n";
}
bool IRGeneratorForStatements::visit(FunctionCall const&)
{
return true;
}
bool IRGeneratorForStatements::visit(Block const& _block)
{
m_code << "{\n";
solAssert(!_block.unchecked());
for (auto const& statement: _block.statements())
statement->accept(*this);
m_code << "}\n";
return false;
}
bool IRGeneratorForStatements::visit(IfStatement const& _ifStatement)
{
_ifStatement.condition().accept(*this);
if (_ifStatement.falseStatement())
{
m_code << "switch " << IRNames::localVariable(_ifStatement.condition()) << " {\n";
m_code << "case 0 {\n";
_ifStatement.falseStatement()->accept(*this);
m_code << "}\n";
m_code << "default {\n";
_ifStatement.trueStatement().accept(*this);
m_code << "}\n";
}
else
{
m_code << "if " << IRNames::localVariable(_ifStatement.condition()) << " {\n";
_ifStatement.trueStatement().accept(*this);
m_code << "}\n";
}
return false;
}
bool IRGeneratorForStatements::visit(Assignment const& _assignment)
{
_assignment.rightHandSide().accept(*this);
auto const* lhs = dynamic_cast<Identifier const*>(&_assignment.leftHandSide());
solAssert(lhs, "Can only assign to identifiers.");
auto const* lhsVar = dynamic_cast<VariableDeclaration const*>(lhs->annotation().referencedDeclaration);
solAssert(lhsVar, "Can only assign to identifiers referring to variables.");
m_code << IRNames::localVariable(*lhsVar) << " := " << IRNames::localVariable(_assignment.rightHandSide()) << "\n";
m_code << "let " << IRNames::localVariable(_assignment) << " := " << IRNames::localVariable(*lhsVar) << "\n";
return false;
}
bool IRGeneratorForStatements::visitNode(ASTNode const&)
{
solAssert(false, "Unsupported AST node during statement code generation.");
}