solidity/tools/yulPhaser/GeneticAlgorithms.cpp

78 lines
2.4 KiB
C++
Raw Normal View History

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
#include <tools/yulPhaser/GeneticAlgorithms.h>
#include <tools/yulPhaser/Mutations.h>
2020-02-05 13:58:48 +00:00
#include <tools/yulPhaser/Selections.h>
#include <tools/yulPhaser/PairSelections.h>
using namespace std;
using namespace solidity::phaser;
void GeneticAlgorithm::run(optional<size_t> _numRounds)
{
for (size_t round = 0; !_numRounds.has_value() || round < _numRounds.value(); ++round)
{
runNextRound();
m_outputStream << "---------- ROUND " << round << " ----------" << endl;
m_outputStream << m_population;
}
}
2020-02-05 13:58:48 +00:00
void RandomAlgorithm::runNextRound()
{
RangeSelection elite(0.0, m_options.elitePoolSize);
Population elitePopulation = m_population.select(elite);
size_t replacementCount = m_population.individuals().size() - elitePopulation.individuals().size();
m_population =
move(elitePopulation) +
Population::makeRandom(
m_population.fitnessMetric(),
replacementCount,
m_options.minChromosomeLength,
m_options.maxChromosomeLength
);
}
void GenerationalElitistWithExclusivePools::runNextRound()
{
double elitePoolSize = 1.0 - (m_options.mutationPoolSize + m_options.crossoverPoolSize);
RangeSelection elite(0.0, elitePoolSize);
m_population =
m_population.select(elite) +
m_population.select(elite).mutate(
RandomSelection(m_options.mutationPoolSize / elitePoolSize),
alternativeMutations(
m_options.randomisationChance,
geneRandomisation(m_options.percentGenesToRandomise),
alternativeMutations(
m_options.deletionVsAdditionChance,
geneDeletion(m_options.percentGenesToAddOrDelete),
geneAddition(m_options.percentGenesToAddOrDelete)
)
)
) +
m_population.select(elite).crossover(
RandomPairSelection(m_options.crossoverPoolSize / elitePoolSize / 2),
randomPointCrossover()
);
}