solidity/tools/yulPhaser/Mutations.cpp

318 lines
9.0 KiB
C++
Raw Normal View History

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
#include <tools/yulPhaser/Mutations.h>
#include <tools/yulPhaser/SimulationRNG.h>
#include <libsolutil/CommonData.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <string>
#include <vector>
using namespace std;
using namespace solidity;
using namespace solidity::phaser;
function<Mutation> phaser::geneRandomisation(double _chance)
{
return [=](Chromosome const& _chromosome)
{
vector<string> optimisationSteps;
for (auto const& step: _chromosome.optimisationSteps())
optimisationSteps.push_back(
SimulationRNG::bernoulliTrial(_chance) ?
Chromosome::randomOptimisationStep() :
step
);
return Chromosome(move(optimisationSteps));
};
}
function<Mutation> phaser::geneDeletion(double _chance)
{
return [=](Chromosome const& _chromosome)
{
vector<string> optimisationSteps;
for (auto const& step: _chromosome.optimisationSteps())
if (!SimulationRNG::bernoulliTrial(_chance))
optimisationSteps.push_back(step);
return Chromosome(move(optimisationSteps));
};
}
function<Mutation> phaser::geneAddition(double _chance)
{
return [=](Chromosome const& _chromosome)
{
vector<string> optimisationSteps;
if (SimulationRNG::bernoulliTrial(_chance))
optimisationSteps.push_back(Chromosome::randomOptimisationStep());
for (auto const& step: _chromosome.optimisationSteps())
{
optimisationSteps.push_back(step);
if (SimulationRNG::bernoulliTrial(_chance))
optimisationSteps.push_back(Chromosome::randomOptimisationStep());
}
return Chromosome(move(optimisationSteps));
};
}
function<Mutation> phaser::alternativeMutations(
double _firstMutationChance,
function<Mutation> _mutation1,
function<Mutation> _mutation2
)
{
return [=](Chromosome const& _chromosome)
{
if (SimulationRNG::bernoulliTrial(_firstMutationChance))
return _mutation1(_chromosome);
else
return _mutation2(_chromosome);
};
}
function<Mutation> phaser::mutationSequence(vector<function<Mutation>> _mutations)
{
return [=](Chromosome const& _chromosome)
{
Chromosome mutatedChromosome = _chromosome;
for (size_t i = 0; i < _mutations.size(); ++i)
mutatedChromosome = _mutations[i](move(mutatedChromosome));
return mutatedChromosome;
};
}
namespace
{
ChromosomePair fixedPointSwap(
Chromosome const& _chromosome1,
Chromosome const& _chromosome2,
size_t _crossoverPoint
)
{
assert(_crossoverPoint <= _chromosome1.length());
assert(_crossoverPoint <= _chromosome2.length());
auto begin1 = _chromosome1.optimisationSteps().begin();
auto begin2 = _chromosome2.optimisationSteps().begin();
auto end1 = _chromosome1.optimisationSteps().end();
auto end2 = _chromosome2.optimisationSteps().end();
return {
Chromosome(
vector<string>(begin1, begin1 + _crossoverPoint) +
vector<string>(begin2 + _crossoverPoint, end2)
),
Chromosome(
vector<string>(begin2, begin2 + _crossoverPoint) +
vector<string>(begin1 + _crossoverPoint, end1)
),
};
}
}
function<Crossover> phaser::randomPointCrossover()
{
return [=](Chromosome const& _chromosome1, Chromosome const& _chromosome2)
{
size_t minLength = min(_chromosome1.length(), _chromosome2.length());
// Don't use position 0 (because this just swaps the values) unless it's the only choice.
size_t minPoint = (minLength > 0 ? 1 : 0);
assert(minPoint <= minLength);
size_t randomPoint = SimulationRNG::uniformInt(minPoint, minLength);
return get<0>(fixedPointSwap(_chromosome1, _chromosome2, randomPoint));
};
}
function<SymmetricCrossover> phaser::symmetricRandomPointCrossover()
{
return [=](Chromosome const& _chromosome1, Chromosome const& _chromosome2)
{
size_t minLength = min(_chromosome1.length(), _chromosome2.length());
// Don't use position 0 (because this just swaps the values) unless it's the only choice.
size_t minPoint = (minLength > 0 ? 1 : 0);
assert(minPoint <= minLength);
size_t randomPoint = SimulationRNG::uniformInt(minPoint, minLength);
return fixedPointSwap(_chromosome1, _chromosome2, randomPoint);
};
}
function<Crossover> phaser::fixedPointCrossover(double _crossoverPoint)
{
assert(0.0 <= _crossoverPoint && _crossoverPoint <= 1.0);
return [=](Chromosome const& _chromosome1, Chromosome const& _chromosome2)
{
size_t minLength = min(_chromosome1.length(), _chromosome2.length());
size_t concretePoint = static_cast<size_t>(round(minLength * _crossoverPoint));
return get<0>(fixedPointSwap(_chromosome1, _chromosome2, concretePoint));
};
}
namespace
{
ChromosomePair fixedTwoPointSwap(
Chromosome const& _chromosome1,
Chromosome const& _chromosome2,
size_t _crossoverPoint1,
size_t _crossoverPoint2
)
{
assert(_crossoverPoint1 <= _chromosome1.length());
assert(_crossoverPoint1 <= _chromosome2.length());
assert(_crossoverPoint2 <= _chromosome1.length());
assert(_crossoverPoint2 <= _chromosome2.length());
size_t lowPoint = min(_crossoverPoint1, _crossoverPoint2);
size_t highPoint = max(_crossoverPoint1, _crossoverPoint2);
auto begin1 = _chromosome1.optimisationSteps().begin();
auto begin2 = _chromosome2.optimisationSteps().begin();
auto end1 = _chromosome1.optimisationSteps().end();
auto end2 = _chromosome2.optimisationSteps().end();
return {
Chromosome(
vector<string>(begin1, begin1 + lowPoint) +
vector<string>(begin2 + lowPoint, begin2 + highPoint) +
vector<string>(begin1 + highPoint, end1)
),
Chromosome(
vector<string>(begin2, begin2 + lowPoint) +
vector<string>(begin1 + lowPoint, begin1 + highPoint) +
vector<string>(begin2 + highPoint, end2)
),
};
}
}
function<Crossover> phaser::randomTwoPointCrossover()
{
return [=](Chromosome const& _chromosome1, Chromosome const& _chromosome2)
{
size_t minLength = min(_chromosome1.length(), _chromosome2.length());
// Don't use position 0 (because this just swaps the values) unless it's the only choice.
size_t minPoint = (minLength > 0 ? 1 : 0);
assert(minPoint <= minLength);
size_t randomPoint1 = SimulationRNG::uniformInt(minPoint, minLength);
size_t randomPoint2 = SimulationRNG::uniformInt(randomPoint1, minLength);
return get<0>(fixedTwoPointSwap(_chromosome1, _chromosome2, randomPoint1, randomPoint2));
};
}
function<SymmetricCrossover> phaser::symmetricRandomTwoPointCrossover()
{
return [=](Chromosome const& _chromosome1, Chromosome const& _chromosome2)
{
size_t minLength = min(_chromosome1.length(), _chromosome2.length());
// Don't use position 0 (because this just swaps the values) unless it's the only choice.
size_t minPoint = (minLength > 0 ? 1 : 0);
assert(minPoint <= minLength);
size_t randomPoint1 = SimulationRNG::uniformInt(minPoint, minLength);
size_t randomPoint2 = SimulationRNG::uniformInt(randomPoint1, minLength);
return fixedTwoPointSwap(_chromosome1, _chromosome2, randomPoint1, randomPoint2);
};
}
namespace
{
ChromosomePair uniformSwap(Chromosome const& _chromosome1, Chromosome const& _chromosome2, double _swapChance)
{
vector<string> steps1;
vector<string> steps2;
size_t minLength = min(_chromosome1.length(), _chromosome2.length());
for (size_t i = 0; i < minLength; ++i)
if (SimulationRNG::bernoulliTrial(_swapChance))
{
steps1.push_back(_chromosome2.optimisationSteps()[i]);
steps2.push_back(_chromosome1.optimisationSteps()[i]);
}
else
{
steps1.push_back(_chromosome1.optimisationSteps()[i]);
steps2.push_back(_chromosome2.optimisationSteps()[i]);
}
auto begin1 = _chromosome1.optimisationSteps().begin();
auto begin2 = _chromosome2.optimisationSteps().begin();
auto end1 = _chromosome1.optimisationSteps().end();
auto end2 = _chromosome2.optimisationSteps().end();
bool swapTail = SimulationRNG::bernoulliTrial(_swapChance);
if (_chromosome1.length() > minLength)
{
if (swapTail)
steps2.insert(steps2.end(), begin1 + minLength, end1);
else
steps1.insert(steps1.end(), begin1 + minLength, end1);
}
if (_chromosome2.length() > minLength)
{
if (swapTail)
steps1.insert(steps1.end(), begin2 + minLength, end2);
else
steps2.insert(steps2.end(), begin2 + minLength, end2);
}
return {Chromosome(steps1), Chromosome(steps2)};
}
}
function<Crossover> phaser::uniformCrossover(double _swapChance)
{
return [=](Chromosome const& _chromosome1, Chromosome const& _chromosome2)
{
return get<0>(uniformSwap(_chromosome1, _chromosome2, _swapChance));
};
}
function<SymmetricCrossover> phaser::symmetricUniformCrossover(double _swapChance)
{
return [=](Chromosome const& _chromosome1, Chromosome const& _chromosome2)
{
return uniformSwap(_chromosome1, _chromosome2, _swapChance);
};
}