solidity/test/tools/ossfuzz/protoToYul.cpp

1019 lines
24 KiB
C++
Raw Normal View History

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
#include <test/tools/ossfuzz/protoToYul.h>
#include <libsolidity/codegen/YulUtilFunctions.h>
#include <boost/range/algorithm_ext/erase.hpp>
#include <libyul/Exceptions.h>
using namespace std;
using namespace yul::test::yul_fuzzer;
using namespace dev::solidity;
string ProtoConverter::createHex(string const& _hexBytes) const
{
string tmp{_hexBytes};
if (!tmp.empty())
{
boost::range::remove_erase_if(tmp, [=](char c) -> bool {
return !std::isxdigit(c);
});
tmp = tmp.substr(0, 64);
}
// We need this awkward if case because hex literals cannot be empty.
if (tmp.empty())
tmp = "1";
return tmp;
}
string ProtoConverter::createAlphaNum(string const& _strBytes) const
{
string tmp{_strBytes};
if (!tmp.empty())
{
boost::range::remove_erase_if(tmp, [=](char c) -> bool {
return !(std::isalpha(c) || std::isdigit(c));
});
tmp = tmp.substr(0, 32);
}
return tmp;
}
bool ProtoConverter::isCaseLiteralUnique(Literal const& _x)
{
dev::u256 mpCaseLiteralValue;
bool isUnique = false;
switch (_x.literal_oneof_case())
{
case Literal::kIntval:
mpCaseLiteralValue = dev::u256(_x.intval());
break;
case Literal::kHexval:
// We need to ask boost mp library to treat this
// as a hex value. Hence the "0x" prefix.
mpCaseLiteralValue = dev::u256("0x" + createHex(_x.hexval()));
break;
case Literal::kStrval:
mpCaseLiteralValue = dev::u256(dev::h256(createAlphaNum(_x.strval()), dev::h256::FromBinary, dev::h256::AlignLeft));
break;
case Literal::LITERAL_ONEOF_NOT_SET:
// If the proto generator does not generate a valid Literal
// we generate a case 1:
mpCaseLiteralValue = 1;
break;
}
isUnique = m_switchLiteralSetPerScope.top().insert(mpCaseLiteralValue).second;
return isUnique;
}
void ProtoConverter::visit(Literal const& _x)
{
2019-03-14 14:40:54 +00:00
switch (_x.literal_oneof_case())
{
case Literal::kIntval:
m_output << _x.intval();
break;
case Literal::kHexval:
m_output << "0x" << createHex(_x.hexval());
break;
case Literal::kStrval:
m_output << "\"" << createAlphaNum(_x.strval()) << "\"";
break;
case Literal::LITERAL_ONEOF_NOT_SET:
m_output << "1";
break;
2019-03-14 14:40:54 +00:00
}
}
// Reference any index in [0, m_numLiveVars-1]
void ProtoConverter::visit(VarRef const& _x)
{
yulAssert(m_numLiveVars > 0, "Proto fuzzer: No variables to reference.");
m_output << "x_" << (static_cast<uint32_t>(_x.varnum()) % m_numLiveVars);
}
void ProtoConverter::visit(Expression const& _x)
{
2019-03-14 14:40:54 +00:00
switch (_x.expr_oneof_case())
{
case Expression::kVarref:
visit(_x.varref());
break;
case Expression::kCons:
visit(_x.cons());
break;
case Expression::kBinop:
visit(_x.binop());
break;
case Expression::kUnop:
visit(_x.unop());
break;
case Expression::kTop:
visit(_x.top());
break;
case Expression::kNop:
visit(_x.nop());
break;
case Expression::kFuncExpr:
visit(_x.func_expr());
break;
case Expression::EXPR_ONEOF_NOT_SET:
m_output << "1";
break;
2019-03-14 14:40:54 +00:00
}
}
void ProtoConverter::visit(BinaryOp const& _x)
{
switch (_x.op())
{
case BinaryOp::ADD:
m_output << "add";
break;
case BinaryOp::SUB:
m_output << "sub";
break;
case BinaryOp::MUL:
m_output << "mul";
break;
case BinaryOp::DIV:
m_output << "div";
break;
case BinaryOp::MOD:
m_output << "mod";
break;
case BinaryOp::XOR:
m_output << "xor";
break;
case BinaryOp::AND:
m_output << "and";
break;
case BinaryOp::OR:
m_output << "or";
break;
case BinaryOp::EQ:
m_output << "eq";
break;
case BinaryOp::LT:
m_output << "lt";
break;
case BinaryOp::GT:
m_output << "gt";
break;
case BinaryOp::SHR:
m_output << "shr";
break;
case BinaryOp::SHL:
m_output << "shl";
break;
case BinaryOp::SAR:
m_output << "sar";
break;
case BinaryOp::SDIV:
m_output << "sdiv";
break;
case BinaryOp::SMOD:
m_output << "smod";
break;
case BinaryOp::EXP:
m_output << "exp";
break;
case BinaryOp::SLT:
m_output << "slt";
break;
case BinaryOp::SGT:
m_output << "sgt";
break;
case BinaryOp::BYTE:
m_output << "byte";
break;
case BinaryOp::SI:
m_output << "signextend";
break;
case BinaryOp::KECCAK:
m_output << "keccak256";
break;
}
m_output << "(";
visit(_x.left());
m_output << ",";
visit(_x.right());
m_output << ")";
}
void ProtoConverter::visit(VarDecl const& _x)
{
m_output << "let x_" << m_numLiveVars << " := ";
visit(_x.expr());
m_numVarsPerScope.top()++;
m_numLiveVars++;
m_output << "\n";
}
void ProtoConverter::visit(EmptyVarDecl const&)
{
m_output << "let x_" << m_numLiveVars++ << "\n";
m_numVarsPerScope.top()++;
}
void ProtoConverter::visit(MultiVarDecl const& _x)
{
size_t funcId = (static_cast<size_t>(_x.func_index()) % m_functionVecMultiReturnValue.size());
int numInParams = m_functionVecMultiReturnValue.at(funcId).first;
int numOutParams = m_functionVecMultiReturnValue.at(funcId).second;
// Ensure that the chosen function returns at least 2 and at most 4 values
yulAssert(
((numOutParams >= 2) && (numOutParams <= 4)),
"Proto fuzzer: Multi variable declaration calls a function with either too few or too many output params."
);
// We must start variable numbering past the number of live variables at this point in time.
// This creates let x_p,..., x_k :=
// (k-p)+1 = numOutParams
m_output <<
"let " <<
YulUtilFunctions::suffixedVariableNameList("x_", m_numLiveVars, m_numLiveVars + numOutParams) <<
" := ";
// Create RHS of multi var decl
m_output << "foo_" << functionTypeToString(NumFunctionReturns::Multiple) << "_" << funcId;
m_output << "(";
visitFunctionInputParams(_x, numInParams);
m_output << ")\n";
// Update live variables in scope and in total to account for the variables created by this
// multi variable declaration.
m_numVarsPerScope.top() += numOutParams;
m_numLiveVars += numOutParams;
}
void ProtoConverter::visit(TypedVarDecl const& _x)
{
m_output << "let x_" << m_numLiveVars;
switch (_x.type())
{
case TypedVarDecl::BOOL:
m_output << ": bool := ";
visit(_x.expr());
m_output << " : bool\n";
break;
case TypedVarDecl::S8:
m_output << ": s8 := ";
visit(_x.expr());
m_output << " : s8\n";
break;
case TypedVarDecl::S32:
m_output << ": s32 := ";
visit(_x.expr());
m_output << " : s32\n";
break;
case TypedVarDecl::S64:
m_output << ": s64 := ";
visit(_x.expr());
m_output << " : s64\n";
break;
case TypedVarDecl::S128:
m_output << ": s128 := ";
visit(_x.expr());
m_output << " : s128\n";
break;
case TypedVarDecl::S256:
m_output << ": s256 := ";
visit(_x.expr());
m_output << " : s256\n";
break;
case TypedVarDecl::U8:
m_output << ": u8 := ";
visit(_x.expr());
m_output << " : u8\n";
break;
case TypedVarDecl::U32:
m_output << ": u32 := ";
visit(_x.expr());
m_output << " : u32\n";
break;
case TypedVarDecl::U64:
m_output << ": u64 := ";
visit(_x.expr());
m_output << " : u64\n";
break;
case TypedVarDecl::U128:
m_output << ": u128 := ";
visit(_x.expr());
m_output << " : u128\n";
break;
case TypedVarDecl::U256:
m_output << ": u256 := ";
visit(_x.expr());
m_output << " : u256\n";
break;
}
m_numVarsPerScope.top()++;
m_numLiveVars++;
}
void ProtoConverter::visit(UnaryOp const& _x)
{
switch (_x.op())
{
case UnaryOp::NOT:
m_output << "not";
break;
case UnaryOp::MLOAD:
m_output << "mload";
break;
case UnaryOp::SLOAD:
m_output << "sload";
break;
case UnaryOp::ISZERO:
m_output << "iszero";
break;
case UnaryOp::CALLDATALOAD:
m_output << "calldataload";
break;
case UnaryOp::EXTCODESIZE:
m_output << "extcodesize";
break;
case UnaryOp::EXTCODEHASH:
m_output << "extcodehash";
break;
}
m_output << "(";
visit(_x.operand());
m_output << ")";
}
void ProtoConverter::visit(TernaryOp const& _x)
{
switch (_x.op())
{
case TernaryOp::ADDM:
m_output << "addmod";
break;
case TernaryOp::MULM:
m_output << "mulmod";
break;
}
m_output << "(";
visit(_x.arg1());
m_output << ", ";
visit(_x.arg2());
m_output << ", ";
visit(_x.arg3());
m_output << ")";
}
void ProtoConverter::visit(NullaryOp const& _x)
{
switch (_x.op())
{
case NullaryOp::PC:
m_output << "pc()";
break;
case NullaryOp::MSIZE:
m_output << "msize()";
break;
case NullaryOp::GAS:
m_output << "gas()";
break;
case NullaryOp::CALLDATASIZE:
m_output << "calldatasize()";
break;
case NullaryOp::CODESIZE:
m_output << "codesize()";
break;
case NullaryOp::RETURNDATASIZE:
m_output << "returndatasize()";
break;
}
}
void ProtoConverter::visit(CopyFunc const& _x)
{
switch (_x.ct())
{
case CopyFunc::CALLDATA:
m_output << "calldatacopy";
break;
case CopyFunc::CODE:
m_output << "codecopy";
break;
case CopyFunc::RETURNDATA:
m_output << "returndatacopy";
break;
}
m_output << "(";
visit(_x.target());
m_output << ", ";
visit(_x.source());
m_output << ", ";
visit(_x.size());
m_output << ")\n";
}
void ProtoConverter::visit(ExtCodeCopy const& _x)
{
m_output << "extcodecopy";
m_output << "(";
visit(_x.addr());
m_output << ", ";
visit(_x.target());
m_output << ", ";
visit(_x.source());
m_output << ", ";
visit(_x.size());
m_output << ")\n";
}
void ProtoConverter::visit(LogFunc const& _x)
{
switch (_x.num_topics())
{
case LogFunc::ZERO:
m_output << "log0";
m_output << "(";
visit(_x.pos());
m_output << ", ";
visit(_x.size());
m_output << ")\n";
break;
case LogFunc::ONE:
m_output << "log1";
m_output << "(";
visit(_x.pos());
m_output << ", ";
visit(_x.size());
m_output << ", ";
visit(_x.t1());
m_output << ")\n";
break;
case LogFunc::TWO:
m_output << "log2";
m_output << "(";
visit(_x.pos());
m_output << ", ";
visit(_x.size());
m_output << ", ";
visit(_x.t1());
m_output << ", ";
visit(_x.t2());
m_output << ")\n";
break;
case LogFunc::THREE:
m_output << "log3";
m_output << "(";
visit(_x.pos());
m_output << ", ";
visit(_x.size());
m_output << ", ";
visit(_x.t1());
m_output << ", ";
visit(_x.t2());
m_output << ", ";
visit(_x.t3());
m_output << ")\n";
break;
case LogFunc::FOUR:
m_output << "log4";
m_output << "(";
visit(_x.pos());
m_output << ", ";
visit(_x.size());
m_output << ", ";
visit(_x.t1());
m_output << ", ";
visit(_x.t2());
m_output << ", ";
visit(_x.t3());
m_output << ", ";
visit(_x.t4());
m_output << ")\n";
break;
}
}
void ProtoConverter::visit(AssignmentStatement const& _x)
{
visit(_x.ref_id());
m_output << " := ";
visit(_x.expr());
m_output << "\n";
}
// Called at the time function call is being made
template <class T>
void ProtoConverter::visitFunctionInputParams(T const& _x, unsigned _numInputParams)
{
// We reverse the order of function input visits since it helps keep this switch case concise.
switch (_numInputParams)
{
case 4:
visit(_x.in_param4());
m_output << ", ";
BOOST_FALLTHROUGH;
case 3:
visit(_x.in_param3());
m_output << ", ";
BOOST_FALLTHROUGH;
case 2:
visit(_x.in_param2());
m_output << ", ";
BOOST_FALLTHROUGH;
case 1:
visit(_x.in_param1());
BOOST_FALLTHROUGH;
case 0:
break;
default:
yulAssert(false, "Proto fuzzer: Function call with too many input parameters.");
break;
}
}
void ProtoConverter::visit(MultiAssignment const& _x)
{
size_t funcId = (static_cast<size_t>(_x.func_index()) % m_functionVecMultiReturnValue.size());
unsigned numInParams = m_functionVecMultiReturnValue.at(funcId).first;
unsigned numOutParams = m_functionVecMultiReturnValue.at(funcId).second;
yulAssert(
((numOutParams >= 2) && (numOutParams <= 4)),
"Proto fuzzer: Multi assignment calls a function that has either too many or too few output parameters."
);
// Convert LHS of multi assignment
// We reverse the order of out param visits since the order does not matter. This helps reduce the size of this
// switch statement.
switch (numOutParams)
{
case 4:
visit(_x.out_param4());
m_output << ", ";
BOOST_FALLTHROUGH;
case 3:
visit(_x.out_param3());
m_output << ", ";
BOOST_FALLTHROUGH;
case 2:
visit(_x.out_param2());
m_output << ", ";
visit(_x.out_param1());
break;
default:
yulAssert(false, "Proto fuzzer: Function call with too many input parameters.");
break;
}
m_output << " := ";
// Convert RHS of multi assignment
m_output << "foo_" << functionTypeToString(NumFunctionReturns::Multiple) << "_" << funcId;
m_output << "(";
visitFunctionInputParams(_x, numInParams);
m_output << ")\n";
}
void ProtoConverter::visit(FunctionCallNoReturnVal const& _x)
{
size_t funcId = (static_cast<size_t>(_x.func_index()) % m_functionVecNoReturnValue.size());
unsigned numInParams = m_functionVecNoReturnValue.at(funcId);
m_output << "foo_" << functionTypeToString(NumFunctionReturns::None) << "_" << funcId;
m_output << "(";
visitFunctionInputParams(_x, numInParams);
m_output << ")\n";
}
void ProtoConverter::visit(FunctionCallSingleReturnVal const& _x)
{
size_t funcId = (static_cast<size_t>(_x.func_index()) % m_functionVecSingleReturnValue.size());
unsigned numInParams = m_functionVecSingleReturnValue.at(funcId);
m_output << "foo_" << functionTypeToString(NumFunctionReturns::Single) << "_" << funcId;
m_output << "(";
visitFunctionInputParams(_x, numInParams);
m_output << ")";
}
void ProtoConverter::visit(FunctionCall const& _x)
{
switch (_x.functioncall_oneof_case())
{
case FunctionCall::kCallZero:
visit(_x.call_zero());
break;
case FunctionCall::kCallMultidecl:
// Hack: Disallow (multi) variable declarations until scope extension is implemented for "for-init"
if (!m_inForInitScope)
visit(_x.call_multidecl());
break;
case FunctionCall::kCallMultiassign:
visit(_x.call_multiassign());
break;
case FunctionCall::FUNCTIONCALL_ONEOF_NOT_SET:
break;
}
}
void ProtoConverter::visit(IfStmt const& _x)
{
m_output << "if ";
visit(_x.cond());
m_output << " ";
visit(_x.if_body());
}
void ProtoConverter::visit(StoreFunc const& _x)
{
switch (_x.st())
{
case StoreFunc::MSTORE:
m_output << "mstore(";
break;
case StoreFunc::SSTORE:
m_output << "sstore(";
break;
case StoreFunc::MSTORE8:
m_output << "mstore8(";
break;
}
visit(_x.loc());
m_output << ", ";
visit(_x.val());
m_output << ")\n";
}
void ProtoConverter::visit(ForStmt const& _x)
{
bool wasInForBody = m_inForBodyScope;
bool wasInForInit = m_inForInitScope;
m_inForBodyScope = false;
m_inForInitScope = true;
m_output << "for ";
visit(_x.for_init());
m_inForInitScope = false;
visit(_x.for_cond());
visit(_x.for_post());
m_inForBodyScope = true;
visit(_x.for_body());
m_inForBodyScope = wasInForBody;
m_inForInitScope = wasInForInit;
}
void ProtoConverter::visit(BoundedForStmt const& _x)
{
// Boilerplate for loop that limits the number of iterations to a maximum of 4.
std::string loopVarName("i_" + std::to_string(m_numNestedForLoops++));
m_output << "for { let " << loopVarName << " := 0 } "
<< "lt(" << loopVarName << ", 0x60) "
<< "{ " << loopVarName << " := add(" << loopVarName << ", 0x20) } ";
// Store previous for body scope
bool wasInForBody = m_inForBodyScope;
bool wasInForInit = m_inForInitScope;
m_inForBodyScope = true;
m_inForInitScope = false;
visit(_x.for_body());
// Restore previous for body scope and init
m_inForBodyScope = wasInForBody;
m_inForInitScope = wasInForInit;
}
void ProtoConverter::visit(CaseStmt const& _x)
{
// Silently ignore duplicate case literals
if (isCaseLiteralUnique(_x.case_lit()))
{
m_output << "case ";
visit(_x.case_lit());
m_output << " ";
visit(_x.case_block());
}
}
void ProtoConverter::visit(SwitchStmt const& _x)
{
if (_x.case_stmt_size() > 0 || _x.has_default_block())
{
std::set<dev::u256> s;
m_switchLiteralSetPerScope.push(s);
m_output << "switch ";
visit(_x.switch_expr());
m_output << "\n";
for (auto const& caseStmt: _x.case_stmt())
visit(caseStmt);
m_switchLiteralSetPerScope.pop();
if (_x.has_default_block())
{
m_output << "default ";
visit(_x.default_block());
}
}
}
void ProtoConverter::visit(StopInvalidStmt const& _x)
{
switch (_x.stmt())
{
case StopInvalidStmt::STOP:
m_output << "stop()\n";
break;
case StopInvalidStmt::INVALID:
m_output << "invalid()\n";
break;
}
}
void ProtoConverter::visit(RetRevStmt const& _x)
{
switch (_x.stmt())
{
case RetRevStmt::RETURN:
m_output << "return";
break;
case RetRevStmt::REVERT:
m_output << "revert";
break;
}
m_output << "(";
visit(_x.pos());
m_output << ", ";
visit(_x.size());
m_output << ")\n";
}
void ProtoConverter::visit(SelfDestructStmt const& _x)
{
m_output << "selfdestruct";
m_output << "(";
visit(_x.addr());
m_output << ")\n";
}
void ProtoConverter::visit(TerminatingStmt const& _x)
{
switch (_x.term_oneof_case())
{
case TerminatingStmt::kStopInvalid:
visit(_x.stop_invalid());
break;
case TerminatingStmt::kRetRev:
visit(_x.ret_rev());
break;
case TerminatingStmt::kSelfDes:
visit(_x.self_des());
break;
case TerminatingStmt::TERM_ONEOF_NOT_SET:
break;
}
}
void ProtoConverter::visit(Statement const& _x)
{
2019-03-14 14:40:54 +00:00
switch (_x.stmt_oneof_case())
{
case Statement::kDecl:
// Hack: Disallow (multi) variable declarations until scope extension is implemented for "for-init"
if (!m_inForInitScope)
visit(_x.decl());
break;
case Statement::kAssignment:
visit(_x.assignment());
break;
case Statement::kIfstmt:
visit(_x.ifstmt());
break;
case Statement::kStorageFunc:
visit(_x.storage_func());
break;
case Statement::kBlockstmt:
visit(_x.blockstmt());
break;
case Statement::kForstmt:
visit(_x.forstmt());
break;
case Statement::kBoundedforstmt:
visit(_x.boundedforstmt());
break;
case Statement::kSwitchstmt:
visit(_x.switchstmt());
break;
case Statement::kBreakstmt:
if (m_inForBodyScope)
m_output << "break\n";
break;
case Statement::kContstmt:
if (m_inForBodyScope)
m_output << "continue\n";
break;
case Statement::kLogFunc:
visit(_x.log_func());
break;
case Statement::kCopyFunc:
visit(_x.copy_func());
break;
case Statement::kExtcodeCopy:
visit(_x.extcode_copy());
break;
case Statement::kTerminatestmt:
visit(_x.terminatestmt());
break;
case Statement::kFunctioncall:
visit(_x.functioncall());
break;
case Statement::STMT_ONEOF_NOT_SET:
break;
2019-03-14 14:40:54 +00:00
}
}
void ProtoConverter::visit(Block const& _x)
{
if (_x.statements_size() > 0)
{
m_numVarsPerScope.push(0);
m_output << "{\n";
for (auto const& st: _x.statements())
visit(st);
m_output << "}\n";
m_numLiveVars -= m_numVarsPerScope.top();
m_numVarsPerScope.pop();
2019-03-14 14:40:54 +00:00
}
else
m_output << "{}\n";
}
void ProtoConverter::visit(SpecialBlock const& _x)
{
m_numVarsPerScope.push(0);
m_output << "{\n";
visit(_x.var());
if (_x.statements_size() > 0)
for (auto const& st: _x.statements())
visit(st);
m_numLiveVars -= m_numVarsPerScope.top();
m_numVarsPerScope.pop();
m_output << "}\n";
}
template <class T>
void ProtoConverter::createFunctionDefAndCall(T const& _x, unsigned _numInParams, unsigned _numOutParams, NumFunctionReturns _type)
{
yulAssert(
((_numInParams <= modInputParams - 1) && (_numOutParams <= modOutputParams - 1)),
"Proto fuzzer: Too many function I/O parameters requested."
);
// At the time of function definition creation, the number of live variables must be 0.
// This is because we always create only as many variables as we need within function scope.
yulAssert(m_numLiveVars == 0, "Proto fuzzer: Unused live variable found.");
// Signature
// This creates function foo_<noreturn|singlereturn|multireturn>_<m_numFunctionSets>(x_0,...,x_n)
m_output << "function foo_" << functionTypeToString(_type) << "_" << m_numFunctionSets;
m_output << "(";
if (_numInParams > 0)
m_output << YulUtilFunctions::suffixedVariableNameList("x_", 0, _numInParams);
m_output << ")";
// Book keeping for variables in function scope and in nested scopes
m_numVarsPerScope.push(_numInParams);
m_numLiveVars += _numInParams;
// This creates -> x_n+1,...,x_r
if (_numOutParams > 0)
{
m_output << " -> " << YulUtilFunctions::suffixedVariableNameList("x_", _numInParams, _numInParams + _numOutParams);
// More bookkeeping
m_numVarsPerScope.top() += _numOutParams;
m_numLiveVars += _numOutParams;
}
m_output << "\n";
// Body
visit(_x.statements());
// Ensure that variable stack is balanced
m_numLiveVars -= m_numVarsPerScope.top();
m_numVarsPerScope.pop();
yulAssert(m_numLiveVars == 0, "Proto fuzzer: Variable stack after function definition is unbalanced.");
// Manually create a multi assignment using global variables
// This prints a_0, ..., a_k-1 for this function that returns "k" values
if (_numOutParams > 0)
m_output << YulUtilFunctions::suffixedVariableNameList("a_", 0, _numOutParams) << " := ";
// Call the function with the correct number of input parameters via calls to calldataload with
// incremental addresses.
m_output << "foo_" << functionTypeToString(_type) << "_" << std::to_string(m_numFunctionSets);
m_output << "(";
for (unsigned i = 0; i < _numInParams; i++)
{
m_output << "calldataload(" << std::to_string(i*32) << ")";
if (i < _numInParams - 1)
m_output << ",";
}
m_output << ")\n";
for (unsigned i = 0; i < _numOutParams; i++)
m_output << "sstore(" << std::to_string(i*32) << ", a_" << std::to_string(i) << ")\n";
}
void ProtoConverter::visit(FunctionDefinitionNoReturnVal const& _x)
{
unsigned numInParams = _x.num_input_params() % modInputParams;
unsigned numOutParams = 0;
createFunctionDefAndCall(_x, numInParams, numOutParams, NumFunctionReturns::None);
}
void ProtoConverter::visit(FunctionDefinitionSingleReturnVal const& _x)
{
unsigned numInParams = _x.num_input_params() % modInputParams;
unsigned numOutParams = 1;
createFunctionDefAndCall(_x, numInParams, numOutParams, NumFunctionReturns::Single);
}
void ProtoConverter::visit(FunctionDefinitionMultiReturnVal const& _x)
{
unsigned numInParams = _x.num_input_params() % modInputParams;
// Synthesize at least 2 return parameters and at most (modOutputParams - 1)
unsigned numOutParams = std::max<unsigned>(2, _x.num_output_params() % modOutputParams);
createFunctionDefAndCall(_x, numInParams, numOutParams, NumFunctionReturns::Multiple);
}
void ProtoConverter::visit(FunctionDefinition const& _x)
{
visit(_x.fd_zero());
visit(_x.fd_one());
visit(_x.fd_multi());
m_numFunctionSets++;
}
void ProtoConverter::visit(Program const& _x)
{
/* Program template is as follows
* Four Globals a_0, a_1, a_2, and a_3 to hold up to four function return values
*
* Repeated function definitions followed by function calls of the respective function
* Example: function foo(x_0) -> x_1 {}
* a_0 := foo(calldataload(0))
* sstore(0, a_0)
*/
m_output << "{\n";
// Create globals at the beginning
// This creates let a_0, a_1, a_2, a_3 (followed by a new line)
m_output << "let " << YulUtilFunctions::suffixedVariableNameList("a_", 0, modOutputParams - 1) << "\n";
// Register function interface. Useful while visiting multi var decl/assignment statements.
for (auto const& f: _x.funcs())
registerFunction(f);
for (auto const& f: _x.funcs())
visit(f);
yulAssert((unsigned)_x.funcs_size() == m_numFunctionSets, "Proto fuzzer: Functions not correctly registered.");
m_output << "}\n";
}
string ProtoConverter::programToString(Program const& _input)
{
visit(_input);
return m_output.str();
}
void ProtoConverter::registerFunction(FunctionDefinition const& _x)
{
// No return and single return functions explicitly state the number of values returned
registerFunction(_x.fd_zero(), NumFunctionReturns::None);
registerFunction(_x.fd_one(), NumFunctionReturns::Single);
// A multi return function can have between two and (modOutputParams - 1) parameters
unsigned numOutParams = std::max<unsigned>(2, _x.fd_multi().num_output_params() % modOutputParams);
registerFunction(_x.fd_multi(), NumFunctionReturns::Multiple, numOutParams);
}
std::string ProtoConverter::functionTypeToString(NumFunctionReturns _type)
{
switch (_type)
{
case NumFunctionReturns::None:
return "noreturn";
case NumFunctionReturns::Single:
return "singlereturn";
case NumFunctionReturns::Multiple:
return "multireturn";
}
}