2021-04-27 19:44:09 +00:00
|
|
|
==== ExternalSource: _prbmath/PRBMathCommon.sol ====
|
|
|
|
==== ExternalSource: _prbmath/PRBMathSD59x18.sol ====
|
|
|
|
==== Source: ramanujan_pi.sol ====
|
|
|
|
import "_prbmath/PRBMathSD59x18.sol";
|
|
|
|
|
|
|
|
// The goal of this test file is to implement Ramanujan's pi approximation using various libraries.
|
|
|
|
|
|
|
|
function factorial(uint n) pure returns (uint ret) {
|
|
|
|
ret = 1;
|
|
|
|
for (; n > 1; --n)
|
|
|
|
ret *= n;
|
|
|
|
}
|
|
|
|
|
|
|
|
contract test {
|
|
|
|
using PRBMathSD59x18 for int256;
|
|
|
|
|
|
|
|
function prb_scale(uint n) internal pure returns (int256 ret) {
|
|
|
|
// Scale to SD59x18
|
|
|
|
ret = int256(n * 10e17);
|
|
|
|
}
|
|
|
|
|
|
|
|
// This dumb implementation of Ramanujan series calculates 1/pi
|
|
|
|
function prb_pi() external pure returns (int256 ret) {
|
|
|
|
uint n = 6; // More than 6 iterations results in failure
|
|
|
|
for (uint k = 0; k < n; k++) {
|
|
|
|
int256 a = prb_scale(factorial(4 * k)).div(prb_scale(factorial(k)).pow(4));
|
|
|
|
int256 b = (prb_scale(25390).mul(prb_scale(k)) + prb_scale(1103)).div(prb_scale(396).pow(4 * k));
|
|
|
|
ret += a.mul(b);
|
|
|
|
}
|
|
|
|
ret = ret.mul(prb_scale(2).sqrt().mul(prb_scale(2)).div(prb_scale(99).pow(2)));
|
|
|
|
ret = prb_scale(1).div(ret);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// ----
|
|
|
|
// constructor()
|
2023-04-26 11:03:17 +00:00
|
|
|
// gas irOptimized: 424583
|
|
|
|
// gas legacy: 631753
|
|
|
|
// gas legacyOptimized: 459425
|
2021-04-27 19:44:09 +00:00
|
|
|
// prb_pi() -> 3141592656369545286
|
2021-09-15 15:01:40 +00:00
|
|
|
// gas irOptimized: 57478
|
2023-04-26 11:03:17 +00:00
|
|
|
// gas legacy: 101655
|
2021-04-27 19:44:09 +00:00
|
|
|
// gas legacyOptimized: 75735
|