solidity/test/yulPhaser/Mutations.cpp

666 lines
24 KiB
C++
Raw Normal View History

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
#include <test/yulPhaser/TestHelpers.h>
#include <tools/yulPhaser/Mutations.h>
#include <tools/yulPhaser/SimulationRNG.h>
#include <libsolutil/CommonIO.h>
#include <libyul/optimiser/Suite.h>
#include <boost/test/unit_test.hpp>
#include <boost/algorithm/string/predicate.hpp>
#include <algorithm>
#include <vector>
using namespace std;
using namespace solidity::util;
using namespace solidity::yul;
namespace solidity::phaser::test
{
BOOST_AUTO_TEST_SUITE(Phaser, *boost::unit_test::label("nooptions"))
BOOST_AUTO_TEST_SUITE(MutationsTest)
BOOST_AUTO_TEST_SUITE(GeneRandomisationTest)
BOOST_AUTO_TEST_CASE(geneRandomisation_should_iterate_over_genes_and_replace_them_with_random_ones_with_given_probability)
{
size_t constexpr inputLength = 1000;
double constexpr tolerance = 0.05;
// Use genes that do not represent valid step abbreviations to be able to easily spot added steps.
assert(OptimiserSuite::stepAbbreviationToNameMap().count('.') == 0);
Chromosome input = Chromosome(string(inputLength, '.'));
SimulationRNG::reset(1);
for (size_t randomisationChancePercent = 20; randomisationChancePercent <= 100; randomisationChancePercent += 20)
{
2019-12-12 23:39:29 +00:00
double const randomisationChance = double(randomisationChancePercent) / 100.0;
Chromosome output = geneRandomisation(randomisationChance)(input);
string outputGenes = output.genes();
BOOST_REQUIRE(output.length() == input.length());
double const expectedValue = randomisationChance;
double const variance = randomisationChance * (1 - randomisationChance);
2019-12-12 23:39:29 +00:00
double const randomisedGeneCount = double(input.length() - static_cast<size_t>(count(outputGenes.begin(), outputGenes.end(), '.')));
double const squaredError =
(inputLength - randomisedGeneCount) * expectedValue * expectedValue +
randomisedGeneCount * (1 - expectedValue) * (1 - expectedValue);
BOOST_TEST(abs(randomisedGeneCount / inputLength - expectedValue) < tolerance);
BOOST_TEST(abs(squaredError / inputLength - variance) < tolerance);
}
}
BOOST_AUTO_TEST_CASE(geneRandomisation_should_return_identical_chromosome_if_probability_is_zero)
{
Chromosome chromosome("fcCUnDvejsrmV");
function<Mutation> mutation = geneRandomisation(0.0);
BOOST_TEST(mutation(chromosome) == chromosome);
}
BOOST_AUTO_TEST_CASE(geneDeletion_should_iterate_over_genes_and_delete_them_with_given_probability)
{
size_t constexpr inputLength = 1000;
double constexpr tolerance = 0.05;
// Use genes that do not represent valid step abbreviations to be able to easily spot added steps.
assert(OptimiserSuite::stepAbbreviationToNameMap().count('.') == 0);
Chromosome input = Chromosome(string(inputLength, '.'));
SimulationRNG::reset(1);
for (size_t deletionChancePercent = 20; deletionChancePercent < 100; deletionChancePercent += 20)
{
2019-12-12 23:39:29 +00:00
double const deletionChance = double(deletionChancePercent) / 100.0;
Chromosome output = geneDeletion(deletionChance)(input);
string outputGenes = output.genes();
BOOST_REQUIRE(output.length() <= input.length());
BOOST_REQUIRE(static_cast<size_t>(count(outputGenes.begin(), outputGenes.end(), '.')) == output.length());
double const expectedValue = deletionChance;
2019-12-12 23:39:29 +00:00
double const variance = deletionChance * (1.0 - deletionChance);
double const deletedGeneCount = double(input.length() - output.length());
double const squaredError =
2019-12-12 23:39:29 +00:00
(double(inputLength) - deletedGeneCount) * expectedValue * expectedValue +
deletedGeneCount * (1.0 - expectedValue) * (1.0 - expectedValue);
2019-12-12 23:39:29 +00:00
BOOST_TEST(abs(deletedGeneCount / double(inputLength) - expectedValue) < tolerance);
BOOST_TEST(abs(squaredError / double(inputLength) - variance) < tolerance);
}
}
BOOST_AUTO_TEST_CASE(geneDeletion_should_return_identical_chromosome_if_probability_is_zero)
{
Chromosome chromosome("fcCUnDvejsrmV");
function<Mutation> mutation = geneDeletion(0.0);
BOOST_TEST(mutation(chromosome) == chromosome);
}
BOOST_AUTO_TEST_CASE(geneDeletion_should_delete_all_genes_if_probability_is_one)
{
Chromosome chromosome("fcCUnDvejsrmV");
function<Mutation> mutation = geneDeletion(1.0);
BOOST_TEST(mutation(chromosome) == Chromosome(""));
}
BOOST_AUTO_TEST_CASE(geneAddition_should_iterate_over_gene_positions_and_insert_new_genes_with_given_probability)
{
size_t constexpr inputLength = 1000;
double constexpr tolerance = 0.05;
size_t constexpr maxAdditions = inputLength + 1;
// Use genes that do not represent valid step abbreviations to be able to easily spot added steps.
assert(OptimiserSuite::stepAbbreviationToNameMap().count('.') == 0);
Chromosome input = Chromosome(string(inputLength, '.'));
SimulationRNG::reset(1);
for (size_t additionChancePercent = 20; additionChancePercent < 100; additionChancePercent += 20)
{
2019-12-12 23:39:29 +00:00
double const additionChance = double(additionChancePercent) / 100.0;
Chromosome output = geneAddition(additionChance)(input);
BOOST_REQUIRE(output.length() >= input.length());
BOOST_REQUIRE(output.length() <= inputLength + maxAdditions);
string_view outputGenes = output.genes();
size_t preservedGeneCount = static_cast<size_t>(count(outputGenes.begin(), outputGenes.end(), '.'));
BOOST_REQUIRE(preservedGeneCount == input.length());
double const expectedValue = additionChance;
2019-12-12 23:39:29 +00:00
double const variance = additionChance * (1.0 - additionChance);
double const addedGeneCount = double(output.length() - preservedGeneCount);
double const squaredError =
2019-12-12 23:39:29 +00:00
(double(maxAdditions) - addedGeneCount) * expectedValue * expectedValue +
addedGeneCount * (1.0 - expectedValue) * (1.0 - expectedValue);
2019-12-12 23:39:29 +00:00
BOOST_TEST(abs(addedGeneCount / double(maxAdditions) - expectedValue) < tolerance);
BOOST_TEST(abs(squaredError / double(maxAdditions) - variance) < tolerance);
}
}
BOOST_AUTO_TEST_CASE(geneAddition_should_be_able_to_insert_before_first_position)
{
SimulationRNG::reset(7);
Chromosome chromosome("fcCUnDvejs");
function<Mutation> mutation = geneAddition(0.1);
Chromosome mutatedChromosome = mutation(chromosome);
BOOST_TEST(mutatedChromosome.length() > chromosome.length());
BOOST_TEST(boost::ends_with(mutatedChromosome.genes(), chromosome.genes()));
}
BOOST_AUTO_TEST_CASE(geneAddition_should_be_able_to_insert_after_last_position)
{
SimulationRNG::reset(81);
Chromosome chromosome("fcCUnDvejs");
function<Mutation> mutation = geneAddition(0.1);
Chromosome mutatedChromosome = mutation(chromosome);
BOOST_TEST(mutatedChromosome.length() > chromosome.length());
BOOST_TEST(boost::starts_with(mutatedChromosome.genes(), chromosome.genes()));
}
BOOST_AUTO_TEST_CASE(geneAddition_should_return_identical_chromosome_if_probability_is_zero)
{
Chromosome chromosome("fcCUnDvejsrmV");
function<Mutation> mutation = geneAddition(0.0);
BOOST_TEST(mutation(chromosome) == chromosome);
}
BOOST_AUTO_TEST_CASE(geneAddition_should_insert_genes_at_all_positions_if_probability_is_one)
{
Chromosome chromosome("fcCUnDvejsrmV");
function<Mutation> mutation = geneAddition(1.0);
Chromosome mutatedChromosome = mutation(chromosome);
BOOST_TEST(mutatedChromosome.length() == chromosome.length() * 2 + 1);
vector<string> originalGenes;
for (size_t i = 0; i < mutatedChromosome.length() - 1; ++i)
if (i % 2 == 1)
originalGenes.push_back(mutatedChromosome.optimisationSteps()[i]);
BOOST_TEST(Chromosome(originalGenes) == chromosome);
}
BOOST_AUTO_TEST_CASE(alternativeMutations_should_choose_between_mutations_with_given_probability)
{
SimulationRNG::reset(1);
Chromosome chromosome("a");
function<Mutation> mutation = alternativeMutations(
0.8,
wholeChromosomeReplacement(Chromosome("c")),
wholeChromosomeReplacement(Chromosome("f"))
);
size_t cCount = 0;
size_t fCount = 0;
for (size_t i = 0; i < 10; ++i)
{
Chromosome mutatedChromosome = mutation(chromosome);
cCount += (mutatedChromosome == Chromosome("c") ? 1u : 0u);
fCount += (mutatedChromosome == Chromosome("f") ? 1u : 0u);
}
// This particular seed results in 7 "c"s out of 10 which looks plausible given the 80% chance.
BOOST_TEST(cCount == 7);
BOOST_TEST(fCount == 3);
}
BOOST_AUTO_TEST_CASE(alternativeMutations_should_always_choose_first_mutation_if_probability_is_one)
{
Chromosome chromosome("a");
function<Mutation> mutation = alternativeMutations(
1.0,
wholeChromosomeReplacement(Chromosome("c")),
wholeChromosomeReplacement(Chromosome("f"))
);
for (size_t i = 0; i < 10; ++i)
BOOST_TEST(mutation(chromosome) == Chromosome("c"));
}
BOOST_AUTO_TEST_CASE(alternativeMutations_should_always_choose_second_mutation_if_probability_is_zero)
{
Chromosome chromosome("a");
function<Mutation> mutation = alternativeMutations(
0.0,
wholeChromosomeReplacement(Chromosome("c")),
wholeChromosomeReplacement(Chromosome("f"))
);
for (size_t i = 0; i < 10; ++i)
BOOST_TEST(mutation(chromosome) == Chromosome("f"));
}
BOOST_AUTO_TEST_CASE(mutationSequence_should_apply_all_mutations)
{
Chromosome chromosome("aaaaa");
vector<string> steps = Chromosome::genesToSteps("gfc");
function<Mutation> mutation = mutationSequence({
geneSubstitution(3, steps[0]),
geneSubstitution(2, steps[1]),
geneSubstitution(1, steps[2]),
});
BOOST_TEST(mutation(chromosome) == Chromosome("acfga"));
}
BOOST_AUTO_TEST_CASE(mutationSequence_apply_mutations_in_the_order_they_are_given)
{
Chromosome chromosome("aa");
vector<string> steps = Chromosome::genesToSteps("gcfo");
function<Mutation> mutation = mutationSequence({
geneSubstitution(0, steps[0]),
geneSubstitution(1, steps[1]),
geneSubstitution(0, steps[2]),
geneSubstitution(1, steps[3]),
});
BOOST_TEST(mutation(chromosome) == Chromosome("fo"));
}
BOOST_AUTO_TEST_CASE(mutationSequence_should_return_unmodified_chromosome_if_given_no_mutations)
{
Chromosome chromosome("aa");
function<Mutation> mutation = mutationSequence({});
BOOST_TEST(mutation(chromosome) == chromosome);
}
BOOST_AUTO_TEST_CASE(randomPointCrossover_should_swap_chromosome_parts_at_random_point)
{
function<Crossover> crossover = randomPointCrossover();
SimulationRNG::reset(1);
Chromosome result1 = crossover(Chromosome("aaaaaaaaaa"), Chromosome("cccccc"));
BOOST_TEST(result1 == Chromosome("aaaccc"));
SimulationRNG::reset(1);
Chromosome result2 = crossover(Chromosome("cccccc"), Chromosome("aaaaaaaaaa"));
BOOST_TEST(result2 == Chromosome("cccaaaaaaa"));
}
BOOST_AUTO_TEST_CASE(symmetricRandomPointCrossover_should_swap_chromosome_parts_at_random_point)
{
function<SymmetricCrossover> crossover = symmetricRandomPointCrossover();
SimulationRNG::reset(1);
tuple<Chromosome, Chromosome> result1 = crossover(Chromosome("aaaaaaaaaa"), Chromosome("cccccc"));
tuple<Chromosome, Chromosome> expectedPair1 = {Chromosome("aaaccc"), Chromosome("cccaaaaaaa")};
BOOST_TEST(result1 == expectedPair1);
tuple<Chromosome, Chromosome> result2 = crossover(Chromosome("cccccc"), Chromosome("aaaaaaaaaa"));
tuple<Chromosome, Chromosome> expectedPair2 = {Chromosome("ccccccaaaa"), Chromosome("aaaaaa")};
BOOST_TEST(result2 == expectedPair2);
}
BOOST_AUTO_TEST_CASE(randomPointCrossover_should_only_consider_points_available_on_both_chromosomes)
{
SimulationRNG::reset(1);
function<Crossover> crossover = randomPointCrossover();
for (size_t i = 0; i < 30; ++i)
{
Chromosome result1 = crossover(Chromosome("aaa"), Chromosome("TTTTTTTTTTTTTTTTTTTT"));
Chromosome result2 = crossover(Chromosome("TTTTTTTTTTTTTTTTTTTT"), Chromosome("aaa"));
BOOST_TEST((
result1 == Chromosome("TTTTTTTTTTTTTTTTTTTT") ||
result1 == Chromosome("aTTTTTTTTTTTTTTTTTTT") ||
result1 == Chromosome("aaTTTTTTTTTTTTTTTTTT") ||
result1 == Chromosome("aaaTTTTTTTTTTTTTTTTT")
));
BOOST_TEST((
result2 == Chromosome("aaa") ||
result2 == Chromosome("Taa") ||
result2 == Chromosome("TTa") ||
result2 == Chromosome("TTT")
));
}
}
BOOST_AUTO_TEST_CASE(randomPointCrossover_should_never_split_at_position_zero_if_chromosomes_are_splittable)
{
SimulationRNG::reset(1);
function<Crossover> crossover = randomPointCrossover();
for (size_t i = 0; i < 30; ++i)
{
Chromosome result1 = crossover(Chromosome("aa"), Chromosome("TTTTTTTTTTTTTTTTTTTT"));
Chromosome result2 = crossover(Chromosome("TTTTTTTTTTTTTTTTTTTT"), Chromosome("aa"));
BOOST_TEST(result1 != Chromosome("TTTTTTTTTTTTTTTTTTTT"));
BOOST_TEST(result2 != Chromosome("aa"));
}
}
BOOST_AUTO_TEST_CASE(randomPointCrossover_should_never_split_at_position_zero_if_chromosomes_are_not_empty)
{
SimulationRNG::reset(1);
function<Crossover> crossover = randomPointCrossover();
for (size_t i = 0; i < 30; ++i)
{
Chromosome result1 = crossover(Chromosome("a"), Chromosome("T"));
Chromosome result2 = crossover(Chromosome("T"), Chromosome("a"));
BOOST_TEST(result1 == Chromosome("a"));
BOOST_TEST(result2 == Chromosome("T"));
}
}
BOOST_AUTO_TEST_CASE(randomPointCrossover_should_work_even_if_one_chromosome_is_unsplittable)
{
function<Crossover> crossover = randomPointCrossover();
SimulationRNG::reset(1);
BOOST_CHECK(crossover(Chromosome("ff"), Chromosome("a")) == Chromosome("f"));
BOOST_CHECK(crossover(Chromosome("a"), Chromosome("ff")) == Chromosome("af"));
}
BOOST_AUTO_TEST_CASE(randomPointCrossover_should_split_at_position_zero_only_if_at_least_one_chromosome_is_empty)
{
Chromosome empty("");
Chromosome unsplittable("a");
Chromosome splittable("aaaa");
function<Crossover> crossover = randomPointCrossover();
SimulationRNG::reset(1);
BOOST_CHECK(crossover(empty, empty) == empty);
BOOST_CHECK(crossover(unsplittable, empty) == empty);
BOOST_CHECK(crossover(empty, unsplittable) == unsplittable);
BOOST_CHECK(crossover(splittable, empty) == empty);
BOOST_CHECK(crossover(empty, splittable) == splittable);
}
BOOST_AUTO_TEST_CASE(fixedPointCrossover_should_swap_chromosome_parts_at_given_point)
{
Chromosome result1 = fixedPointCrossover(0.8)(Chromosome("aaaaaaaaaa"), Chromosome("cccccccccc"));
Chromosome result2 = fixedPointCrossover(0.8)(Chromosome("cccccccccc"), Chromosome("aaaaaaaaaa"));
BOOST_TEST(result1 == Chromosome("aaaaaaaacc"));
BOOST_TEST(result2 == Chromosome("ccccccccaa"));
}
BOOST_AUTO_TEST_CASE(fixedPointCrossover_should_determine_crossover_point_based_on_length_of_shorter_chromosome)
{
Chromosome result1 = fixedPointCrossover(0.4)(Chromosome("aaaaa"), Chromosome("cccccccccc"));
Chromosome result2 = fixedPointCrossover(0.4)(Chromosome("cccccccccc"), Chromosome("aaaaa"));
BOOST_TEST(result1 == Chromosome("aacccccccc"));
BOOST_TEST(result2 == Chromosome("ccaaa"));
}
BOOST_AUTO_TEST_CASE(fixedPointCrossover_should_round_split_point)
{
Chromosome result1 = fixedPointCrossover(0.49)(Chromosome("aaaaa"), Chromosome("ccccc"));
Chromosome result2 = fixedPointCrossover(0.49)(Chromosome("ccccc"), Chromosome("aaaaa"));
BOOST_TEST(result1 == Chromosome("aaccc"));
BOOST_TEST(result2 == Chromosome("ccaaa"));
Chromosome result3 = fixedPointCrossover(0.50)(Chromosome("aaaaa"), Chromosome("ccccc"));
Chromosome result4 = fixedPointCrossover(0.50)(Chromosome("ccccc"), Chromosome("aaaaa"));
BOOST_TEST(result3 == Chromosome("aaacc"));
BOOST_TEST(result4 == Chromosome("cccaa"));
Chromosome result5 = fixedPointCrossover(0.51)(Chromosome("aaaaa"), Chromosome("ccccc"));
Chromosome result6 = fixedPointCrossover(0.51)(Chromosome("ccccc"), Chromosome("aaaaa"));
BOOST_TEST(result5 == Chromosome("aaacc"));
BOOST_TEST(result6 == Chromosome("cccaa"));
}
BOOST_AUTO_TEST_CASE(fixedPointCrossover_should_split_at_position_zero_if_explicitly_requested)
{
Chromosome result1 = fixedPointCrossover(0.0)(Chromosome("aaaaa"), Chromosome("cccccccccc"));
Chromosome result2 = fixedPointCrossover(0.0)(Chromosome("cccccccccc"), Chromosome("aaaaa"));
BOOST_TEST(result1 == Chromosome("cccccccccc"));
BOOST_TEST(result2 == Chromosome("aaaaa"));
}
BOOST_AUTO_TEST_CASE(fixedPointCrossover_should_split_at_end_of_shorter_chromosome_if_crossover_point_is_after_last_position)
{
Chromosome result1 = fixedPointCrossover(1.0)(Chromosome("aaaaa"), Chromosome("cccccccccc"));
Chromosome result2 = fixedPointCrossover(1.0)(Chromosome("cccccccccc"), Chromosome("aaaaa"));
BOOST_TEST(result1 == Chromosome("aaaaaccccc"));
BOOST_TEST(result2 == Chromosome("ccccc"));
}
BOOST_AUTO_TEST_CASE(fixedPointCrossover_should_select_correct_split_point_for_unsplittable_chromosomes)
{
function<Crossover> crossover00 = fixedPointCrossover(0.0);
BOOST_CHECK(crossover00(Chromosome("fff"), Chromosome("a")) == Chromosome("a"));
BOOST_CHECK(crossover00(Chromosome("a"), Chromosome("fff")) == Chromosome("fff"));
BOOST_CHECK(crossover00(Chromosome("f"), Chromosome("a")) == Chromosome("a"));
function<Crossover> crossover10 = fixedPointCrossover(1.0);
BOOST_CHECK(crossover10(Chromosome("fff"), Chromosome("a")) == Chromosome("f"));
BOOST_CHECK(crossover10(Chromosome("a"), Chromosome("fff")) == Chromosome("aff"));
BOOST_CHECK(crossover10(Chromosome("f"), Chromosome("a")) == Chromosome("f"));
}
BOOST_AUTO_TEST_CASE(fixedPointCrossover_should_always_use_position_zero_as_split_point_when_chromosome_empty)
{
Chromosome empty("");
Chromosome unsplittable("f");
Chromosome splittable("aaaa");
function<Crossover> crossover00 = fixedPointCrossover(0.0);
BOOST_CHECK(crossover00(empty, empty) == empty);
BOOST_CHECK(crossover00(unsplittable, empty) == empty);
BOOST_CHECK(crossover00(empty, unsplittable) == unsplittable);
BOOST_CHECK(crossover00(splittable, empty) == empty);
BOOST_CHECK(crossover00(empty, splittable) == splittable);
function<Crossover> crossover10 = fixedPointCrossover(1.0);
BOOST_CHECK(crossover10(empty, empty) == empty);
BOOST_CHECK(crossover10(unsplittable, empty) == empty);
BOOST_CHECK(crossover10(empty, unsplittable) == unsplittable);
BOOST_CHECK(crossover10(splittable, empty) == empty);
BOOST_CHECK(crossover10(empty, splittable) == splittable);
}
BOOST_AUTO_TEST_CASE(randomTwoPointCrossover_should_swap_chromosome_parts_between_two_random_points)
{
function<Crossover> crossover = randomTwoPointCrossover();
SimulationRNG::reset(1);
Chromosome result1 = crossover(Chromosome("aaaaaaaaaa"), Chromosome("cccccc"));
BOOST_TEST(result1 == Chromosome("aaacccaaaa"));
SimulationRNG::reset(1);
Chromosome result2 = crossover(Chromosome("cccccc"), Chromosome("aaaaaaaaaa"));
BOOST_TEST(result2 == Chromosome("cccaaa"));
}
BOOST_AUTO_TEST_CASE(symmetricRandomTwoPointCrossover_should_swap_chromosome_parts_at_random_point)
{
function<SymmetricCrossover> crossover = symmetricRandomTwoPointCrossover();
SimulationRNG::reset(1);
tuple<Chromosome, Chromosome> result1 = crossover(Chromosome("aaaaaaaaaa"), Chromosome("cccccc"));
tuple<Chromosome, Chromosome> expectedPair1 = {Chromosome("aaacccaaaa"), Chromosome("cccaaa")};
BOOST_TEST(result1 == expectedPair1);
tuple<Chromosome, Chromosome> result2 = crossover(Chromosome("cccccc"), Chromosome("aaaaaaaaaa"));
tuple<Chromosome, Chromosome> expectedPair2 = {Chromosome("ccccca"), Chromosome("aaaaacaaaa")};
BOOST_TEST(result2 == expectedPair2);
}
BOOST_AUTO_TEST_CASE(randomTwoPointCrossover_should_only_consider_points_available_on_both_chromosomes)
{
function<Crossover> crossover = randomTwoPointCrossover();
for (size_t i = 0; i < 30; ++i)
{
Chromosome result1 = crossover(Chromosome("aaa"), Chromosome("TTTTTTTTTTTTTTTTTTTT"));
Chromosome result2 = crossover(Chromosome("TTTTTTTTTTTTTTTTTTTT"), Chromosome("aaa"));
BOOST_TEST((
result1 == Chromosome("aaa") ||
result1 == Chromosome("Taa") ||
result1 == Chromosome("TTa") ||
result1 == Chromosome("TTT") ||
result1 == Chromosome("aTa") ||
result1 == Chromosome("aTT") ||
result1 == Chromosome("aaT")
));
BOOST_TEST((
result2 == Chromosome("TTTTTTTTTTTTTTTTTTTT") ||
result2 == Chromosome("aTTTTTTTTTTTTTTTTTTT") ||
result2 == Chromosome("aaTTTTTTTTTTTTTTTTTT") ||
result2 == Chromosome("aaaTTTTTTTTTTTTTTTTT") ||
result2 == Chromosome("TaTTTTTTTTTTTTTTTTTT") ||
result2 == Chromosome("TaaTTTTTTTTTTTTTTTTT") ||
result2 == Chromosome("TTaTTTTTTTTTTTTTTTTT")
));
}
}
BOOST_AUTO_TEST_CASE(uniformCrossover_should_swap_randomly_selected_genes)
{
function<Crossover> crossover = uniformCrossover(0.7);
SimulationRNG::reset(1);
Chromosome result1 = crossover(Chromosome("aaaaaaaaaa"), Chromosome("cccccc"));
BOOST_TEST(result1 == Chromosome("caaacc"));
SimulationRNG::reset(1);
Chromosome result2 = crossover(Chromosome("cccccc"), Chromosome("aaaaaaaaaa"));
BOOST_TEST(result2 == Chromosome("acccaaaaaa"));
}
BOOST_AUTO_TEST_CASE(symmetricUniformCrossover_should_swap_randomly_selected_genes)
{
function<SymmetricCrossover> crossover = symmetricUniformCrossover(0.7);
SimulationRNG::reset(1);
tuple<Chromosome, Chromosome> result1 = crossover(Chromosome("aaaaaaaaaa"), Chromosome("cccccc"));
tuple<Chromosome, Chromosome> expectedPair1 = {Chromosome("caaacc"), Chromosome("acccaaaaaa")};
BOOST_TEST(result1 == expectedPair1);
tuple<Chromosome, Chromosome> result2 = crossover(Chromosome("cccccc"), Chromosome("aaaaaaaaaa"));
tuple<Chromosome, Chromosome> expectedPair2 = {Chromosome("caaaaaaaaa"), Chromosome("accccc")};
BOOST_TEST(result2 == expectedPair2);
}
BOOST_AUTO_TEST_CASE(uniformCrossover_should_only_consider_points_available_on_both_chromosomes)
{
function<Crossover> crossover = uniformCrossover(0.7);
set<string> expectedPatterns = {
"TTTTTTTTTTTTTTTTTTTT",
"aTTTTTTTTTTTTTTTTTTT",
"TaTTTTTTTTTTTTTTTTTT",
"TTaTTTTTTTTTTTTTTTTT",
"aaTTTTTTTTTTTTTTTTTT",
"TaaTTTTTTTTTTTTTTTTT",
"aTaTTTTTTTTTTTTTTTTT",
"aaaTTTTTTTTTTTTTTTTT",
"aaa",
"Taa",
"aTa",
"aaT",
"TTa",
"aTT",
"TaT",
"TTT",
};
for (size_t i = 0; i < 30; ++i)
{
Chromosome result1 = crossover(Chromosome("aaa"), Chromosome("TTTTTTTTTTTTTTTTTTTT"));
Chromosome result2 = crossover(Chromosome("TTTTTTTTTTTTTTTTTTTT"), Chromosome("aaa"));
BOOST_TEST(expectedPatterns.count(toString(result1)) == 1);
BOOST_TEST(expectedPatterns.count(toString(result2)) == 1);
}
}
BOOST_AUTO_TEST_CASE(uniformCrossover_should_not_swap_anything_if_chance_is_zero)
{
BOOST_TEST(uniformCrossover(0.0)(Chromosome("aaaaaaaaaa"), Chromosome("cccccc")) == Chromosome("aaaaaaaaaa"));
BOOST_TEST(uniformCrossover(0.0)(Chromosome("cccccc"), Chromosome("aaaaaaaaaa")) == Chromosome("cccccc"));
}
BOOST_AUTO_TEST_CASE(uniformCrossover_should_swap_whole_chromosomes_if_chance_is_one)
{
BOOST_TEST(uniformCrossover(1.0)(Chromosome("aaaaaaaaaa"), Chromosome("cccccc")) == Chromosome("cccccc"));
BOOST_TEST(uniformCrossover(1.0)(Chromosome("cccccc"), Chromosome("aaaaaaaaaa")) == Chromosome("aaaaaaaaaa"));
}
BOOST_AUTO_TEST_CASE(uniformCrossover_should_swap_genes_with_uniform_probability)
{
constexpr size_t operationCount = 1000;
constexpr double swapChance = 0.8;
constexpr double relativeTolerance = 0.05;
double const expectedValue = swapChance;
double const variance = swapChance * (1 - swapChance);
function<Crossover> crossover = uniformCrossover(swapChance);
Chromosome chromosome1("aaaaaaaaaa");
Chromosome chromosome2("cccccccccc");
vector<size_t> bernoulliTrials;
for (size_t i = 0; i < operationCount; ++i)
{
string genes = toString(crossover(chromosome1, chromosome2));
for (size_t j = 0; j < chromosome1.length(); ++j)
bernoulliTrials.push_back(static_cast<size_t>(genes[j] == 'c'));
}
BOOST_TEST(abs(mean(bernoulliTrials) - expectedValue) < expectedValue * relativeTolerance);
BOOST_TEST(abs(meanSquaredError(bernoulliTrials, expectedValue) - variance) < variance * relativeTolerance);
}
BOOST_AUTO_TEST_CASE(uniformCrossover_should_swap_tail_with_uniform_probability)
{
constexpr size_t operationCount = 1000;
constexpr double swapChance = 0.3;
constexpr double relativeTolerance = 0.05;
double const expectedValue = swapChance;
double const variance = swapChance * (1 - swapChance);
function<Crossover> crossover = uniformCrossover(swapChance);
Chromosome chromosome1("aaaaa");
Chromosome chromosome2("cccccccccc");
SimulationRNG::reset(1);
vector<size_t> bernoulliTrials;
for (size_t i = 0; i < operationCount; ++i)
{
string genes = toString(crossover(chromosome1, chromosome2));
BOOST_REQUIRE(genes.size() == 5 || genes.size() == 10);
bernoulliTrials.push_back(static_cast<size_t>(genes.size() == 10));
}
BOOST_TEST(abs(mean(bernoulliTrials) - expectedValue) < expectedValue * relativeTolerance);
BOOST_TEST(abs(meanSquaredError(bernoulliTrials, expectedValue) - variance) < variance * relativeTolerance);
}
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()
}