plugeth/crypto/secp256k1/curve.go
Marius van der Wijden 0703ef62d3
crypto/secp256k1: fix undefined behavior in BitCurve.Add (#22621)
This commit changes the behavior of BitCurve.Add to be more inline
with btcd. It fixes two different bugs:

1) When adding a point at infinity to another point, the other point
   should be returned. While this is undefined behavior, it is better
   to be more inline with the go standard library.
   Thus (0,0) + (a, b) = (a,b)

2) Adding the same point to itself produced the point at infinity.
   This is incorrect, now doubleJacobian is used to correctly calculate it.
   Thus (a,b) + (a,b) == 2* (a,b) and not (0,0) anymore.

The change also adds a differential fuzzer for Add, testing it against btcd.

Co-authored-by: Felix Lange <fjl@twurst.com>
2021-05-27 13:30:25 +02:00

299 lines
9.6 KiB
Go

// Copyright 2010 The Go Authors. All rights reserved.
// Copyright 2011 ThePiachu. All rights reserved.
// Copyright 2015 Jeffrey Wilcke, Felix Lange, Gustav Simonsson. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
// * The name of ThePiachu may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package secp256k1
import (
"crypto/elliptic"
"math/big"
)
const (
// number of bits in a big.Word
wordBits = 32 << (uint64(^big.Word(0)) >> 63)
// number of bytes in a big.Word
wordBytes = wordBits / 8
)
// readBits encodes the absolute value of bigint as big-endian bytes. Callers
// must ensure that buf has enough space. If buf is too short the result will
// be incomplete.
func readBits(bigint *big.Int, buf []byte) {
i := len(buf)
for _, d := range bigint.Bits() {
for j := 0; j < wordBytes && i > 0; j++ {
i--
buf[i] = byte(d)
d >>= 8
}
}
}
// This code is from https://github.com/ThePiachu/GoBit and implements
// several Koblitz elliptic curves over prime fields.
//
// The curve methods, internally, on Jacobian coordinates. For a given
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1,
// z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come
// when the whole calculation can be performed within the transform
// (as in ScalarMult and ScalarBaseMult). But even for Add and Double,
// it's faster to apply and reverse the transform than to operate in
// affine coordinates.
// A BitCurve represents a Koblitz Curve with a=0.
// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
type BitCurve struct {
P *big.Int // the order of the underlying field
N *big.Int // the order of the base point
B *big.Int // the constant of the BitCurve equation
Gx, Gy *big.Int // (x,y) of the base point
BitSize int // the size of the underlying field
}
func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
return &elliptic.CurveParams{
P: BitCurve.P,
N: BitCurve.N,
B: BitCurve.B,
Gx: BitCurve.Gx,
Gy: BitCurve.Gy,
BitSize: BitCurve.BitSize,
}
}
// IsOnCurve returns true if the given (x,y) lies on the BitCurve.
func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
// y² = x³ + b
y2 := new(big.Int).Mul(y, y) //y²
y2.Mod(y2, BitCurve.P) //y²%P
x3 := new(big.Int).Mul(x, x) //x²
x3.Mul(x3, x) //x³
x3.Add(x3, BitCurve.B) //x³+B
x3.Mod(x3, BitCurve.P) //(x³+B)%P
return x3.Cmp(y2) == 0
}
//TODO: double check if the function is okay
// affineFromJacobian reverses the Jacobian transform. See the comment at the
// top of the file.
func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
if z.Sign() == 0 {
return new(big.Int), new(big.Int)
}
zinv := new(big.Int).ModInverse(z, BitCurve.P)
zinvsq := new(big.Int).Mul(zinv, zinv)
xOut = new(big.Int).Mul(x, zinvsq)
xOut.Mod(xOut, BitCurve.P)
zinvsq.Mul(zinvsq, zinv)
yOut = new(big.Int).Mul(y, zinvsq)
yOut.Mod(yOut, BitCurve.P)
return
}
// Add returns the sum of (x1,y1) and (x2,y2)
func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
// If one point is at infinity, return the other point.
// Adding the point at infinity to any point will preserve the other point.
if x1.Sign() == 0 && y1.Sign() == 0 {
return x2, y2
}
if x2.Sign() == 0 && y2.Sign() == 0 {
return x1, y1
}
z := new(big.Int).SetInt64(1)
if x1.Cmp(x2) == 0 && y1.Cmp(y2) == 0 {
return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z))
}
return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
}
// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
// (x2, y2, z2) and returns their sum, also in Jacobian form.
func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
z1z1 := new(big.Int).Mul(z1, z1)
z1z1.Mod(z1z1, BitCurve.P)
z2z2 := new(big.Int).Mul(z2, z2)
z2z2.Mod(z2z2, BitCurve.P)
u1 := new(big.Int).Mul(x1, z2z2)
u1.Mod(u1, BitCurve.P)
u2 := new(big.Int).Mul(x2, z1z1)
u2.Mod(u2, BitCurve.P)
h := new(big.Int).Sub(u2, u1)
if h.Sign() == -1 {
h.Add(h, BitCurve.P)
}
i := new(big.Int).Lsh(h, 1)
i.Mul(i, i)
j := new(big.Int).Mul(h, i)
s1 := new(big.Int).Mul(y1, z2)
s1.Mul(s1, z2z2)
s1.Mod(s1, BitCurve.P)
s2 := new(big.Int).Mul(y2, z1)
s2.Mul(s2, z1z1)
s2.Mod(s2, BitCurve.P)
r := new(big.Int).Sub(s2, s1)
if r.Sign() == -1 {
r.Add(r, BitCurve.P)
}
r.Lsh(r, 1)
v := new(big.Int).Mul(u1, i)
x3 := new(big.Int).Set(r)
x3.Mul(x3, x3)
x3.Sub(x3, j)
x3.Sub(x3, v)
x3.Sub(x3, v)
x3.Mod(x3, BitCurve.P)
y3 := new(big.Int).Set(r)
v.Sub(v, x3)
y3.Mul(y3, v)
s1.Mul(s1, j)
s1.Lsh(s1, 1)
y3.Sub(y3, s1)
y3.Mod(y3, BitCurve.P)
z3 := new(big.Int).Add(z1, z2)
z3.Mul(z3, z3)
z3.Sub(z3, z1z1)
if z3.Sign() == -1 {
z3.Add(z3, BitCurve.P)
}
z3.Sub(z3, z2z2)
if z3.Sign() == -1 {
z3.Add(z3, BitCurve.P)
}
z3.Mul(z3, h)
z3.Mod(z3, BitCurve.P)
return x3, y3, z3
}
// Double returns 2*(x,y)
func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
z1 := new(big.Int).SetInt64(1)
return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
}
// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
// returns its double, also in Jacobian form.
func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
a := new(big.Int).Mul(x, x) //X1²
b := new(big.Int).Mul(y, y) //Y1²
c := new(big.Int).Mul(b, b) //B²
d := new(big.Int).Add(x, b) //X1+B
d.Mul(d, d) //(X1+B)²
d.Sub(d, a) //(X1+B)²-A
d.Sub(d, c) //(X1+B)²-A-C
d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C)
e := new(big.Int).Mul(big.NewInt(3), a) //3*A
f := new(big.Int).Mul(e, e) //E²
x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
x3.Sub(f, x3) //F-2*D
x3.Mod(x3, BitCurve.P)
y3 := new(big.Int).Sub(d, x3) //D-X3
y3.Mul(e, y3) //E*(D-X3)
y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
y3.Mod(y3, BitCurve.P)
z3 := new(big.Int).Mul(y, z) //Y1*Z1
z3.Mul(big.NewInt(2), z3) //3*Y1*Z1
z3.Mod(z3, BitCurve.P)
return x3, y3, z3
}
// ScalarBaseMult returns k*G, where G is the base point of the group and k is
// an integer in big-endian form.
func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
}
// Marshal converts a point into the form specified in section 4.3.6 of ANSI
// X9.62.
func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
byteLen := (BitCurve.BitSize + 7) >> 3
ret := make([]byte, 1+2*byteLen)
ret[0] = 4 // uncompressed point flag
readBits(x, ret[1:1+byteLen])
readBits(y, ret[1+byteLen:])
return ret
}
// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
// error, x = nil.
func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
byteLen := (BitCurve.BitSize + 7) >> 3
if len(data) != 1+2*byteLen {
return
}
if data[0] != 4 { // uncompressed form
return
}
x = new(big.Int).SetBytes(data[1 : 1+byteLen])
y = new(big.Int).SetBytes(data[1+byteLen:])
return
}
var theCurve = new(BitCurve)
func init() {
// See SEC 2 section 2.7.1
// curve parameters taken from:
// http://www.secg.org/sec2-v2.pdf
theCurve.P, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 0)
theCurve.N, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 0)
theCurve.B, _ = new(big.Int).SetString("0x0000000000000000000000000000000000000000000000000000000000000007", 0)
theCurve.Gx, _ = new(big.Int).SetString("0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 0)
theCurve.Gy, _ = new(big.Int).SetString("0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 0)
theCurve.BitSize = 256
}
// S256 returns a BitCurve which implements secp256k1.
func S256() *BitCurve {
return theCurve
}