bd6879ac51
* core/vm, crypto/bn256: switch over to cloudflare library * crypto/bn256: unmarshal constraint + start pure go impl * crypto/bn256: combo cloudflare and google lib * travis: drop 386 test job
60 lines
3.0 KiB
Go
60 lines
3.0 KiB
Go
// Copyright 2012 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package bn256
|
|
|
|
import (
|
|
"math/big"
|
|
)
|
|
|
|
func bigFromBase10(s string) *big.Int {
|
|
n, _ := new(big.Int).SetString(s, 10)
|
|
return n
|
|
}
|
|
|
|
// u is the BN parameter that determines the prime: 1868033³.
|
|
var u = bigFromBase10("4965661367192848881")
|
|
|
|
// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1.
|
|
var Order = bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617")
|
|
|
|
// P is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1.
|
|
var P = bigFromBase10("21888242871839275222246405745257275088696311157297823662689037894645226208583")
|
|
|
|
// p2 is p, represented as little-endian 64-bit words.
|
|
var p2 = [4]uint64{0x3c208c16d87cfd47, 0x97816a916871ca8d, 0xb85045b68181585d, 0x30644e72e131a029}
|
|
|
|
// np is the negative inverse of p, mod 2^256.
|
|
var np = [4]uint64{0x87d20782e4866389, 0x9ede7d651eca6ac9, 0xd8afcbd01833da80, 0xf57a22b791888c6b}
|
|
|
|
// rN1 is R^-1 where R = 2^256 mod p.
|
|
var rN1 = &gfP{0xed84884a014afa37, 0xeb2022850278edf8, 0xcf63e9cfb74492d9, 0x2e67157159e5c639}
|
|
|
|
// r2 is R^2 where R = 2^256 mod p.
|
|
var r2 = &gfP{0xf32cfc5b538afa89, 0xb5e71911d44501fb, 0x47ab1eff0a417ff6, 0x06d89f71cab8351f}
|
|
|
|
// r3 is R^3 where R = 2^256 mod p.
|
|
var r3 = &gfP{0xb1cd6dafda1530df, 0x62f210e6a7283db6, 0xef7f0b0c0ada0afb, 0x20fd6e902d592544}
|
|
|
|
// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+9.
|
|
var xiToPMinus1Over6 = &gfP2{gfP{0xa222ae234c492d72, 0xd00f02a4565de15b, 0xdc2ff3a253dfc926, 0x10a75716b3899551}, gfP{0xaf9ba69633144907, 0xca6b1d7387afb78a, 0x11bded5ef08a2087, 0x02f34d751a1f3a7c}}
|
|
|
|
// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+9.
|
|
var xiToPMinus1Over3 = &gfP2{gfP{0x6e849f1ea0aa4757, 0xaa1c7b6d89f89141, 0xb6e713cdfae0ca3a, 0x26694fbb4e82ebc3}, gfP{0xb5773b104563ab30, 0x347f91c8a9aa6454, 0x7a007127242e0991, 0x1956bcd8118214ec}}
|
|
|
|
// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+9.
|
|
var xiToPMinus1Over2 = &gfP2{gfP{0xa1d77ce45ffe77c7, 0x07affd117826d1db, 0x6d16bd27bb7edc6b, 0x2c87200285defecc}, gfP{0xe4bbdd0c2936b629, 0xbb30f162e133bacb, 0x31a9d1b6f9645366, 0x253570bea500f8dd}}
|
|
|
|
// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+9.
|
|
var xiToPSquaredMinus1Over3 = &gfP{0x3350c88e13e80b9c, 0x7dce557cdb5e56b9, 0x6001b4b8b615564a, 0x2682e617020217e0}
|
|
|
|
// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+9 (a cubic root of unity, mod p).
|
|
var xiTo2PSquaredMinus2Over3 = &gfP{0x71930c11d782e155, 0xa6bb947cffbe3323, 0xaa303344d4741444, 0x2c3b3f0d26594943}
|
|
|
|
// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+9 (a cubic root of -1, mod p).
|
|
var xiToPSquaredMinus1Over6 = &gfP{0xca8d800500fa1bf2, 0xf0c5d61468b39769, 0x0e201271ad0d4418, 0x04290f65bad856e6}
|
|
|
|
// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+9.
|
|
var xiTo2PMinus2Over3 = &gfP2{gfP{0x5dddfd154bd8c949, 0x62cb29a5a4445b60, 0x37bc870a0c7dd2b9, 0x24830a9d3171f0fd}, gfP{0x7361d77f843abe92, 0xa5bb2bd3273411fb, 0x9c941f314b3e2399, 0x15df9cddbb9fd3ec}}
|