plugeth/cmd/devp2p/internal/ethtest/snap.go
Martin Holst Swende f61b50b1e8
eth/protocols/snap: serve snap requests when possible (#25644)
This PR makes it so that the snap server responds to trie heal requests when possible, even if the snapshot does not exist. The idea being that it might prolong the lifetime of a state root, so we don't have to pivot quite as often.
2022-10-03 13:37:17 +02:00

709 lines
24 KiB
Go

// Copyright 2022 The go-ethereum Authors
// This file is part of go-ethereum.
//
// go-ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// go-ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with go-ethereum. If not, see <http://www.gnu.org/licenses/>.
package ethtest
import (
"bytes"
"errors"
"fmt"
"math/rand"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/eth/protocols/snap"
"github.com/ethereum/go-ethereum/internal/utesting"
"github.com/ethereum/go-ethereum/light"
"github.com/ethereum/go-ethereum/trie"
"golang.org/x/crypto/sha3"
)
func (s *Suite) TestSnapStatus(t *utesting.T) {
conn, err := s.dialSnap()
if err != nil {
t.Fatalf("dial failed: %v", err)
}
defer conn.Close()
if err := conn.peer(s.chain, nil); err != nil {
t.Fatalf("peering failed: %v", err)
}
}
type accRangeTest struct {
nBytes uint64
root common.Hash
origin common.Hash
limit common.Hash
expAccounts int
expFirst common.Hash
expLast common.Hash
}
// TestSnapGetAccountRange various forms of GetAccountRange requests.
func (s *Suite) TestSnapGetAccountRange(t *utesting.T) {
var (
root = s.chain.RootAt(999)
ffHash = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
zero = common.Hash{}
firstKeyMinus1 = common.HexToHash("0x00bf49f440a1cd0527e4d06e2765654c0f56452257516d793a9b8d604dcfdf29")
firstKey = common.HexToHash("0x00bf49f440a1cd0527e4d06e2765654c0f56452257516d793a9b8d604dcfdf2a")
firstKeyPlus1 = common.HexToHash("0x00bf49f440a1cd0527e4d06e2765654c0f56452257516d793a9b8d604dcfdf2b")
secondKey = common.HexToHash("0x09e47cd5056a689e708f22fe1f932709a320518e444f5f7d8d46a3da523d6606")
storageRoot = common.HexToHash("0xbe3d75a1729be157e79c3b77f00206db4d54e3ea14375a015451c88ec067c790")
)
for i, tc := range []accRangeTest{
// Tests decreasing the number of bytes
{4000, root, zero, ffHash, 76, firstKey, common.HexToHash("0xd2669dcf3858e7f1eecb8b5fedbf22fbea3e9433848a75035f79d68422c2dcda")},
{3000, root, zero, ffHash, 57, firstKey, common.HexToHash("0x9b63fa753ece5cb90657d02ecb15df4dc1508d8c1d187af1bf7f1a05e747d3c7")},
{2000, root, zero, ffHash, 38, firstKey, common.HexToHash("0x5e6140ecae4354a9e8f47559a8c6209c1e0e69cb077b067b528556c11698b91f")},
{1, root, zero, ffHash, 1, firstKey, firstKey},
// Tests variations of the range
//
// [00b to firstkey]: should return [firstkey, secondkey], where secondkey is out of bounds
{4000, root, common.HexToHash("0x00bf000000000000000000000000000000000000000000000000000000000000"), common.HexToHash("0x00bf49f440a1cd0527e4d06e2765654c0f56452257516d793a9b8d604dcfdf2b"), 2, firstKey, secondKey},
// [00b0 to 0bf0]: where both are before firstkey. Should return firstKey (even though it's out of bounds)
{4000, root, common.HexToHash("0x00b0000000000000000000000000000000000000000000000000000000000000"), common.HexToHash("0x00bf100000000000000000000000000000000000000000000000000000000000"), 1, firstKey, firstKey},
{4000, root, zero, zero, 1, firstKey, firstKey},
{4000, root, firstKey, ffHash, 76, firstKey, common.HexToHash("0xd2669dcf3858e7f1eecb8b5fedbf22fbea3e9433848a75035f79d68422c2dcda")},
{4000, root, firstKeyPlus1, ffHash, 76, secondKey, common.HexToHash("0xd28f55d3b994f16389f36944ad685b48e0fc3f8fbe86c3ca92ebecadf16a783f")},
// Test different root hashes
//
// A stateroot that does not exist
{4000, common.Hash{0x13, 37}, zero, ffHash, 0, zero, zero},
// The genesis stateroot (we expect it to not be served)
{4000, s.chain.RootAt(0), zero, ffHash, 0, zero, zero},
// A 127 block old stateroot, expected to be served
{4000, s.chain.RootAt(999 - 127), zero, ffHash, 77, firstKey, common.HexToHash("0xe4c6fdef5dd4e789a2612390806ee840b8ec0fe52548f8b4efe41abb20c37aac")},
// A root which is not actually an account root, but a storage orot
{4000, storageRoot, zero, ffHash, 0, zero, zero},
// And some non-sensical requests
//
// range from [0xFF to 0x00], wrong order. Expect not to be serviced
{4000, root, ffHash, zero, 0, zero, zero},
// range from [firstkey, firstkey-1], wrong order. Expect to get first key.
{4000, root, firstKey, firstKeyMinus1, 1, firstKey, firstKey},
// range from [firstkey, 0], wrong order. Expect to get first key.
{4000, root, firstKey, zero, 1, firstKey, firstKey},
// Max bytes: 0. Expect to deliver one account.
{0, root, zero, ffHash, 1, firstKey, firstKey},
} {
tc := tc
if err := s.snapGetAccountRange(t, &tc); err != nil {
t.Errorf("test %d \n root: %x\n range: %#x - %#x\n bytes: %d\nfailed: %v", i, tc.root, tc.origin, tc.limit, tc.nBytes, err)
}
}
}
type stRangesTest struct {
root common.Hash
accounts []common.Hash
origin []byte
limit []byte
nBytes uint64
expSlots int
}
// TestSnapGetStorageRange various forms of GetStorageRanges requests.
func (s *Suite) TestSnapGetStorageRanges(t *utesting.T) {
var (
ffHash = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
zero = common.Hash{}
firstKey = common.HexToHash("0x00bf49f440a1cd0527e4d06e2765654c0f56452257516d793a9b8d604dcfdf2a")
secondKey = common.HexToHash("0x09e47cd5056a689e708f22fe1f932709a320518e444f5f7d8d46a3da523d6606")
)
for i, tc := range []stRangesTest{
{
root: s.chain.RootAt(999),
accounts: []common.Hash{secondKey, firstKey},
origin: zero[:],
limit: ffHash[:],
nBytes: 500,
expSlots: 0,
},
/*
Some tests against this account:
{
"balance": "0",
"nonce": 1,
"root": "0xbe3d75a1729be157e79c3b77f00206db4d54e3ea14375a015451c88ec067c790",
"codeHash": "0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470",
"storage": {
"0x405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace": "02",
"0xb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6": "01",
"0xc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b": "03"
},
"key": "0xf493f79c43bd747129a226ad42529885a4b108aba6046b2d12071695a6627844"
}
*/
{ // [:] -> [slot1, slot2, slot3]
root: s.chain.RootAt(999),
accounts: []common.Hash{common.HexToHash("0xf493f79c43bd747129a226ad42529885a4b108aba6046b2d12071695a6627844")},
origin: zero[:],
limit: ffHash[:],
nBytes: 500,
expSlots: 3,
},
{ // [slot1:] -> [slot1, slot2, slot3]
root: s.chain.RootAt(999),
accounts: []common.Hash{common.HexToHash("0xf493f79c43bd747129a226ad42529885a4b108aba6046b2d12071695a6627844")},
origin: common.FromHex("0x405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace"),
limit: ffHash[:],
nBytes: 500,
expSlots: 3,
},
{ // [slot1+ :] -> [slot2, slot3]
root: s.chain.RootAt(999),
accounts: []common.Hash{common.HexToHash("0xf493f79c43bd747129a226ad42529885a4b108aba6046b2d12071695a6627844")},
origin: common.FromHex("0x405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5acf"),
limit: ffHash[:],
nBytes: 500,
expSlots: 2,
},
{ // [slot1:slot2] -> [slot1, slot2]
root: s.chain.RootAt(999),
accounts: []common.Hash{common.HexToHash("0xf493f79c43bd747129a226ad42529885a4b108aba6046b2d12071695a6627844")},
origin: common.FromHex("0x405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace"),
limit: common.FromHex("0xb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6"),
nBytes: 500,
expSlots: 2,
},
{ // [slot1+:slot2+] -> [slot2, slot3]
root: s.chain.RootAt(999),
accounts: []common.Hash{common.HexToHash("0xf493f79c43bd747129a226ad42529885a4b108aba6046b2d12071695a6627844")},
origin: common.FromHex("0x4fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"),
limit: common.FromHex("0xb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf7"),
nBytes: 500,
expSlots: 2,
},
} {
tc := tc
if err := s.snapGetStorageRanges(t, &tc); err != nil {
t.Errorf("test %d \n root: %x\n range: %#x - %#x\n bytes: %d\n #accounts: %d\nfailed: %v",
i, tc.root, tc.origin, tc.limit, tc.nBytes, len(tc.accounts), err)
}
}
}
type byteCodesTest struct {
nBytes uint64
hashes []common.Hash
expHashes int
}
var (
// emptyRoot is the known root hash of an empty trie.
emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
// emptyCode is the known hash of the empty EVM bytecode.
emptyCode = common.HexToHash("c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470")
)
// TestSnapGetByteCodes various forms of GetByteCodes requests.
func (s *Suite) TestSnapGetByteCodes(t *utesting.T) {
// The halfchain import should yield these bytecodes
var hcBytecodes []common.Hash
for _, s := range []string{
"0x200c90460d8b0063210d5f5b9918e053c8f2c024485e0f1b48be8b1fc71b1317",
"0x20ba67ed4ac6aff626e0d1d4db623e2fada9593daeefc4a6eb4b70e6cff986f3",
"0x24b5b4902cb3d897c1cee9f16be8e897d8fa277c04c6dc8214f18295fca5de44",
"0x320b9d0a2be39b8a1c858f9f8cb96b1df0983071681de07ded3a7c0d05db5fd6",
"0x48cb0d5275936a24632babc7408339f9f7b051274809de565b8b0db76e97e03c",
"0x67c7a6f5cdaa43b4baa0e15b2be63346d1b9ce9f2c3d7e5804e0cacd44ee3b04",
"0x6d8418059bdc8c3fabf445e6bfc662af3b6a4ae45999b953996e42c7ead2ab49",
"0x7043422e5795d03f17ee0463a37235258e609fdd542247754895d72695e3e142",
"0x727f9e6f0c4bac1ff8d72c2972122d9c8d37ccb37e04edde2339e8da193546f1",
"0x86ccd5e23c78568a8334e0cebaf3e9f48c998307b0bfb1c378cee83b4bfb29cb",
"0x8fc89b00d6deafd4c4279531e743365626dbfa28845ec697919d305c2674302d",
"0x92cfc353bcb9746bb6f9996b6b9df779c88af2e9e0eeac44879ca19887c9b732",
"0x941b4872104f0995a4898fcf0f615ea6bf46bfbdfcf63ea8f2fd45b3f3286b77",
"0xa02fe8f41159bb39d2b704c633c3d6389cf4bfcb61a2539a9155f60786cf815f",
"0xa4b94e0afdffcb0af599677709dac067d3145489ea7aede57672bee43e3b7373",
"0xaf4e64edd3234c1205b725e42963becd1085f013590bd7ed93f8d711c5eb65fb",
"0xb69a18fa855b742031420081999086f6fb56c3930ae8840944e8b8ae9931c51e",
"0xc246c217bc73ce6666c93a93a94faa5250564f50a3fdc27ea74c231c07fe2ca6",
"0xcd6e4ab2c3034df2a8a1dfaaeb1c4baecd162a93d22de35e854ee2945cbe0c35",
"0xe24b692d09d6fc2f3d1a6028c400a27c37d7cbb11511907c013946d6ce263d3b",
"0xe440c5f0e8603fd1ed25976eee261ccee8038cf79d6a4c0eb31b2bf883be737f",
"0xe6eacbc509203d21ac814b350e72934fde686b7f673c19be8cf956b0c70078ce",
"0xe8530de4371467b5be7ea0e69e675ab36832c426d6c1ce9513817c0f0ae1486b",
"0xe85d487abbbc83bf3423cf9731360cf4f5a37220e18e5add54e72ee20861196a",
"0xf195ea389a5eea28db0be93660014275b158963dec44af1dfa7d4743019a9a49",
} {
hcBytecodes = append(hcBytecodes, common.HexToHash(s))
}
for i, tc := range []byteCodesTest{
// A few stateroots
{
nBytes: 10000, hashes: []common.Hash{s.chain.RootAt(0), s.chain.RootAt(999)},
expHashes: 0,
},
{
nBytes: 10000, hashes: []common.Hash{s.chain.RootAt(0), s.chain.RootAt(0)},
expHashes: 0,
},
// Empties
{
nBytes: 10000, hashes: []common.Hash{emptyRoot},
expHashes: 0,
},
{
nBytes: 10000, hashes: []common.Hash{emptyCode},
expHashes: 1,
},
{
nBytes: 10000, hashes: []common.Hash{emptyCode, emptyCode, emptyCode},
expHashes: 3,
},
// The existing bytecodes
{
nBytes: 10000, hashes: hcBytecodes,
expHashes: len(hcBytecodes),
},
// The existing, with limited byte arg
{
nBytes: 1, hashes: hcBytecodes,
expHashes: 1,
},
{
nBytes: 0, hashes: hcBytecodes,
expHashes: 1,
},
{
nBytes: 1000, hashes: []common.Hash{hcBytecodes[0], hcBytecodes[0], hcBytecodes[0], hcBytecodes[0]},
expHashes: 4,
},
} {
tc := tc
if err := s.snapGetByteCodes(t, &tc); err != nil {
t.Errorf("test %d \n bytes: %d\n #hashes: %d\nfailed: %v", i, tc.nBytes, len(tc.hashes), err)
}
}
}
type trieNodesTest struct {
root common.Hash
paths []snap.TrieNodePathSet
nBytes uint64
expHashes []common.Hash
expReject bool
}
func decodeNibbles(nibbles []byte, bytes []byte) {
for bi, ni := 0, 0; ni < len(nibbles); bi, ni = bi+1, ni+2 {
bytes[bi] = nibbles[ni]<<4 | nibbles[ni+1]
}
}
// hasTerm returns whether a hex key has the terminator flag.
func hasTerm(s []byte) bool {
return len(s) > 0 && s[len(s)-1] == 16
}
func keybytesToHex(str []byte) []byte {
l := len(str)*2 + 1
var nibbles = make([]byte, l)
for i, b := range str {
nibbles[i*2] = b / 16
nibbles[i*2+1] = b % 16
}
nibbles[l-1] = 16
return nibbles
}
func hexToCompact(hex []byte) []byte {
terminator := byte(0)
if hasTerm(hex) {
terminator = 1
hex = hex[:len(hex)-1]
}
buf := make([]byte, len(hex)/2+1)
buf[0] = terminator << 5 // the flag byte
if len(hex)&1 == 1 {
buf[0] |= 1 << 4 // odd flag
buf[0] |= hex[0] // first nibble is contained in the first byte
hex = hex[1:]
}
decodeNibbles(hex, buf[1:])
return buf
}
// TestSnapTrieNodes various forms of GetTrieNodes requests.
func (s *Suite) TestSnapTrieNodes(t *utesting.T) {
key := common.FromHex("0x00bf49f440a1cd0527e4d06e2765654c0f56452257516d793a9b8d604dcfdf2a")
// helper function to iterate the key, and generate the compact-encoded
// trie paths along the way.
pathTo := func(length int) snap.TrieNodePathSet {
hex := keybytesToHex(key)[:length]
hex[len(hex)-1] = 0 // remove term flag
hKey := hexToCompact(hex)
return snap.TrieNodePathSet{hKey}
}
var accPaths []snap.TrieNodePathSet
for i := 1; i <= 65; i++ {
accPaths = append(accPaths, pathTo(i))
}
empty := emptyCode
for i, tc := range []trieNodesTest{
{
root: s.chain.RootAt(999),
paths: nil,
nBytes: 500,
expHashes: nil,
},
{
root: s.chain.RootAt(999),
paths: []snap.TrieNodePathSet{
{}, // zero-length pathset should 'abort' and kick us off
{[]byte{0}},
},
nBytes: 5000,
expHashes: []common.Hash{},
expReject: true,
},
{
root: s.chain.RootAt(999),
paths: []snap.TrieNodePathSet{
{[]byte{0}},
{[]byte{1}, []byte{0}},
},
nBytes: 5000,
//0x6b3724a41b8c38b46d4d02fba2bb2074c47a507eb16a9a4b978f91d32e406faf
expHashes: []common.Hash{s.chain.RootAt(999)},
},
{ // nonsensically long path
root: s.chain.RootAt(999),
paths: []snap.TrieNodePathSet{
{[]byte{0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8,
0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8}},
},
nBytes: 5000,
expHashes: []common.Hash{common.HexToHash("0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470")},
},
{
root: s.chain.RootAt(0),
paths: []snap.TrieNodePathSet{
{[]byte{0}},
{[]byte{1}, []byte{0}},
},
nBytes: 5000,
expHashes: []common.Hash{
common.HexToHash("0x1ee1bb2fbac4d46eab331f3e8551e18a0805d084ed54647883aa552809ca968d"),
},
},
{
// The leaf is only a couple of levels down, so the continued trie traversal causes lookup failures.
root: s.chain.RootAt(999),
paths: accPaths,
nBytes: 5000,
expHashes: []common.Hash{
common.HexToHash("0xbcefee69b37cca1f5bf3a48aebe08b35f2ea1864fa958bb0723d909a0e0d28d8"),
common.HexToHash("0x4fb1e4e2391e4b4da471d59641319b8fa25d76c973d4bec594d7b00a69ae5135"),
empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty,
empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty,
empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty,
empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty,
empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty, empty,
empty, empty, empty},
},
{
// Basically the same as above, with different ordering
root: s.chain.RootAt(999),
paths: []snap.TrieNodePathSet{
accPaths[10], accPaths[1], accPaths[0],
},
nBytes: 5000,
expHashes: []common.Hash{
empty,
common.HexToHash("0x4fb1e4e2391e4b4da471d59641319b8fa25d76c973d4bec594d7b00a69ae5135"),
common.HexToHash("0xbcefee69b37cca1f5bf3a48aebe08b35f2ea1864fa958bb0723d909a0e0d28d8"),
},
},
{
/*
A test against this account, requesting trie nodes for the storage trie
{
"balance": "0",
"nonce": 1,
"root": "0xbe3d75a1729be157e79c3b77f00206db4d54e3ea14375a015451c88ec067c790",
"codeHash": "0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470",
"storage": {
"0x405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace": "02",
"0xb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6": "01",
"0xc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b": "03"
},
"key": "0xf493f79c43bd747129a226ad42529885a4b108aba6046b2d12071695a6627844"
}
*/
root: s.chain.RootAt(999),
paths: []snap.TrieNodePathSet{
{
common.FromHex("0xf493f79c43bd747129a226ad42529885a4b108aba6046b2d12071695a6627844"),
[]byte{0},
},
},
nBytes: 5000,
expHashes: []common.Hash{
common.HexToHash("0xbe3d75a1729be157e79c3b77f00206db4d54e3ea14375a015451c88ec067c790"),
},
},
}[7:] {
tc := tc
if err := s.snapGetTrieNodes(t, &tc); err != nil {
t.Errorf("test %d \n #hashes %x\n root: %#x\n bytes: %d\nfailed: %v", i, len(tc.expHashes), tc.root, tc.nBytes, err)
}
}
}
func (s *Suite) snapGetAccountRange(t *utesting.T, tc *accRangeTest) error {
conn, err := s.dialSnap()
if err != nil {
t.Fatalf("dial failed: %v", err)
}
defer conn.Close()
if err = conn.peer(s.chain, nil); err != nil {
t.Fatalf("peering failed: %v", err)
}
// write request
req := &GetAccountRange{
ID: uint64(rand.Int63()),
Root: tc.root,
Origin: tc.origin,
Limit: tc.limit,
Bytes: tc.nBytes,
}
resp, err := conn.snapRequest(req, req.ID, s.chain)
if err != nil {
return fmt.Errorf("account range request failed: %v", err)
}
var res *snap.AccountRangePacket
if r, ok := resp.(*AccountRange); !ok {
return fmt.Errorf("account range response wrong: %T %v", resp, resp)
} else {
res = (*snap.AccountRangePacket)(r)
}
if exp, got := tc.expAccounts, len(res.Accounts); exp != got {
return fmt.Errorf("expected %d accounts, got %d", exp, got)
}
// Check that the encoding order is correct
for i := 1; i < len(res.Accounts); i++ {
if bytes.Compare(res.Accounts[i-1].Hash[:], res.Accounts[i].Hash[:]) >= 0 {
return fmt.Errorf("accounts not monotonically increasing: #%d [%x] vs #%d [%x]", i-1, res.Accounts[i-1].Hash[:], i, res.Accounts[i].Hash[:])
}
}
var (
hashes []common.Hash
accounts [][]byte
proof = res.Proof
)
hashes, accounts, err = res.Unpack()
if err != nil {
return err
}
if len(hashes) == 0 && len(accounts) == 0 && len(proof) == 0 {
return nil
}
if len(hashes) > 0 {
if exp, got := tc.expFirst, res.Accounts[0].Hash; exp != got {
return fmt.Errorf("expected first account %#x, got %#x", exp, got)
}
if exp, got := tc.expLast, res.Accounts[len(res.Accounts)-1].Hash; exp != got {
return fmt.Errorf("expected last account %#x, got %#x", exp, got)
}
}
// Reconstruct a partial trie from the response and verify it
keys := make([][]byte, len(hashes))
for i, key := range hashes {
keys[i] = common.CopyBytes(key[:])
}
nodes := make(light.NodeList, len(proof))
for i, node := range proof {
nodes[i] = node
}
proofdb := nodes.NodeSet()
var end []byte
if len(keys) > 0 {
end = keys[len(keys)-1]
}
_, err = trie.VerifyRangeProof(tc.root, tc.origin[:], end, keys, accounts, proofdb)
return err
}
func (s *Suite) snapGetStorageRanges(t *utesting.T, tc *stRangesTest) error {
conn, err := s.dialSnap()
if err != nil {
t.Fatalf("dial failed: %v", err)
}
defer conn.Close()
if err = conn.peer(s.chain, nil); err != nil {
t.Fatalf("peering failed: %v", err)
}
// write request
req := &GetStorageRanges{
ID: uint64(rand.Int63()),
Root: tc.root,
Accounts: tc.accounts,
Origin: tc.origin,
Limit: tc.limit,
Bytes: tc.nBytes,
}
resp, err := conn.snapRequest(req, req.ID, s.chain)
if err != nil {
return fmt.Errorf("account range request failed: %v", err)
}
var res *snap.StorageRangesPacket
if r, ok := resp.(*StorageRanges); !ok {
return fmt.Errorf("account range response wrong: %T %v", resp, resp)
} else {
res = (*snap.StorageRangesPacket)(r)
}
gotSlots := 0
// Ensure the ranges are monotonically increasing
for i, slots := range res.Slots {
gotSlots += len(slots)
for j := 1; j < len(slots); j++ {
if bytes.Compare(slots[j-1].Hash[:], slots[j].Hash[:]) >= 0 {
return fmt.Errorf("storage slots not monotonically increasing for account #%d: #%d [%x] vs #%d [%x]", i, j-1, slots[j-1].Hash[:], j, slots[j].Hash[:])
}
}
}
if exp, got := tc.expSlots, gotSlots; exp != got {
return fmt.Errorf("expected %d slots, got %d", exp, got)
}
return nil
}
func (s *Suite) snapGetByteCodes(t *utesting.T, tc *byteCodesTest) error {
conn, err := s.dialSnap()
if err != nil {
t.Fatalf("dial failed: %v", err)
}
defer conn.Close()
if err = conn.peer(s.chain, nil); err != nil {
t.Fatalf("peering failed: %v", err)
}
// write request
req := &GetByteCodes{
ID: uint64(rand.Int63()),
Hashes: tc.hashes,
Bytes: tc.nBytes,
}
resp, err := conn.snapRequest(req, req.ID, s.chain)
if err != nil {
return fmt.Errorf("getBytecodes request failed: %v", err)
}
var res *snap.ByteCodesPacket
if r, ok := resp.(*ByteCodes); !ok {
return fmt.Errorf("bytecodes response wrong: %T %v", resp, resp)
} else {
res = (*snap.ByteCodesPacket)(r)
}
if exp, got := tc.expHashes, len(res.Codes); exp != got {
for i, c := range res.Codes {
fmt.Printf("%d. %#x\n", i, c)
}
return fmt.Errorf("expected %d bytecodes, got %d", exp, got)
}
// Cross reference the requested bytecodes with the response to find gaps
// that the serving node is missing
var (
bytecodes = res.Codes
hasher = sha3.NewLegacyKeccak256().(crypto.KeccakState)
hash = make([]byte, 32)
codes = make([][]byte, len(req.Hashes))
)
for i, j := 0, 0; i < len(bytecodes); i++ {
// Find the next hash that we've been served, leaving misses with nils
hasher.Reset()
hasher.Write(bytecodes[i])
hasher.Read(hash)
for j < len(req.Hashes) && !bytes.Equal(hash, req.Hashes[j][:]) {
j++
}
if j < len(req.Hashes) {
codes[j] = bytecodes[i]
j++
continue
}
// We've either ran out of hashes, or got unrequested data
return errors.New("unexpected bytecode")
}
return nil
}
func (s *Suite) snapGetTrieNodes(t *utesting.T, tc *trieNodesTest) error {
conn, err := s.dialSnap()
if err != nil {
t.Fatalf("dial failed: %v", err)
}
defer conn.Close()
if err = conn.peer(s.chain, nil); err != nil {
t.Fatalf("peering failed: %v", err)
}
// write request
req := &GetTrieNodes{
ID: uint64(rand.Int63()),
Root: tc.root,
Paths: tc.paths,
Bytes: tc.nBytes,
}
resp, err := conn.snapRequest(req, req.ID, s.chain)
if err != nil {
if tc.expReject {
return nil
}
return fmt.Errorf("trienodes request failed: %v", err)
}
var res *snap.TrieNodesPacket
if r, ok := resp.(*TrieNodes); !ok {
return fmt.Errorf("trienodes response wrong: %T %v", resp, resp)
} else {
res = (*snap.TrieNodesPacket)(r)
}
// Check the correctness
// Cross reference the requested trienodes with the response to find gaps
// that the serving node is missing
hasher := sha3.NewLegacyKeccak256().(crypto.KeccakState)
hash := make([]byte, 32)
trienodes := res.Nodes
if got, want := len(trienodes), len(tc.expHashes); got != want {
return fmt.Errorf("wrong trienode count, got %d, want %d\n", got, want)
}
for i, trienode := range trienodes {
hasher.Reset()
hasher.Write(trienode)
hasher.Read(hash)
if got, want := hash, tc.expHashes[i]; !bytes.Equal(got, want[:]) {
fmt.Printf("hash %d wrong, got %#x, want %#x\n", i, got, want)
err = fmt.Errorf("hash %d wrong, got %#x, want %#x", i, got, want)
}
}
return err
}