plugeth/core/state/sync_test.go
Martin HS a5a4fa7032
all: use uint256 in state (#28598)
This change makes use of uin256 to represent balance in state. It touches primarily upon statedb, stateobject and state processing, trying to avoid changes in transaction pools, core types, rpc and tracers.
2024-01-23 14:51:58 +01:00

747 lines
24 KiB
Go

// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package state
import (
"bytes"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
"github.com/ethereum/go-ethereum/trie/triedb/hashdb"
"github.com/ethereum/go-ethereum/trie/triedb/pathdb"
"github.com/holiman/uint256"
)
// testAccount is the data associated with an account used by the state tests.
type testAccount struct {
address common.Address
balance *uint256.Int
nonce uint64
code []byte
}
// makeTestState create a sample test state to test node-wise reconstruction.
func makeTestState(scheme string) (ethdb.Database, Database, *trie.Database, common.Hash, []*testAccount) {
// Create an empty state
config := &trie.Config{Preimages: true}
if scheme == rawdb.PathScheme {
config.PathDB = pathdb.Defaults
} else {
config.HashDB = hashdb.Defaults
}
db := rawdb.NewMemoryDatabase()
nodeDb := trie.NewDatabase(db, config)
sdb := NewDatabaseWithNodeDB(db, nodeDb)
state, _ := New(types.EmptyRootHash, sdb, nil)
// Fill it with some arbitrary data
var accounts []*testAccount
for i := byte(0); i < 96; i++ {
obj := state.getOrNewStateObject(common.BytesToAddress([]byte{i}))
acc := &testAccount{address: common.BytesToAddress([]byte{i})}
obj.AddBalance(uint256.NewInt(uint64(11 * i)))
acc.balance = uint256.NewInt(uint64(11 * i))
obj.SetNonce(uint64(42 * i))
acc.nonce = uint64(42 * i)
if i%3 == 0 {
obj.SetCode(crypto.Keccak256Hash([]byte{i, i, i, i, i}), []byte{i, i, i, i, i})
acc.code = []byte{i, i, i, i, i}
}
if i%5 == 0 {
for j := byte(0); j < 5; j++ {
hash := crypto.Keccak256Hash([]byte{i, i, i, i, i, j, j})
obj.SetState(hash, hash)
}
}
accounts = append(accounts, acc)
}
root, _ := state.Commit(0, false)
// Return the generated state
return db, sdb, nodeDb, root, accounts
}
// checkStateAccounts cross references a reconstructed state with an expected
// account array.
func checkStateAccounts(t *testing.T, db ethdb.Database, scheme string, root common.Hash, accounts []*testAccount) {
var config trie.Config
if scheme == rawdb.PathScheme {
config.PathDB = pathdb.Defaults
}
// Check root availability and state contents
state, err := New(root, NewDatabaseWithConfig(db, &config), nil)
if err != nil {
t.Fatalf("failed to create state trie at %x: %v", root, err)
}
if err := checkStateConsistency(db, scheme, root); err != nil {
t.Fatalf("inconsistent state trie at %x: %v", root, err)
}
for i, acc := range accounts {
if balance := state.GetBalance(acc.address); balance.Cmp(acc.balance) != 0 {
t.Errorf("account %d: balance mismatch: have %v, want %v", i, balance, acc.balance)
}
if nonce := state.GetNonce(acc.address); nonce != acc.nonce {
t.Errorf("account %d: nonce mismatch: have %v, want %v", i, nonce, acc.nonce)
}
if code := state.GetCode(acc.address); !bytes.Equal(code, acc.code) {
t.Errorf("account %d: code mismatch: have %x, want %x", i, code, acc.code)
}
}
}
// checkStateConsistency checks that all data of a state root is present.
func checkStateConsistency(db ethdb.Database, scheme string, root common.Hash) error {
config := &trie.Config{Preimages: true}
if scheme == rawdb.PathScheme {
config.PathDB = pathdb.Defaults
}
state, err := New(root, NewDatabaseWithConfig(db, config), nil)
if err != nil {
return err
}
it := newNodeIterator(state)
for it.Next() {
}
return it.Error
}
// Tests that an empty state is not scheduled for syncing.
func TestEmptyStateSync(t *testing.T) {
dbA := trie.NewDatabase(rawdb.NewMemoryDatabase(), nil)
dbB := trie.NewDatabase(rawdb.NewMemoryDatabase(), &trie.Config{PathDB: pathdb.Defaults})
sync := NewStateSync(types.EmptyRootHash, rawdb.NewMemoryDatabase(), nil, dbA.Scheme())
if paths, nodes, codes := sync.Missing(1); len(paths) != 0 || len(nodes) != 0 || len(codes) != 0 {
t.Errorf("content requested for empty state: %v, %v, %v", nodes, paths, codes)
}
sync = NewStateSync(types.EmptyRootHash, rawdb.NewMemoryDatabase(), nil, dbB.Scheme())
if paths, nodes, codes := sync.Missing(1); len(paths) != 0 || len(nodes) != 0 || len(codes) != 0 {
t.Errorf("content requested for empty state: %v, %v, %v", nodes, paths, codes)
}
}
// Tests that given a root hash, a state can sync iteratively on a single thread,
// requesting retrieval tasks and returning all of them in one go.
func TestIterativeStateSyncIndividual(t *testing.T) {
testIterativeStateSync(t, 1, false, false, rawdb.HashScheme)
testIterativeStateSync(t, 1, false, false, rawdb.PathScheme)
}
func TestIterativeStateSyncBatched(t *testing.T) {
testIterativeStateSync(t, 100, false, false, rawdb.HashScheme)
testIterativeStateSync(t, 100, false, false, rawdb.PathScheme)
}
func TestIterativeStateSyncIndividualFromDisk(t *testing.T) {
testIterativeStateSync(t, 1, true, false, rawdb.HashScheme)
testIterativeStateSync(t, 1, true, false, rawdb.PathScheme)
}
func TestIterativeStateSyncBatchedFromDisk(t *testing.T) {
testIterativeStateSync(t, 100, true, false, rawdb.HashScheme)
testIterativeStateSync(t, 100, true, false, rawdb.PathScheme)
}
func TestIterativeStateSyncIndividualByPath(t *testing.T) {
testIterativeStateSync(t, 1, false, true, rawdb.HashScheme)
testIterativeStateSync(t, 1, false, true, rawdb.PathScheme)
}
func TestIterativeStateSyncBatchedByPath(t *testing.T) {
testIterativeStateSync(t, 100, false, true, rawdb.HashScheme)
testIterativeStateSync(t, 100, false, true, rawdb.PathScheme)
}
// stateElement represents the element in the state trie(bytecode or trie node).
type stateElement struct {
path string
hash common.Hash
code common.Hash
syncPath trie.SyncPath
}
func testIterativeStateSync(t *testing.T, count int, commit bool, bypath bool, scheme string) {
// Create a random state to copy
srcDisk, srcDb, ndb, srcRoot, srcAccounts := makeTestState(scheme)
if commit {
ndb.Commit(srcRoot, false)
}
srcTrie, _ := trie.New(trie.StateTrieID(srcRoot), ndb)
// Create a destination state and sync with the scheduler
dstDb := rawdb.NewMemoryDatabase()
sched := NewStateSync(srcRoot, dstDb, nil, ndb.Scheme())
var (
nodeElements []stateElement
codeElements []stateElement
)
paths, nodes, codes := sched.Missing(count)
for i := 0; i < len(paths); i++ {
nodeElements = append(nodeElements, stateElement{
path: paths[i],
hash: nodes[i],
syncPath: trie.NewSyncPath([]byte(paths[i])),
})
}
for i := 0; i < len(codes); i++ {
codeElements = append(codeElements, stateElement{code: codes[i]})
}
reader, err := ndb.Reader(srcRoot)
if err != nil {
t.Fatalf("state is not existent, %#x", srcRoot)
}
for len(nodeElements)+len(codeElements) > 0 {
var (
nodeResults = make([]trie.NodeSyncResult, len(nodeElements))
codeResults = make([]trie.CodeSyncResult, len(codeElements))
)
for i, element := range codeElements {
data, err := srcDb.ContractCode(common.Address{}, element.code)
if err != nil {
t.Fatalf("failed to retrieve contract bytecode for hash %x", element.code)
}
codeResults[i] = trie.CodeSyncResult{Hash: element.code, Data: data}
}
for i, node := range nodeElements {
if bypath {
if len(node.syncPath) == 1 {
data, _, err := srcTrie.GetNode(node.syncPath[0])
if err != nil {
t.Fatalf("failed to retrieve node data for path %x: %v", node.syncPath[0], err)
}
nodeResults[i] = trie.NodeSyncResult{Path: node.path, Data: data}
} else {
var acc types.StateAccount
if err := rlp.DecodeBytes(srcTrie.MustGet(node.syncPath[0]), &acc); err != nil {
t.Fatalf("failed to decode account on path %x: %v", node.syncPath[0], err)
}
id := trie.StorageTrieID(srcRoot, common.BytesToHash(node.syncPath[0]), acc.Root)
stTrie, err := trie.New(id, ndb)
if err != nil {
t.Fatalf("failed to retriev storage trie for path %x: %v", node.syncPath[1], err)
}
data, _, err := stTrie.GetNode(node.syncPath[1])
if err != nil {
t.Fatalf("failed to retrieve node data for path %x: %v", node.syncPath[1], err)
}
nodeResults[i] = trie.NodeSyncResult{Path: node.path, Data: data}
}
} else {
owner, inner := trie.ResolvePath([]byte(node.path))
data, err := reader.Node(owner, inner, node.hash)
if err != nil {
t.Fatalf("failed to retrieve node data for key %v", []byte(node.path))
}
nodeResults[i] = trie.NodeSyncResult{Path: node.path, Data: data}
}
}
for _, result := range codeResults {
if err := sched.ProcessCode(result); err != nil {
t.Errorf("failed to process result %v", err)
}
}
for _, result := range nodeResults {
if err := sched.ProcessNode(result); err != nil {
t.Errorf("failed to process result %v", err)
}
}
batch := dstDb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
paths, nodes, codes = sched.Missing(count)
nodeElements = nodeElements[:0]
for i := 0; i < len(paths); i++ {
nodeElements = append(nodeElements, stateElement{
path: paths[i],
hash: nodes[i],
syncPath: trie.NewSyncPath([]byte(paths[i])),
})
}
codeElements = codeElements[:0]
for i := 0; i < len(codes); i++ {
codeElements = append(codeElements, stateElement{
code: codes[i],
})
}
}
// Copy the preimages from source db in order to traverse the state.
srcDb.TrieDB().WritePreimages()
copyPreimages(srcDisk, dstDb)
// Cross check that the two states are in sync
checkStateAccounts(t, dstDb, ndb.Scheme(), srcRoot, srcAccounts)
}
// Tests that the trie scheduler can correctly reconstruct the state even if only
// partial results are returned, and the others sent only later.
func TestIterativeDelayedStateSync(t *testing.T) {
testIterativeDelayedStateSync(t, rawdb.HashScheme)
testIterativeDelayedStateSync(t, rawdb.PathScheme)
}
func testIterativeDelayedStateSync(t *testing.T, scheme string) {
// Create a random state to copy
srcDisk, srcDb, ndb, srcRoot, srcAccounts := makeTestState(scheme)
// Create a destination state and sync with the scheduler
dstDb := rawdb.NewMemoryDatabase()
sched := NewStateSync(srcRoot, dstDb, nil, ndb.Scheme())
var (
nodeElements []stateElement
codeElements []stateElement
)
paths, nodes, codes := sched.Missing(0)
for i := 0; i < len(paths); i++ {
nodeElements = append(nodeElements, stateElement{
path: paths[i],
hash: nodes[i],
syncPath: trie.NewSyncPath([]byte(paths[i])),
})
}
for i := 0; i < len(codes); i++ {
codeElements = append(codeElements, stateElement{code: codes[i]})
}
reader, err := ndb.Reader(srcRoot)
if err != nil {
t.Fatalf("state is not existent, %#x", srcRoot)
}
for len(nodeElements)+len(codeElements) > 0 {
// Sync only half of the scheduled nodes
var nodeProcessed int
var codeProcessed int
if len(codeElements) > 0 {
codeResults := make([]trie.CodeSyncResult, len(codeElements)/2+1)
for i, element := range codeElements[:len(codeResults)] {
data, err := srcDb.ContractCode(common.Address{}, element.code)
if err != nil {
t.Fatalf("failed to retrieve contract bytecode for %x", element.code)
}
codeResults[i] = trie.CodeSyncResult{Hash: element.code, Data: data}
}
for _, result := range codeResults {
if err := sched.ProcessCode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
codeProcessed = len(codeResults)
}
if len(nodeElements) > 0 {
nodeResults := make([]trie.NodeSyncResult, len(nodeElements)/2+1)
for i, element := range nodeElements[:len(nodeResults)] {
owner, inner := trie.ResolvePath([]byte(element.path))
data, err := reader.Node(owner, inner, element.hash)
if err != nil {
t.Fatalf("failed to retrieve contract bytecode for %x", element.code)
}
nodeResults[i] = trie.NodeSyncResult{Path: element.path, Data: data}
}
for _, result := range nodeResults {
if err := sched.ProcessNode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
nodeProcessed = len(nodeResults)
}
batch := dstDb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
paths, nodes, codes = sched.Missing(0)
nodeElements = nodeElements[nodeProcessed:]
for i := 0; i < len(paths); i++ {
nodeElements = append(nodeElements, stateElement{
path: paths[i],
hash: nodes[i],
syncPath: trie.NewSyncPath([]byte(paths[i])),
})
}
codeElements = codeElements[codeProcessed:]
for i := 0; i < len(codes); i++ {
codeElements = append(codeElements, stateElement{
code: codes[i],
})
}
}
// Copy the preimages from source db in order to traverse the state.
srcDb.TrieDB().WritePreimages()
copyPreimages(srcDisk, dstDb)
// Cross check that the two states are in sync
checkStateAccounts(t, dstDb, ndb.Scheme(), srcRoot, srcAccounts)
}
// Tests that given a root hash, a trie can sync iteratively on a single thread,
// requesting retrieval tasks and returning all of them in one go, however in a
// random order.
func TestIterativeRandomStateSyncIndividual(t *testing.T) {
testIterativeRandomStateSync(t, 1, rawdb.HashScheme)
testIterativeRandomStateSync(t, 1, rawdb.PathScheme)
}
func TestIterativeRandomStateSyncBatched(t *testing.T) {
testIterativeRandomStateSync(t, 100, rawdb.HashScheme)
testIterativeRandomStateSync(t, 100, rawdb.PathScheme)
}
func testIterativeRandomStateSync(t *testing.T, count int, scheme string) {
// Create a random state to copy
srcDisk, srcDb, ndb, srcRoot, srcAccounts := makeTestState(scheme)
// Create a destination state and sync with the scheduler
dstDb := rawdb.NewMemoryDatabase()
sched := NewStateSync(srcRoot, dstDb, nil, ndb.Scheme())
nodeQueue := make(map[string]stateElement)
codeQueue := make(map[common.Hash]struct{})
paths, nodes, codes := sched.Missing(count)
for i, path := range paths {
nodeQueue[path] = stateElement{
path: path,
hash: nodes[i],
syncPath: trie.NewSyncPath([]byte(path)),
}
}
for _, hash := range codes {
codeQueue[hash] = struct{}{}
}
reader, err := ndb.Reader(srcRoot)
if err != nil {
t.Fatalf("state is not existent, %#x", srcRoot)
}
for len(nodeQueue)+len(codeQueue) > 0 {
// Fetch all the queued nodes in a random order
if len(codeQueue) > 0 {
results := make([]trie.CodeSyncResult, 0, len(codeQueue))
for hash := range codeQueue {
data, err := srcDb.ContractCode(common.Address{}, hash)
if err != nil {
t.Fatalf("failed to retrieve node data for %x", hash)
}
results = append(results, trie.CodeSyncResult{Hash: hash, Data: data})
}
for _, result := range results {
if err := sched.ProcessCode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
}
if len(nodeQueue) > 0 {
results := make([]trie.NodeSyncResult, 0, len(nodeQueue))
for path, element := range nodeQueue {
owner, inner := trie.ResolvePath([]byte(element.path))
data, err := reader.Node(owner, inner, element.hash)
if err != nil {
t.Fatalf("failed to retrieve node data for %x %v %v", element.hash, []byte(element.path), element.path)
}
results = append(results, trie.NodeSyncResult{Path: path, Data: data})
}
for _, result := range results {
if err := sched.ProcessNode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
}
batch := dstDb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
nodeQueue = make(map[string]stateElement)
codeQueue = make(map[common.Hash]struct{})
paths, nodes, codes := sched.Missing(count)
for i, path := range paths {
nodeQueue[path] = stateElement{
path: path,
hash: nodes[i],
syncPath: trie.NewSyncPath([]byte(path)),
}
}
for _, hash := range codes {
codeQueue[hash] = struct{}{}
}
}
// Copy the preimages from source db in order to traverse the state.
srcDb.TrieDB().WritePreimages()
copyPreimages(srcDisk, dstDb)
// Cross check that the two states are in sync
checkStateAccounts(t, dstDb, ndb.Scheme(), srcRoot, srcAccounts)
}
// Tests that the trie scheduler can correctly reconstruct the state even if only
// partial results are returned (Even those randomly), others sent only later.
func TestIterativeRandomDelayedStateSync(t *testing.T) {
testIterativeRandomDelayedStateSync(t, rawdb.HashScheme)
testIterativeRandomDelayedStateSync(t, rawdb.PathScheme)
}
func testIterativeRandomDelayedStateSync(t *testing.T, scheme string) {
// Create a random state to copy
srcDisk, srcDb, ndb, srcRoot, srcAccounts := makeTestState(scheme)
// Create a destination state and sync with the scheduler
dstDb := rawdb.NewMemoryDatabase()
sched := NewStateSync(srcRoot, dstDb, nil, ndb.Scheme())
nodeQueue := make(map[string]stateElement)
codeQueue := make(map[common.Hash]struct{})
paths, nodes, codes := sched.Missing(0)
for i, path := range paths {
nodeQueue[path] = stateElement{
path: path,
hash: nodes[i],
syncPath: trie.NewSyncPath([]byte(path)),
}
}
for _, hash := range codes {
codeQueue[hash] = struct{}{}
}
reader, err := ndb.Reader(srcRoot)
if err != nil {
t.Fatalf("state is not existent, %#x", srcRoot)
}
for len(nodeQueue)+len(codeQueue) > 0 {
// Sync only half of the scheduled nodes, even those in random order
if len(codeQueue) > 0 {
results := make([]trie.CodeSyncResult, 0, len(codeQueue)/2+1)
for hash := range codeQueue {
delete(codeQueue, hash)
data, err := srcDb.ContractCode(common.Address{}, hash)
if err != nil {
t.Fatalf("failed to retrieve node data for %x", hash)
}
results = append(results, trie.CodeSyncResult{Hash: hash, Data: data})
if len(results) >= cap(results) {
break
}
}
for _, result := range results {
if err := sched.ProcessCode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
}
if len(nodeQueue) > 0 {
results := make([]trie.NodeSyncResult, 0, len(nodeQueue)/2+1)
for path, element := range nodeQueue {
delete(nodeQueue, path)
owner, inner := trie.ResolvePath([]byte(element.path))
data, err := reader.Node(owner, inner, element.hash)
if err != nil {
t.Fatalf("failed to retrieve node data for %x", element.hash)
}
results = append(results, trie.NodeSyncResult{Path: path, Data: data})
if len(results) >= cap(results) {
break
}
}
// Feed the retrieved results back and queue new tasks
for _, result := range results {
if err := sched.ProcessNode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
}
batch := dstDb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
paths, nodes, codes := sched.Missing(0)
for i, path := range paths {
nodeQueue[path] = stateElement{
path: path,
hash: nodes[i],
syncPath: trie.NewSyncPath([]byte(path)),
}
}
for _, hash := range codes {
codeQueue[hash] = struct{}{}
}
}
// Copy the preimages from source db in order to traverse the state.
srcDb.TrieDB().WritePreimages()
copyPreimages(srcDisk, dstDb)
// Cross check that the two states are in sync
checkStateAccounts(t, dstDb, ndb.Scheme(), srcRoot, srcAccounts)
}
// Tests that at any point in time during a sync, only complete sub-tries are in
// the database.
func TestIncompleteStateSync(t *testing.T) {
testIncompleteStateSync(t, rawdb.HashScheme)
testIncompleteStateSync(t, rawdb.PathScheme)
}
func testIncompleteStateSync(t *testing.T, scheme string) {
// Create a random state to copy
db, srcDb, ndb, srcRoot, srcAccounts := makeTestState(scheme)
// isCodeLookup to save some hashing
var isCode = make(map[common.Hash]struct{})
for _, acc := range srcAccounts {
if len(acc.code) > 0 {
isCode[crypto.Keccak256Hash(acc.code)] = struct{}{}
}
}
isCode[types.EmptyCodeHash] = struct{}{}
// Create a destination state and sync with the scheduler
dstDb := rawdb.NewMemoryDatabase()
sched := NewStateSync(srcRoot, dstDb, nil, ndb.Scheme())
var (
addedCodes []common.Hash
addedPaths []string
addedHashes []common.Hash
)
reader, err := ndb.Reader(srcRoot)
if err != nil {
t.Fatalf("state is not available %x", srcRoot)
}
nodeQueue := make(map[string]stateElement)
codeQueue := make(map[common.Hash]struct{})
paths, nodes, codes := sched.Missing(1)
for i, path := range paths {
nodeQueue[path] = stateElement{
path: path,
hash: nodes[i],
syncPath: trie.NewSyncPath([]byte(path)),
}
}
for _, hash := range codes {
codeQueue[hash] = struct{}{}
}
for len(nodeQueue)+len(codeQueue) > 0 {
// Fetch a batch of state nodes
if len(codeQueue) > 0 {
results := make([]trie.CodeSyncResult, 0, len(codeQueue))
for hash := range codeQueue {
data, err := srcDb.ContractCode(common.Address{}, hash)
if err != nil {
t.Fatalf("failed to retrieve node data for %x", hash)
}
results = append(results, trie.CodeSyncResult{Hash: hash, Data: data})
addedCodes = append(addedCodes, hash)
}
// Process each of the state nodes
for _, result := range results {
if err := sched.ProcessCode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
}
if len(nodeQueue) > 0 {
results := make([]trie.NodeSyncResult, 0, len(nodeQueue))
for path, element := range nodeQueue {
owner, inner := trie.ResolvePath([]byte(element.path))
data, err := reader.Node(owner, inner, element.hash)
if err != nil {
t.Fatalf("failed to retrieve node data for %x", element.hash)
}
results = append(results, trie.NodeSyncResult{Path: path, Data: data})
if element.hash != srcRoot {
addedPaths = append(addedPaths, element.path)
addedHashes = append(addedHashes, element.hash)
}
}
// Process each of the state nodes
for _, result := range results {
if err := sched.ProcessNode(result); err != nil {
t.Fatalf("failed to process result %v", err)
}
}
}
batch := dstDb.NewBatch()
if err := sched.Commit(batch); err != nil {
t.Fatalf("failed to commit data: %v", err)
}
batch.Write()
// Fetch the next batch to retrieve
nodeQueue = make(map[string]stateElement)
codeQueue = make(map[common.Hash]struct{})
paths, nodes, codes := sched.Missing(1)
for i, path := range paths {
nodeQueue[path] = stateElement{
path: path,
hash: nodes[i],
syncPath: trie.NewSyncPath([]byte(path)),
}
}
for _, hash := range codes {
codeQueue[hash] = struct{}{}
}
}
// Copy the preimages from source db in order to traverse the state.
srcDb.TrieDB().WritePreimages()
copyPreimages(db, dstDb)
// Sanity check that removing any node from the database is detected
for _, node := range addedCodes {
val := rawdb.ReadCode(dstDb, node)
rawdb.DeleteCode(dstDb, node)
if err := checkStateConsistency(dstDb, ndb.Scheme(), srcRoot); err == nil {
t.Errorf("trie inconsistency not caught, missing: %x", node)
}
rawdb.WriteCode(dstDb, node, val)
}
for i, path := range addedPaths {
owner, inner := trie.ResolvePath([]byte(path))
hash := addedHashes[i]
val := rawdb.ReadTrieNode(dstDb, owner, inner, hash, scheme)
if val == nil {
t.Error("missing trie node")
}
rawdb.DeleteTrieNode(dstDb, owner, inner, hash, scheme)
if err := checkStateConsistency(dstDb, scheme, srcRoot); err == nil {
t.Errorf("trie inconsistency not caught, missing: %v", path)
}
rawdb.WriteTrieNode(dstDb, owner, inner, hash, val, scheme)
}
}
func copyPreimages(srcDb, dstDb ethdb.Database) {
it := srcDb.NewIterator(rawdb.PreimagePrefix, nil)
defer it.Release()
preimages := make(map[common.Hash][]byte)
for it.Next() {
hash := it.Key()[len(rawdb.PreimagePrefix):]
preimages[common.BytesToHash(hash)] = common.CopyBytes(it.Value())
}
rawdb.WritePreimages(dstDb, preimages)
}