plugeth/crypto/crypto_test.go
Felix Lange 0255951587 crypto: replace ToECDSAPub with error-checking func UnmarshalPubkey (#16932)
ToECDSAPub was unsafe because it returned a non-nil key with nil X, Y in
case of invalid input. This change replaces ToECDSAPub with
UnmarshalPubkey across the codebase.
2018-06-12 15:26:08 +02:00

251 lines
7.6 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package crypto
import (
"bytes"
"crypto/ecdsa"
"encoding/hex"
"io/ioutil"
"math/big"
"os"
"reflect"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/hexutil"
)
var testAddrHex = "970e8128ab834e8eac17ab8e3812f010678cf791"
var testPrivHex = "289c2857d4598e37fb9647507e47a309d6133539bf21a8b9cb6df88fd5232032"
// These tests are sanity checks.
// They should ensure that we don't e.g. use Sha3-224 instead of Sha3-256
// and that the sha3 library uses keccak-f permutation.
func TestKeccak256Hash(t *testing.T) {
msg := []byte("abc")
exp, _ := hex.DecodeString("4e03657aea45a94fc7d47ba826c8d667c0d1e6e33a64a036ec44f58fa12d6c45")
checkhash(t, "Sha3-256-array", func(in []byte) []byte { h := Keccak256Hash(in); return h[:] }, msg, exp)
}
func TestToECDSAErrors(t *testing.T) {
if _, err := HexToECDSA("0000000000000000000000000000000000000000000000000000000000000000"); err == nil {
t.Fatal("HexToECDSA should've returned error")
}
if _, err := HexToECDSA("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"); err == nil {
t.Fatal("HexToECDSA should've returned error")
}
}
func BenchmarkSha3(b *testing.B) {
a := []byte("hello world")
for i := 0; i < b.N; i++ {
Keccak256(a)
}
}
func TestUnmarshalPubkey(t *testing.T) {
key, err := UnmarshalPubkey(nil)
if err != errInvalidPubkey || key != nil {
t.Fatalf("expected error, got %v, %v", err, key)
}
key, err = UnmarshalPubkey([]byte{1, 2, 3})
if err != errInvalidPubkey || key != nil {
t.Fatalf("expected error, got %v, %v", err, key)
}
var (
enc, _ = hex.DecodeString("04760c4460e5336ac9bbd87952a3c7ec4363fc0a97bd31c86430806e287b437fd1b01abc6e1db640cf3106b520344af1d58b00b57823db3e1407cbc433e1b6d04d")
dec = &ecdsa.PublicKey{
Curve: S256(),
X: hexutil.MustDecodeBig("0x760c4460e5336ac9bbd87952a3c7ec4363fc0a97bd31c86430806e287b437fd1"),
Y: hexutil.MustDecodeBig("0xb01abc6e1db640cf3106b520344af1d58b00b57823db3e1407cbc433e1b6d04d"),
}
)
key, err = UnmarshalPubkey(enc)
if err != nil {
t.Fatalf("expected no error, got %v", err)
}
if !reflect.DeepEqual(key, dec) {
t.Fatal("wrong result")
}
}
func TestSign(t *testing.T) {
key, _ := HexToECDSA(testPrivHex)
addr := common.HexToAddress(testAddrHex)
msg := Keccak256([]byte("foo"))
sig, err := Sign(msg, key)
if err != nil {
t.Errorf("Sign error: %s", err)
}
recoveredPub, err := Ecrecover(msg, sig)
if err != nil {
t.Errorf("ECRecover error: %s", err)
}
pubKey, _ := UnmarshalPubkey(recoveredPub)
recoveredAddr := PubkeyToAddress(*pubKey)
if addr != recoveredAddr {
t.Errorf("Address mismatch: want: %x have: %x", addr, recoveredAddr)
}
// should be equal to SigToPub
recoveredPub2, err := SigToPub(msg, sig)
if err != nil {
t.Errorf("ECRecover error: %s", err)
}
recoveredAddr2 := PubkeyToAddress(*recoveredPub2)
if addr != recoveredAddr2 {
t.Errorf("Address mismatch: want: %x have: %x", addr, recoveredAddr2)
}
}
func TestInvalidSign(t *testing.T) {
if _, err := Sign(make([]byte, 1), nil); err == nil {
t.Errorf("expected sign with hash 1 byte to error")
}
if _, err := Sign(make([]byte, 33), nil); err == nil {
t.Errorf("expected sign with hash 33 byte to error")
}
}
func TestNewContractAddress(t *testing.T) {
key, _ := HexToECDSA(testPrivHex)
addr := common.HexToAddress(testAddrHex)
genAddr := PubkeyToAddress(key.PublicKey)
// sanity check before using addr to create contract address
checkAddr(t, genAddr, addr)
caddr0 := CreateAddress(addr, 0)
caddr1 := CreateAddress(addr, 1)
caddr2 := CreateAddress(addr, 2)
checkAddr(t, common.HexToAddress("333c3310824b7c685133f2bedb2ca4b8b4df633d"), caddr0)
checkAddr(t, common.HexToAddress("8bda78331c916a08481428e4b07c96d3e916d165"), caddr1)
checkAddr(t, common.HexToAddress("c9ddedf451bc62ce88bf9292afb13df35b670699"), caddr2)
}
func TestLoadECDSAFile(t *testing.T) {
keyBytes := common.FromHex(testPrivHex)
fileName0 := "test_key0"
fileName1 := "test_key1"
checkKey := func(k *ecdsa.PrivateKey) {
checkAddr(t, PubkeyToAddress(k.PublicKey), common.HexToAddress(testAddrHex))
loadedKeyBytes := FromECDSA(k)
if !bytes.Equal(loadedKeyBytes, keyBytes) {
t.Fatalf("private key mismatch: want: %x have: %x", keyBytes, loadedKeyBytes)
}
}
ioutil.WriteFile(fileName0, []byte(testPrivHex), 0600)
defer os.Remove(fileName0)
key0, err := LoadECDSA(fileName0)
if err != nil {
t.Fatal(err)
}
checkKey(key0)
// again, this time with SaveECDSA instead of manual save:
err = SaveECDSA(fileName1, key0)
if err != nil {
t.Fatal(err)
}
defer os.Remove(fileName1)
key1, err := LoadECDSA(fileName1)
if err != nil {
t.Fatal(err)
}
checkKey(key1)
}
func TestValidateSignatureValues(t *testing.T) {
check := func(expected bool, v byte, r, s *big.Int) {
if ValidateSignatureValues(v, r, s, false) != expected {
t.Errorf("mismatch for v: %d r: %d s: %d want: %v", v, r, s, expected)
}
}
minusOne := big.NewInt(-1)
one := common.Big1
zero := common.Big0
secp256k1nMinus1 := new(big.Int).Sub(secp256k1N, common.Big1)
// correct v,r,s
check(true, 0, one, one)
check(true, 1, one, one)
// incorrect v, correct r,s,
check(false, 2, one, one)
check(false, 3, one, one)
// incorrect v, combinations of incorrect/correct r,s at lower limit
check(false, 2, zero, zero)
check(false, 2, zero, one)
check(false, 2, one, zero)
check(false, 2, one, one)
// correct v for any combination of incorrect r,s
check(false, 0, zero, zero)
check(false, 0, zero, one)
check(false, 0, one, zero)
check(false, 1, zero, zero)
check(false, 1, zero, one)
check(false, 1, one, zero)
// correct sig with max r,s
check(true, 0, secp256k1nMinus1, secp256k1nMinus1)
// correct v, combinations of incorrect r,s at upper limit
check(false, 0, secp256k1N, secp256k1nMinus1)
check(false, 0, secp256k1nMinus1, secp256k1N)
check(false, 0, secp256k1N, secp256k1N)
// current callers ensures r,s cannot be negative, but let's test for that too
// as crypto package could be used stand-alone
check(false, 0, minusOne, one)
check(false, 0, one, minusOne)
}
func checkhash(t *testing.T, name string, f func([]byte) []byte, msg, exp []byte) {
sum := f(msg)
if !bytes.Equal(exp, sum) {
t.Fatalf("hash %s mismatch: want: %x have: %x", name, exp, sum)
}
}
func checkAddr(t *testing.T, addr0, addr1 common.Address) {
if addr0 != addr1 {
t.Fatalf("address mismatch: want: %x have: %x", addr0, addr1)
}
}
// test to help Python team with integration of libsecp256k1
// skip but keep it after they are done
func TestPythonIntegration(t *testing.T) {
kh := "289c2857d4598e37fb9647507e47a309d6133539bf21a8b9cb6df88fd5232032"
k0, _ := HexToECDSA(kh)
msg0 := Keccak256([]byte("foo"))
sig0, _ := Sign(msg0, k0)
msg1 := common.FromHex("00000000000000000000000000000000")
sig1, _ := Sign(msg0, k0)
t.Logf("msg: %x, privkey: %s sig: %x\n", msg0, kh, sig0)
t.Logf("msg: %x, privkey: %s sig: %x\n", msg1, kh, sig1)
}