plugeth/core/state/snapshot/iterator_test.go

397 lines
11 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snapshot
import (
"bytes"
"encoding/binary"
"math/rand"
"testing"
"github.com/ethereum/go-ethereum/common"
)
// TestIteratorBasics tests some simple single-layer iteration
func TestIteratorBasics(t *testing.T) {
var (
accounts = make(map[common.Hash][]byte)
storage = make(map[common.Hash]map[common.Hash][]byte)
)
// Fill up a parent
for i := 0; i < 100; i++ {
h := randomHash()
data := randomAccount()
accounts[h] = data
if rand.Intn(20) < 10 {
accStorage := make(map[common.Hash][]byte)
value := make([]byte, 32)
rand.Read(value)
accStorage[randomHash()] = value
storage[h] = accStorage
}
}
// Add some (identical) layers on top
parent := newDiffLayer(emptyLayer(), common.Hash{}, accounts, storage)
it := parent.newAccountIterator()
verifyIterator(t, 100, it)
}
type testIterator struct {
values []byte
}
func newTestIterator(values ...byte) *testIterator {
return &testIterator{values}
}
func (ti *testIterator) Seek(common.Hash) {
panic("implement me")
}
func (ti *testIterator) Next() bool {
ti.values = ti.values[1:]
if len(ti.values) == 0 {
return false
}
return true
}
func (ti *testIterator) Error() error {
panic("implement me")
}
func (ti *testIterator) Key() common.Hash {
return common.BytesToHash([]byte{ti.values[0]})
}
func (ti *testIterator) Value() []byte {
panic("implement me")
}
func TestFastIteratorBasics(t *testing.T) {
type testCase struct {
lists [][]byte
expKeys []byte
}
for i, tc := range []testCase{
{lists: [][]byte{{0, 1, 8}, {1, 2, 8}, {2, 9}, {4},
{7, 14, 15}, {9, 13, 15, 16}},
expKeys: []byte{0, 1, 2, 4, 7, 8, 9, 13, 14, 15, 16}},
{lists: [][]byte{{0, 8}, {1, 2, 8}, {7, 14, 15}, {8, 9},
{9, 10}, {10, 13, 15, 16}},
expKeys: []byte{0, 1, 2, 7, 8, 9, 10, 13, 14, 15, 16}},
} {
var iterators []AccountIterator
for _, data := range tc.lists {
iterators = append(iterators, newTestIterator(data...))
}
fi := &fastAccountIterator{
iterators: iterators,
initiated: false,
}
count := 0
for fi.Next() {
if got, exp := fi.Key()[31], tc.expKeys[count]; exp != got {
t.Errorf("tc %d, [%d]: got %d exp %d", i, count, got, exp)
}
count++
}
}
}
func verifyIterator(t *testing.T, expCount int, it AccountIterator) {
var (
i = 0
last = common.Hash{}
)
for it.Next() {
v := it.Key()
if bytes.Compare(last[:], v[:]) >= 0 {
t.Errorf("Wrong order:\n%x \n>=\n%x", last, v)
}
i++
}
if i != expCount {
t.Errorf("iterator len wrong, expected %d, got %d", expCount, i)
}
}
// TestIteratorTraversal tests some simple multi-layer iteration
func TestIteratorTraversal(t *testing.T) {
var (
storage = make(map[common.Hash]map[common.Hash][]byte)
)
mkAccounts := func(args ...string) map[common.Hash][]byte {
accounts := make(map[common.Hash][]byte)
for _, h := range args {
accounts[common.HexToHash(h)] = randomAccount()
}
return accounts
}
// entries in multiple layers should only become output once
parent := newDiffLayer(emptyLayer(), common.Hash{},
mkAccounts("0xaa", "0xee", "0xff", "0xf0"), storage)
child := parent.Update(common.Hash{},
mkAccounts("0xbb", "0xdd", "0xf0"), storage)
child = child.Update(common.Hash{},
mkAccounts("0xcc", "0xf0", "0xff"), storage)
// single layer iterator
verifyIterator(t, 3, child.newAccountIterator())
// multi-layered binary iterator
verifyIterator(t, 7, child.newBinaryAccountIterator())
// multi-layered fast iterator
verifyIterator(t, 7, child.newFastAccountIterator())
}
func TestIteratorLargeTraversal(t *testing.T) {
// This testcase is a bit notorious -- all layers contain the exact
// same 200 accounts.
var storage = make(map[common.Hash]map[common.Hash][]byte)
mkAccounts := func(num int) map[common.Hash][]byte {
accounts := make(map[common.Hash][]byte)
for i := 0; i < num; i++ {
h := common.Hash{}
binary.BigEndian.PutUint64(h[:], uint64(i+1))
accounts[h] = randomAccount()
}
return accounts
}
parent := newDiffLayer(emptyLayer(), common.Hash{},
mkAccounts(200), storage)
child := parent.Update(common.Hash{},
mkAccounts(200), storage)
for i := 2; i < 100; i++ {
child = child.Update(common.Hash{},
mkAccounts(200), storage)
}
// single layer iterator
verifyIterator(t, 200, child.newAccountIterator())
// multi-layered binary iterator
verifyIterator(t, 200, child.newBinaryAccountIterator())
// multi-layered fast iterator
verifyIterator(t, 200, child.newFastAccountIterator())
}
// BenchmarkIteratorTraversal is a bit a bit notorious -- all layers contain the exact
// same 200 accounts. That means that we need to process 2000 items, but only
// spit out 200 values eventually.
//
//BenchmarkIteratorTraversal/binary_iterator-6 2008 573290 ns/op 9520 B/op 199 allocs/op
//BenchmarkIteratorTraversal/fast_iterator-6 1946 575596 ns/op 20146 B/op 134 allocs/op
func BenchmarkIteratorTraversal(b *testing.B) {
var storage = make(map[common.Hash]map[common.Hash][]byte)
mkAccounts := func(num int) map[common.Hash][]byte {
accounts := make(map[common.Hash][]byte)
for i := 0; i < num; i++ {
h := common.Hash{}
binary.BigEndian.PutUint64(h[:], uint64(i+1))
accounts[h] = randomAccount()
}
return accounts
}
parent := newDiffLayer(emptyLayer(), common.Hash{},
mkAccounts(200), storage)
child := parent.Update(common.Hash{},
mkAccounts(200), storage)
for i := 2; i < 100; i++ {
child = child.Update(common.Hash{},
mkAccounts(200), storage)
}
// We call this once before the benchmark, so the creation of
// sorted accountlists are not included in the results.
child.newBinaryAccountIterator()
b.Run("binary iterator", func(b *testing.B) {
for i := 0; i < b.N; i++ {
got := 0
it := child.newBinaryAccountIterator()
for it.Next() {
got++
}
if exp := 200; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
b.Run("fast iterator", func(b *testing.B) {
for i := 0; i < b.N; i++ {
got := 0
it := child.newFastAccountIterator()
for it.Next() {
got++
}
if exp := 200; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
}
// BenchmarkIteratorLargeBaselayer is a pretty realistic benchmark, where
// the baselayer is a lot larger than the upper layer.
//
// This is heavy on the binary iterator, which in most cases will have to
// call recursively 100 times for the majority of the values
//
// BenchmarkIteratorLargeBaselayer/binary_iterator-6 585 2067377 ns/op 9520 B/op 199 allocs/op
// BenchmarkIteratorLargeBaselayer/fast_iterator-6 13198 91043 ns/op 8601 B/op 118 allocs/op
func BenchmarkIteratorLargeBaselayer(b *testing.B) {
var storage = make(map[common.Hash]map[common.Hash][]byte)
mkAccounts := func(num int) map[common.Hash][]byte {
accounts := make(map[common.Hash][]byte)
for i := 0; i < num; i++ {
h := common.Hash{}
binary.BigEndian.PutUint64(h[:], uint64(i+1))
accounts[h] = randomAccount()
}
return accounts
}
parent := newDiffLayer(emptyLayer(), common.Hash{},
mkAccounts(2000), storage)
child := parent.Update(common.Hash{},
mkAccounts(20), storage)
for i := 2; i < 100; i++ {
child = child.Update(common.Hash{},
mkAccounts(20), storage)
}
// We call this once before the benchmark, so the creation of
// sorted accountlists are not included in the results.
child.newBinaryAccountIterator()
b.Run("binary iterator", func(b *testing.B) {
for i := 0; i < b.N; i++ {
got := 0
it := child.newBinaryAccountIterator()
for it.Next() {
got++
}
if exp := 2000; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
b.Run("fast iterator", func(b *testing.B) {
for i := 0; i < b.N; i++ {
got := 0
it := child.newFastAccountIterator()
for it.Next() {
got++
}
if exp := 2000; got != exp {
b.Errorf("iterator len wrong, expected %d, got %d", exp, got)
}
}
})
}
// TestIteratorFlatting tests what happens when we
// - have a live iterator on child C (parent C1 -> C2 .. CN)
// - flattens C2 all the way into CN
// - continues iterating
// Right now, this "works" simply because the keys do not change -- the
// iterator is not aware that a layer has become stale. This naive
// solution probably won't work in the long run, however
func TestIteratorFlattning(t *testing.T) {
var (
storage = make(map[common.Hash]map[common.Hash][]byte)
)
mkAccounts := func(args ...string) map[common.Hash][]byte {
accounts := make(map[common.Hash][]byte)
for _, h := range args {
accounts[common.HexToHash(h)] = randomAccount()
}
return accounts
}
// entries in multiple layers should only become output once
parent := newDiffLayer(emptyLayer(), common.Hash{},
mkAccounts("0xaa", "0xee", "0xff", "0xf0"), storage)
child := parent.Update(common.Hash{},
mkAccounts("0xbb", "0xdd", "0xf0"), storage)
child = child.Update(common.Hash{},
mkAccounts("0xcc", "0xf0", "0xff"), storage)
it := child.newFastAccountIterator()
child.parent.(*diffLayer).flatten()
// The parent should now be stale
verifyIterator(t, 7, it)
}
func TestIteratorSeek(t *testing.T) {
storage := make(map[common.Hash]map[common.Hash][]byte)
mkAccounts := func(args ...string) map[common.Hash][]byte {
accounts := make(map[common.Hash][]byte)
for _, h := range args {
accounts[common.HexToHash(h)] = randomAccount()
}
return accounts
}
parent := newDiffLayer(emptyLayer(), common.Hash{},
mkAccounts("0xaa", "0xee", "0xff", "0xf0"), storage)
it := AccountIterator(parent.newAccountIterator())
// expected: ee, f0, ff
it.Seek(common.HexToHash("0xdd"))
verifyIterator(t, 3, it)
it = parent.newAccountIterator()
// expected: ee, f0, ff
it.Seek(common.HexToHash("0xaa"))
verifyIterator(t, 3, it)
it = parent.newAccountIterator()
// expected: nothing
it.Seek(common.HexToHash("0xff"))
verifyIterator(t, 0, it)
child := parent.Update(common.Hash{},
mkAccounts("0xbb", "0xdd", "0xf0"), storage)
child = child.Update(common.Hash{},
mkAccounts("0xcc", "0xf0", "0xff"), storage)
it = child.newFastAccountIterator()
// expected: cc, dd, ee, f0, ff
it.Seek(common.HexToHash("0xbb"))
verifyIterator(t, 5, it)
it = child.newFastAccountIterator()
it.Seek(common.HexToHash("0xef"))
// exp: f0, ff
verifyIterator(t, 2, it)
it = child.newFastAccountIterator()
it.Seek(common.HexToHash("0xf0"))
verifyIterator(t, 1, it)
it.Seek(common.HexToHash("0xff"))
verifyIterator(t, 0, it)
}