plugeth/p2p/server.go
Felix Lange c420dcb39c
p2p: enforce connection retry limit on server side (#19684)
The dialer limits itself to one attempt every 30s. Apply the same limit
in Server and reject peers which try to connect too eagerly. The check
against the limit happens right after accepting the connection.

Further changes in this commit ensure we pass the Server logger
down to Peer instances, discovery and dialState. Unit test logging now
works in all Server tests.
2019-06-11 12:45:33 +02:00

1101 lines
31 KiB
Go

// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package p2p implements the Ethereum p2p network protocols.
package p2p
import (
"bytes"
"crypto/ecdsa"
"encoding/hex"
"errors"
"fmt"
"net"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p/discover"
"github.com/ethereum/go-ethereum/p2p/discv5"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/enr"
"github.com/ethereum/go-ethereum/p2p/nat"
"github.com/ethereum/go-ethereum/p2p/netutil"
)
const (
defaultDialTimeout = 15 * time.Second
// Connectivity defaults.
maxActiveDialTasks = 16
defaultMaxPendingPeers = 50
defaultDialRatio = 3
// This time limits inbound connection attempts per source IP.
inboundThrottleTime = 30 * time.Second
// Maximum time allowed for reading a complete message.
// This is effectively the amount of time a connection can be idle.
frameReadTimeout = 30 * time.Second
// Maximum amount of time allowed for writing a complete message.
frameWriteTimeout = 20 * time.Second
)
var errServerStopped = errors.New("server stopped")
// Config holds Server options.
type Config struct {
// This field must be set to a valid secp256k1 private key.
PrivateKey *ecdsa.PrivateKey `toml:"-"`
// MaxPeers is the maximum number of peers that can be
// connected. It must be greater than zero.
MaxPeers int
// MaxPendingPeers is the maximum number of peers that can be pending in the
// handshake phase, counted separately for inbound and outbound connections.
// Zero defaults to preset values.
MaxPendingPeers int `toml:",omitempty"`
// DialRatio controls the ratio of inbound to dialed connections.
// Example: a DialRatio of 2 allows 1/2 of connections to be dialed.
// Setting DialRatio to zero defaults it to 3.
DialRatio int `toml:",omitempty"`
// NoDiscovery can be used to disable the peer discovery mechanism.
// Disabling is useful for protocol debugging (manual topology).
NoDiscovery bool
// DiscoveryV5 specifies whether the new topic-discovery based V5 discovery
// protocol should be started or not.
DiscoveryV5 bool `toml:",omitempty"`
// Name sets the node name of this server.
// Use common.MakeName to create a name that follows existing conventions.
Name string `toml:"-"`
// BootstrapNodes are used to establish connectivity
// with the rest of the network.
BootstrapNodes []*enode.Node
// BootstrapNodesV5 are used to establish connectivity
// with the rest of the network using the V5 discovery
// protocol.
BootstrapNodesV5 []*discv5.Node `toml:",omitempty"`
// Static nodes are used as pre-configured connections which are always
// maintained and re-connected on disconnects.
StaticNodes []*enode.Node
// Trusted nodes are used as pre-configured connections which are always
// allowed to connect, even above the peer limit.
TrustedNodes []*enode.Node
// Connectivity can be restricted to certain IP networks.
// If this option is set to a non-nil value, only hosts which match one of the
// IP networks contained in the list are considered.
NetRestrict *netutil.Netlist `toml:",omitempty"`
// NodeDatabase is the path to the database containing the previously seen
// live nodes in the network.
NodeDatabase string `toml:",omitempty"`
// Protocols should contain the protocols supported
// by the server. Matching protocols are launched for
// each peer.
Protocols []Protocol `toml:"-"`
// If ListenAddr is set to a non-nil address, the server
// will listen for incoming connections.
//
// If the port is zero, the operating system will pick a port. The
// ListenAddr field will be updated with the actual address when
// the server is started.
ListenAddr string
// If set to a non-nil value, the given NAT port mapper
// is used to make the listening port available to the
// Internet.
NAT nat.Interface `toml:",omitempty"`
// If Dialer is set to a non-nil value, the given Dialer
// is used to dial outbound peer connections.
Dialer NodeDialer `toml:"-"`
// If NoDial is true, the server will not dial any peers.
NoDial bool `toml:",omitempty"`
// If EnableMsgEvents is set then the server will emit PeerEvents
// whenever a message is sent to or received from a peer
EnableMsgEvents bool
// Logger is a custom logger to use with the p2p.Server.
Logger log.Logger `toml:",omitempty"`
}
// Server manages all peer connections.
type Server struct {
// Config fields may not be modified while the server is running.
Config
// Hooks for testing. These are useful because we can inhibit
// the whole protocol stack.
newTransport func(net.Conn) transport
newPeerHook func(*Peer)
listenFunc func(network, addr string) (net.Listener, error)
lock sync.Mutex // protects running
running bool
nodedb *enode.DB
localnode *enode.LocalNode
ntab discoverTable
listener net.Listener
ourHandshake *protoHandshake
DiscV5 *discv5.Network
loopWG sync.WaitGroup // loop, listenLoop
peerFeed event.Feed
log log.Logger
// Channels into the run loop.
quit chan struct{}
addstatic chan *enode.Node
removestatic chan *enode.Node
addtrusted chan *enode.Node
removetrusted chan *enode.Node
peerOp chan peerOpFunc
peerOpDone chan struct{}
delpeer chan peerDrop
checkpointPostHandshake chan *conn
checkpointAddPeer chan *conn
// State of run loop and listenLoop.
lastLookup time.Time
inboundHistory expHeap
}
type peerOpFunc func(map[enode.ID]*Peer)
type peerDrop struct {
*Peer
err error
requested bool // true if signaled by the peer
}
type connFlag int32
const (
dynDialedConn connFlag = 1 << iota
staticDialedConn
inboundConn
trustedConn
)
// conn wraps a network connection with information gathered
// during the two handshakes.
type conn struct {
fd net.Conn
transport
node *enode.Node
flags connFlag
cont chan error // The run loop uses cont to signal errors to SetupConn.
caps []Cap // valid after the protocol handshake
name string // valid after the protocol handshake
}
type transport interface {
// The two handshakes.
doEncHandshake(prv *ecdsa.PrivateKey, dialDest *ecdsa.PublicKey) (*ecdsa.PublicKey, error)
doProtoHandshake(our *protoHandshake) (*protoHandshake, error)
// The MsgReadWriter can only be used after the encryption
// handshake has completed. The code uses conn.id to track this
// by setting it to a non-nil value after the encryption handshake.
MsgReadWriter
// transports must provide Close because we use MsgPipe in some of
// the tests. Closing the actual network connection doesn't do
// anything in those tests because MsgPipe doesn't use it.
close(err error)
}
func (c *conn) String() string {
s := c.flags.String()
if (c.node.ID() != enode.ID{}) {
s += " " + c.node.ID().String()
}
s += " " + c.fd.RemoteAddr().String()
return s
}
func (f connFlag) String() string {
s := ""
if f&trustedConn != 0 {
s += "-trusted"
}
if f&dynDialedConn != 0 {
s += "-dyndial"
}
if f&staticDialedConn != 0 {
s += "-staticdial"
}
if f&inboundConn != 0 {
s += "-inbound"
}
if s != "" {
s = s[1:]
}
return s
}
func (c *conn) is(f connFlag) bool {
flags := connFlag(atomic.LoadInt32((*int32)(&c.flags)))
return flags&f != 0
}
func (c *conn) set(f connFlag, val bool) {
for {
oldFlags := connFlag(atomic.LoadInt32((*int32)(&c.flags)))
flags := oldFlags
if val {
flags |= f
} else {
flags &= ^f
}
if atomic.CompareAndSwapInt32((*int32)(&c.flags), int32(oldFlags), int32(flags)) {
return
}
}
}
// Peers returns all connected peers.
func (srv *Server) Peers() []*Peer {
var ps []*Peer
select {
// Note: We'd love to put this function into a variable but
// that seems to cause a weird compiler error in some
// environments.
case srv.peerOp <- func(peers map[enode.ID]*Peer) {
for _, p := range peers {
ps = append(ps, p)
}
}:
<-srv.peerOpDone
case <-srv.quit:
}
return ps
}
// PeerCount returns the number of connected peers.
func (srv *Server) PeerCount() int {
var count int
select {
case srv.peerOp <- func(ps map[enode.ID]*Peer) { count = len(ps) }:
<-srv.peerOpDone
case <-srv.quit:
}
return count
}
// AddPeer connects to the given node and maintains the connection until the
// server is shut down. If the connection fails for any reason, the server will
// attempt to reconnect the peer.
func (srv *Server) AddPeer(node *enode.Node) {
select {
case srv.addstatic <- node:
case <-srv.quit:
}
}
// RemovePeer disconnects from the given node
func (srv *Server) RemovePeer(node *enode.Node) {
select {
case srv.removestatic <- node:
case <-srv.quit:
}
}
// AddTrustedPeer adds the given node to a reserved whitelist which allows the
// node to always connect, even if the slot are full.
func (srv *Server) AddTrustedPeer(node *enode.Node) {
select {
case srv.addtrusted <- node:
case <-srv.quit:
}
}
// RemoveTrustedPeer removes the given node from the trusted peer set.
func (srv *Server) RemoveTrustedPeer(node *enode.Node) {
select {
case srv.removetrusted <- node:
case <-srv.quit:
}
}
// SubscribePeers subscribes the given channel to peer events
func (srv *Server) SubscribeEvents(ch chan *PeerEvent) event.Subscription {
return srv.peerFeed.Subscribe(ch)
}
// Self returns the local node's endpoint information.
func (srv *Server) Self() *enode.Node {
srv.lock.Lock()
ln := srv.localnode
srv.lock.Unlock()
if ln == nil {
return enode.NewV4(&srv.PrivateKey.PublicKey, net.ParseIP("0.0.0.0"), 0, 0)
}
return ln.Node()
}
// Stop terminates the server and all active peer connections.
// It blocks until all active connections have been closed.
func (srv *Server) Stop() {
srv.lock.Lock()
if !srv.running {
srv.lock.Unlock()
return
}
srv.running = false
if srv.listener != nil {
// this unblocks listener Accept
srv.listener.Close()
}
close(srv.quit)
srv.lock.Unlock()
srv.loopWG.Wait()
}
// sharedUDPConn implements a shared connection. Write sends messages to the underlying connection while read returns
// messages that were found unprocessable and sent to the unhandled channel by the primary listener.
type sharedUDPConn struct {
*net.UDPConn
unhandled chan discover.ReadPacket
}
// ReadFromUDP implements discv5.conn
func (s *sharedUDPConn) ReadFromUDP(b []byte) (n int, addr *net.UDPAddr, err error) {
packet, ok := <-s.unhandled
if !ok {
return 0, nil, errors.New("Connection was closed")
}
l := len(packet.Data)
if l > len(b) {
l = len(b)
}
copy(b[:l], packet.Data[:l])
return l, packet.Addr, nil
}
// Close implements discv5.conn
func (s *sharedUDPConn) Close() error {
return nil
}
// Start starts running the server.
// Servers can not be re-used after stopping.
func (srv *Server) Start() (err error) {
srv.lock.Lock()
defer srv.lock.Unlock()
if srv.running {
return errors.New("server already running")
}
srv.running = true
srv.log = srv.Config.Logger
if srv.log == nil {
srv.log = log.Root()
}
if srv.NoDial && srv.ListenAddr == "" {
srv.log.Warn("P2P server will be useless, neither dialing nor listening")
}
// static fields
if srv.PrivateKey == nil {
return errors.New("Server.PrivateKey must be set to a non-nil key")
}
if srv.newTransport == nil {
srv.newTransport = newRLPX
}
if srv.listenFunc == nil {
srv.listenFunc = net.Listen
}
if srv.Dialer == nil {
srv.Dialer = TCPDialer{&net.Dialer{Timeout: defaultDialTimeout}}
}
srv.quit = make(chan struct{})
srv.delpeer = make(chan peerDrop)
srv.checkpointPostHandshake = make(chan *conn)
srv.checkpointAddPeer = make(chan *conn)
srv.addstatic = make(chan *enode.Node)
srv.removestatic = make(chan *enode.Node)
srv.addtrusted = make(chan *enode.Node)
srv.removetrusted = make(chan *enode.Node)
srv.peerOp = make(chan peerOpFunc)
srv.peerOpDone = make(chan struct{})
if err := srv.setupLocalNode(); err != nil {
return err
}
if srv.ListenAddr != "" {
if err := srv.setupListening(); err != nil {
return err
}
}
if err := srv.setupDiscovery(); err != nil {
return err
}
dynPeers := srv.maxDialedConns()
dialer := newDialState(srv.localnode.ID(), srv.ntab, dynPeers, &srv.Config)
srv.loopWG.Add(1)
go srv.run(dialer)
return nil
}
func (srv *Server) setupLocalNode() error {
// Create the devp2p handshake.
pubkey := crypto.FromECDSAPub(&srv.PrivateKey.PublicKey)
srv.ourHandshake = &protoHandshake{Version: baseProtocolVersion, Name: srv.Name, ID: pubkey[1:]}
for _, p := range srv.Protocols {
srv.ourHandshake.Caps = append(srv.ourHandshake.Caps, p.cap())
}
sort.Sort(capsByNameAndVersion(srv.ourHandshake.Caps))
// Create the local node.
db, err := enode.OpenDB(srv.Config.NodeDatabase)
if err != nil {
return err
}
srv.nodedb = db
srv.localnode = enode.NewLocalNode(db, srv.PrivateKey)
srv.localnode.SetFallbackIP(net.IP{127, 0, 0, 1})
srv.localnode.Set(capsByNameAndVersion(srv.ourHandshake.Caps))
// TODO: check conflicts
for _, p := range srv.Protocols {
for _, e := range p.Attributes {
srv.localnode.Set(e)
}
}
switch srv.NAT.(type) {
case nil:
// No NAT interface, do nothing.
case nat.ExtIP:
// ExtIP doesn't block, set the IP right away.
ip, _ := srv.NAT.ExternalIP()
srv.localnode.SetStaticIP(ip)
default:
// Ask the router about the IP. This takes a while and blocks startup,
// do it in the background.
srv.loopWG.Add(1)
go func() {
defer srv.loopWG.Done()
if ip, err := srv.NAT.ExternalIP(); err == nil {
srv.localnode.SetStaticIP(ip)
}
}()
}
return nil
}
func (srv *Server) setupDiscovery() error {
if srv.NoDiscovery && !srv.DiscoveryV5 {
return nil
}
addr, err := net.ResolveUDPAddr("udp", srv.ListenAddr)
if err != nil {
return err
}
conn, err := net.ListenUDP("udp", addr)
if err != nil {
return err
}
realaddr := conn.LocalAddr().(*net.UDPAddr)
srv.log.Debug("UDP listener up", "addr", realaddr)
if srv.NAT != nil {
if !realaddr.IP.IsLoopback() {
go nat.Map(srv.NAT, srv.quit, "udp", realaddr.Port, realaddr.Port, "ethereum discovery")
}
}
srv.localnode.SetFallbackUDP(realaddr.Port)
// Discovery V4
var unhandled chan discover.ReadPacket
var sconn *sharedUDPConn
if !srv.NoDiscovery {
if srv.DiscoveryV5 {
unhandled = make(chan discover.ReadPacket, 100)
sconn = &sharedUDPConn{conn, unhandled}
}
cfg := discover.Config{
PrivateKey: srv.PrivateKey,
NetRestrict: srv.NetRestrict,
Bootnodes: srv.BootstrapNodes,
Unhandled: unhandled,
Log: srv.log,
}
ntab, err := discover.ListenUDP(conn, srv.localnode, cfg)
if err != nil {
return err
}
srv.ntab = ntab
}
// Discovery V5
if srv.DiscoveryV5 {
var ntab *discv5.Network
var err error
if sconn != nil {
ntab, err = discv5.ListenUDP(srv.PrivateKey, sconn, "", srv.NetRestrict)
} else {
ntab, err = discv5.ListenUDP(srv.PrivateKey, conn, "", srv.NetRestrict)
}
if err != nil {
return err
}
if err := ntab.SetFallbackNodes(srv.BootstrapNodesV5); err != nil {
return err
}
srv.DiscV5 = ntab
}
return nil
}
func (srv *Server) setupListening() error {
// Launch the listener.
listener, err := srv.listenFunc("tcp", srv.ListenAddr)
if err != nil {
return err
}
srv.listener = listener
srv.ListenAddr = listener.Addr().String()
// Update the local node record and map the TCP listening port if NAT is configured.
if tcp, ok := listener.Addr().(*net.TCPAddr); ok {
srv.localnode.Set(enr.TCP(tcp.Port))
if !tcp.IP.IsLoopback() && srv.NAT != nil {
srv.loopWG.Add(1)
go func() {
nat.Map(srv.NAT, srv.quit, "tcp", tcp.Port, tcp.Port, "ethereum p2p")
srv.loopWG.Done()
}()
}
}
srv.loopWG.Add(1)
go srv.listenLoop()
return nil
}
type dialer interface {
newTasks(running int, peers map[enode.ID]*Peer, now time.Time) []task
taskDone(task, time.Time)
addStatic(*enode.Node)
removeStatic(*enode.Node)
}
func (srv *Server) run(dialstate dialer) {
srv.log.Info("Started P2P networking", "self", srv.localnode.Node().URLv4())
defer srv.loopWG.Done()
defer srv.nodedb.Close()
var (
peers = make(map[enode.ID]*Peer)
inboundCount = 0
trusted = make(map[enode.ID]bool, len(srv.TrustedNodes))
taskdone = make(chan task, maxActiveDialTasks)
runningTasks []task
queuedTasks []task // tasks that can't run yet
)
// Put trusted nodes into a map to speed up checks.
// Trusted peers are loaded on startup or added via AddTrustedPeer RPC.
for _, n := range srv.TrustedNodes {
trusted[n.ID()] = true
}
// removes t from runningTasks
delTask := func(t task) {
for i := range runningTasks {
if runningTasks[i] == t {
runningTasks = append(runningTasks[:i], runningTasks[i+1:]...)
break
}
}
}
// starts until max number of active tasks is satisfied
startTasks := func(ts []task) (rest []task) {
i := 0
for ; len(runningTasks) < maxActiveDialTasks && i < len(ts); i++ {
t := ts[i]
srv.log.Trace("New dial task", "task", t)
go func() { t.Do(srv); taskdone <- t }()
runningTasks = append(runningTasks, t)
}
return ts[i:]
}
scheduleTasks := func() {
// Start from queue first.
queuedTasks = append(queuedTasks[:0], startTasks(queuedTasks)...)
// Query dialer for new tasks and start as many as possible now.
if len(runningTasks) < maxActiveDialTasks {
nt := dialstate.newTasks(len(runningTasks)+len(queuedTasks), peers, time.Now())
queuedTasks = append(queuedTasks, startTasks(nt)...)
}
}
running:
for {
scheduleTasks()
select {
case <-srv.quit:
// The server was stopped. Run the cleanup logic.
break running
case n := <-srv.addstatic:
// This channel is used by AddPeer to add to the
// ephemeral static peer list. Add it to the dialer,
// it will keep the node connected.
srv.log.Trace("Adding static node", "node", n)
dialstate.addStatic(n)
case n := <-srv.removestatic:
// This channel is used by RemovePeer to send a
// disconnect request to a peer and begin the
// stop keeping the node connected.
srv.log.Trace("Removing static node", "node", n)
dialstate.removeStatic(n)
if p, ok := peers[n.ID()]; ok {
p.Disconnect(DiscRequested)
}
case n := <-srv.addtrusted:
// This channel is used by AddTrustedPeer to add an enode
// to the trusted node set.
srv.log.Trace("Adding trusted node", "node", n)
trusted[n.ID()] = true
// Mark any already-connected peer as trusted
if p, ok := peers[n.ID()]; ok {
p.rw.set(trustedConn, true)
}
case n := <-srv.removetrusted:
// This channel is used by RemoveTrustedPeer to remove an enode
// from the trusted node set.
srv.log.Trace("Removing trusted node", "node", n)
delete(trusted, n.ID())
// Unmark any already-connected peer as trusted
if p, ok := peers[n.ID()]; ok {
p.rw.set(trustedConn, false)
}
case op := <-srv.peerOp:
// This channel is used by Peers and PeerCount.
op(peers)
srv.peerOpDone <- struct{}{}
case t := <-taskdone:
// A task got done. Tell dialstate about it so it
// can update its state and remove it from the active
// tasks list.
srv.log.Trace("Dial task done", "task", t)
dialstate.taskDone(t, time.Now())
delTask(t)
case c := <-srv.checkpointPostHandshake:
// A connection has passed the encryption handshake so
// the remote identity is known (but hasn't been verified yet).
if trusted[c.node.ID()] {
// Ensure that the trusted flag is set before checking against MaxPeers.
c.flags |= trustedConn
}
// TODO: track in-progress inbound node IDs (pre-Peer) to avoid dialing them.
c.cont <- srv.postHandshakeChecks(peers, inboundCount, c)
case c := <-srv.checkpointAddPeer:
// At this point the connection is past the protocol handshake.
// Its capabilities are known and the remote identity is verified.
err := srv.addPeerChecks(peers, inboundCount, c)
if err == nil {
// The handshakes are done and it passed all checks.
p := newPeer(srv.log, c, srv.Protocols)
// If message events are enabled, pass the peerFeed
// to the peer
if srv.EnableMsgEvents {
p.events = &srv.peerFeed
}
name := truncateName(c.name)
srv.log.Debug("Adding p2p peer", "name", name, "addr", c.fd.RemoteAddr(), "peers", len(peers)+1)
go srv.runPeer(p)
peers[c.node.ID()] = p
if p.Inbound() {
inboundCount++
}
}
// The dialer logic relies on the assumption that
// dial tasks complete after the peer has been added or
// discarded. Unblock the task last.
c.cont <- err
case pd := <-srv.delpeer:
// A peer disconnected.
d := common.PrettyDuration(mclock.Now() - pd.created)
pd.log.Debug("Removing p2p peer", "duration", d, "peers", len(peers)-1, "req", pd.requested, "err", pd.err)
delete(peers, pd.ID())
if pd.Inbound() {
inboundCount--
}
}
}
srv.log.Trace("P2P networking is spinning down")
// Terminate discovery. If there is a running lookup it will terminate soon.
if srv.ntab != nil {
srv.ntab.Close()
}
if srv.DiscV5 != nil {
srv.DiscV5.Close()
}
// Disconnect all peers.
for _, p := range peers {
p.Disconnect(DiscQuitting)
}
// Wait for peers to shut down. Pending connections and tasks are
// not handled here and will terminate soon-ish because srv.quit
// is closed.
for len(peers) > 0 {
p := <-srv.delpeer
p.log.Trace("<-delpeer (spindown)", "remainingTasks", len(runningTasks))
delete(peers, p.ID())
}
}
func (srv *Server) postHandshakeChecks(peers map[enode.ID]*Peer, inboundCount int, c *conn) error {
switch {
case !c.is(trustedConn|staticDialedConn) && len(peers) >= srv.MaxPeers:
return DiscTooManyPeers
case !c.is(trustedConn) && c.is(inboundConn) && inboundCount >= srv.maxInboundConns():
return DiscTooManyPeers
case peers[c.node.ID()] != nil:
return DiscAlreadyConnected
case c.node.ID() == srv.localnode.ID():
return DiscSelf
default:
return nil
}
}
func (srv *Server) addPeerChecks(peers map[enode.ID]*Peer, inboundCount int, c *conn) error {
// Drop connections with no matching protocols.
if len(srv.Protocols) > 0 && countMatchingProtocols(srv.Protocols, c.caps) == 0 {
return DiscUselessPeer
}
// Repeat the post-handshake checks because the
// peer set might have changed since those checks were performed.
return srv.postHandshakeChecks(peers, inboundCount, c)
}
func (srv *Server) maxInboundConns() int {
return srv.MaxPeers - srv.maxDialedConns()
}
func (srv *Server) maxDialedConns() int {
if srv.NoDiscovery || srv.NoDial {
return 0
}
r := srv.DialRatio
if r == 0 {
r = defaultDialRatio
}
return srv.MaxPeers / r
}
// listenLoop runs in its own goroutine and accepts
// inbound connections.
func (srv *Server) listenLoop() {
defer srv.loopWG.Done()
srv.log.Debug("TCP listener up", "addr", srv.listener.Addr())
tokens := defaultMaxPendingPeers
if srv.MaxPendingPeers > 0 {
tokens = srv.MaxPendingPeers
}
slots := make(chan struct{}, tokens)
for i := 0; i < tokens; i++ {
slots <- struct{}{}
}
for {
// Wait for a free slot before accepting.
<-slots
var (
fd net.Conn
err error
)
for {
fd, err = srv.listener.Accept()
if netutil.IsTemporaryError(err) {
srv.log.Debug("Temporary read error", "err", err)
continue
} else if err != nil {
srv.log.Debug("Read error", "err", err)
return
}
break
}
remoteIP := netutil.AddrIP(fd.RemoteAddr())
if err := srv.checkInboundConn(fd, remoteIP); err != nil {
srv.log.Debug("Rejected inbound connnection", "addr", fd.RemoteAddr(), "err", err)
fd.Close()
slots <- struct{}{}
continue
}
if remoteIP != nil {
fd = newMeteredConn(fd, true, remoteIP)
}
srv.log.Trace("Accepted connection", "addr", fd.RemoteAddr())
go func() {
srv.SetupConn(fd, inboundConn, nil)
slots <- struct{}{}
}()
}
}
func (srv *Server) checkInboundConn(fd net.Conn, remoteIP net.IP) error {
if remoteIP != nil {
// Reject connections that do not match NetRestrict.
if srv.NetRestrict != nil && !srv.NetRestrict.Contains(remoteIP) {
return fmt.Errorf("not whitelisted in NetRestrict")
}
// Reject Internet peers that try too often.
srv.inboundHistory.expire(time.Now())
if !netutil.IsLAN(remoteIP) && srv.inboundHistory.contains(remoteIP.String()) {
return fmt.Errorf("too many attempts")
}
srv.inboundHistory.add(remoteIP.String(), time.Now().Add(inboundThrottleTime))
}
return nil
}
// SetupConn runs the handshakes and attempts to add the connection
// as a peer. It returns when the connection has been added as a peer
// or the handshakes have failed.
func (srv *Server) SetupConn(fd net.Conn, flags connFlag, dialDest *enode.Node) error {
c := &conn{fd: fd, transport: srv.newTransport(fd), flags: flags, cont: make(chan error)}
err := srv.setupConn(c, flags, dialDest)
if err != nil {
c.close(err)
srv.log.Trace("Setting up connection failed", "addr", fd.RemoteAddr(), "err", err)
}
return err
}
func (srv *Server) setupConn(c *conn, flags connFlag, dialDest *enode.Node) error {
// Prevent leftover pending conns from entering the handshake.
srv.lock.Lock()
running := srv.running
srv.lock.Unlock()
if !running {
return errServerStopped
}
// If dialing, figure out the remote public key.
var dialPubkey *ecdsa.PublicKey
if dialDest != nil {
dialPubkey = new(ecdsa.PublicKey)
if err := dialDest.Load((*enode.Secp256k1)(dialPubkey)); err != nil {
return errors.New("dial destination doesn't have a secp256k1 public key")
}
}
// Run the RLPx handshake.
remotePubkey, err := c.doEncHandshake(srv.PrivateKey, dialPubkey)
if err != nil {
srv.log.Trace("Failed RLPx handshake", "addr", c.fd.RemoteAddr(), "conn", c.flags, "err", err)
return err
}
if dialDest != nil {
// For dialed connections, check that the remote public key matches.
if dialPubkey.X.Cmp(remotePubkey.X) != 0 || dialPubkey.Y.Cmp(remotePubkey.Y) != 0 {
return DiscUnexpectedIdentity
}
c.node = dialDest
} else {
c.node = nodeFromConn(remotePubkey, c.fd)
}
if conn, ok := c.fd.(*meteredConn); ok {
conn.handshakeDone(c.node.ID())
}
clog := srv.log.New("id", c.node.ID(), "addr", c.fd.RemoteAddr(), "conn", c.flags)
err = srv.checkpoint(c, srv.checkpointPostHandshake)
if err != nil {
clog.Trace("Rejected peer", "err", err)
return err
}
// Run the capability negotiation handshake.
phs, err := c.doProtoHandshake(srv.ourHandshake)
if err != nil {
clog.Trace("Failed proto handshake", "err", err)
return err
}
if id := c.node.ID(); !bytes.Equal(crypto.Keccak256(phs.ID), id[:]) {
clog.Trace("Wrong devp2p handshake identity", "phsid", hex.EncodeToString(phs.ID))
return DiscUnexpectedIdentity
}
c.caps, c.name = phs.Caps, phs.Name
err = srv.checkpoint(c, srv.checkpointAddPeer)
if err != nil {
clog.Trace("Rejected peer", "err", err)
return err
}
// If the checks completed successfully, the connection has been added as a peer and
// runPeer has been launched.
clog.Trace("Connection set up", "inbound", dialDest == nil)
return nil
}
func nodeFromConn(pubkey *ecdsa.PublicKey, conn net.Conn) *enode.Node {
var ip net.IP
var port int
if tcp, ok := conn.RemoteAddr().(*net.TCPAddr); ok {
ip = tcp.IP
port = tcp.Port
}
return enode.NewV4(pubkey, ip, port, port)
}
func truncateName(s string) string {
if len(s) > 20 {
return s[:20] + "..."
}
return s
}
// checkpoint sends the conn to run, which performs the
// post-handshake checks for the stage (posthandshake, addpeer).
func (srv *Server) checkpoint(c *conn, stage chan<- *conn) error {
select {
case stage <- c:
case <-srv.quit:
return errServerStopped
}
return <-c.cont
}
// runPeer runs in its own goroutine for each peer.
// it waits until the Peer logic returns and removes
// the peer.
func (srv *Server) runPeer(p *Peer) {
if srv.newPeerHook != nil {
srv.newPeerHook(p)
}
// broadcast peer add
srv.peerFeed.Send(&PeerEvent{
Type: PeerEventTypeAdd,
Peer: p.ID(),
})
// run the protocol
remoteRequested, err := p.run()
// broadcast peer drop
srv.peerFeed.Send(&PeerEvent{
Type: PeerEventTypeDrop,
Peer: p.ID(),
Error: err.Error(),
})
// Note: run waits for existing peers to be sent on srv.delpeer
// before returning, so this send should not select on srv.quit.
srv.delpeer <- peerDrop{p, err, remoteRequested}
}
// NodeInfo represents a short summary of the information known about the host.
type NodeInfo struct {
ID string `json:"id"` // Unique node identifier (also the encryption key)
Name string `json:"name"` // Name of the node, including client type, version, OS, custom data
Enode string `json:"enode"` // Enode URL for adding this peer from remote peers
ENR string `json:"enr"` // Ethereum Node Record
IP string `json:"ip"` // IP address of the node
Ports struct {
Discovery int `json:"discovery"` // UDP listening port for discovery protocol
Listener int `json:"listener"` // TCP listening port for RLPx
} `json:"ports"`
ListenAddr string `json:"listenAddr"`
Protocols map[string]interface{} `json:"protocols"`
}
// NodeInfo gathers and returns a collection of metadata known about the host.
func (srv *Server) NodeInfo() *NodeInfo {
// Gather and assemble the generic node infos
node := srv.Self()
info := &NodeInfo{
Name: srv.Name,
Enode: node.URLv4(),
ID: node.ID().String(),
IP: node.IP().String(),
ListenAddr: srv.ListenAddr,
Protocols: make(map[string]interface{}),
}
info.Ports.Discovery = node.UDP()
info.Ports.Listener = node.TCP()
info.ENR = node.String()
// Gather all the running protocol infos (only once per protocol type)
for _, proto := range srv.Protocols {
if _, ok := info.Protocols[proto.Name]; !ok {
nodeInfo := interface{}("unknown")
if query := proto.NodeInfo; query != nil {
nodeInfo = proto.NodeInfo()
}
info.Protocols[proto.Name] = nodeInfo
}
}
return info
}
// PeersInfo returns an array of metadata objects describing connected peers.
func (srv *Server) PeersInfo() []*PeerInfo {
// Gather all the generic and sub-protocol specific infos
infos := make([]*PeerInfo, 0, srv.PeerCount())
for _, peer := range srv.Peers() {
if peer != nil {
infos = append(infos, peer.Info())
}
}
// Sort the result array alphabetically by node identifier
for i := 0; i < len(infos); i++ {
for j := i + 1; j < len(infos); j++ {
if infos[i].ID > infos[j].ID {
infos[i], infos[j] = infos[j], infos[i]
}
}
}
return infos
}