44ff3f3dc9
* trie: initial implementation for range proof * trie: add benchmark * trie: fix lint * trie: fix minor issue * trie: unset the edge valuenode as well * trie: unset the edge valuenode as nilValuenode
402 lines
11 KiB
Go
402 lines
11 KiB
Go
// Copyright 2015 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package trie
|
|
|
|
import (
|
|
"bytes"
|
|
crand "crypto/rand"
|
|
mrand "math/rand"
|
|
"sort"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
"github.com/ethereum/go-ethereum/ethdb/memorydb"
|
|
)
|
|
|
|
func init() {
|
|
mrand.Seed(time.Now().Unix())
|
|
}
|
|
|
|
// makeProvers creates Merkle trie provers based on different implementations to
|
|
// test all variations.
|
|
func makeProvers(trie *Trie) []func(key []byte) *memorydb.Database {
|
|
var provers []func(key []byte) *memorydb.Database
|
|
|
|
// Create a direct trie based Merkle prover
|
|
provers = append(provers, func(key []byte) *memorydb.Database {
|
|
proof := memorydb.New()
|
|
trie.Prove(key, 0, proof)
|
|
return proof
|
|
})
|
|
// Create a leaf iterator based Merkle prover
|
|
provers = append(provers, func(key []byte) *memorydb.Database {
|
|
proof := memorydb.New()
|
|
if it := NewIterator(trie.NodeIterator(key)); it.Next() && bytes.Equal(key, it.Key) {
|
|
for _, p := range it.Prove() {
|
|
proof.Put(crypto.Keccak256(p), p)
|
|
}
|
|
}
|
|
return proof
|
|
})
|
|
return provers
|
|
}
|
|
|
|
func TestProof(t *testing.T) {
|
|
trie, vals := randomTrie(500)
|
|
root := trie.Hash()
|
|
for i, prover := range makeProvers(trie) {
|
|
for _, kv := range vals {
|
|
proof := prover(kv.k)
|
|
if proof == nil {
|
|
t.Fatalf("prover %d: missing key %x while constructing proof", i, kv.k)
|
|
}
|
|
val, err := VerifyProof(root, kv.k, proof)
|
|
if err != nil {
|
|
t.Fatalf("prover %d: failed to verify proof for key %x: %v\nraw proof: %x", i, kv.k, err, proof)
|
|
}
|
|
if !bytes.Equal(val, kv.v) {
|
|
t.Fatalf("prover %d: verified value mismatch for key %x: have %x, want %x", i, kv.k, val, kv.v)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestOneElementProof(t *testing.T) {
|
|
trie := new(Trie)
|
|
updateString(trie, "k", "v")
|
|
for i, prover := range makeProvers(trie) {
|
|
proof := prover([]byte("k"))
|
|
if proof == nil {
|
|
t.Fatalf("prover %d: nil proof", i)
|
|
}
|
|
if proof.Len() != 1 {
|
|
t.Errorf("prover %d: proof should have one element", i)
|
|
}
|
|
val, err := VerifyProof(trie.Hash(), []byte("k"), proof)
|
|
if err != nil {
|
|
t.Fatalf("prover %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
|
|
}
|
|
if !bytes.Equal(val, []byte("v")) {
|
|
t.Fatalf("prover %d: verified value mismatch: have %x, want 'k'", i, val)
|
|
}
|
|
}
|
|
}
|
|
|
|
type entrySlice []*kv
|
|
|
|
func (p entrySlice) Len() int { return len(p) }
|
|
func (p entrySlice) Less(i, j int) bool { return bytes.Compare(p[i].k, p[j].k) < 0 }
|
|
func (p entrySlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
func TestRangeProof(t *testing.T) {
|
|
trie, vals := randomTrie(4096)
|
|
var entries entrySlice
|
|
for _, kv := range vals {
|
|
entries = append(entries, kv)
|
|
}
|
|
sort.Sort(entries)
|
|
for i := 0; i < 500; i++ {
|
|
start := mrand.Intn(len(entries))
|
|
end := mrand.Intn(len(entries)-start) + start
|
|
if start == end {
|
|
continue
|
|
}
|
|
firstProof, lastProof := memorydb.New(), memorydb.New()
|
|
if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
var keys [][]byte
|
|
var vals [][]byte
|
|
for i := start; i < end; i++ {
|
|
keys = append(keys, entries[i].k)
|
|
vals = append(vals, entries[i].v)
|
|
}
|
|
err := VerifyRangeProof(trie.Hash(), keys, vals, firstProof, lastProof)
|
|
if err != nil {
|
|
t.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestBadRangeProof(t *testing.T) {
|
|
trie, vals := randomTrie(4096)
|
|
var entries entrySlice
|
|
for _, kv := range vals {
|
|
entries = append(entries, kv)
|
|
}
|
|
sort.Sort(entries)
|
|
|
|
for i := 0; i < 500; i++ {
|
|
start := mrand.Intn(len(entries))
|
|
end := mrand.Intn(len(entries)-start) + start
|
|
if start == end {
|
|
continue
|
|
}
|
|
firstProof, lastProof := memorydb.New(), memorydb.New()
|
|
if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
var keys [][]byte
|
|
var vals [][]byte
|
|
for i := start; i < end; i++ {
|
|
keys = append(keys, entries[i].k)
|
|
vals = append(vals, entries[i].v)
|
|
}
|
|
testcase := mrand.Intn(6)
|
|
var index int
|
|
switch testcase {
|
|
case 0:
|
|
// Modified key
|
|
index = mrand.Intn(end - start)
|
|
keys[index] = randBytes(32) // In theory it can't be same
|
|
case 1:
|
|
// Modified val
|
|
index = mrand.Intn(end - start)
|
|
vals[index] = randBytes(20) // In theory it can't be same
|
|
case 2:
|
|
// Gapped entry slice
|
|
index = mrand.Intn(end - start)
|
|
keys = append(keys[:index], keys[index+1:]...)
|
|
vals = append(vals[:index], vals[index+1:]...)
|
|
if len(keys) <= 1 {
|
|
continue
|
|
}
|
|
case 3:
|
|
// Switched entry slice, same effect with gapped
|
|
index = mrand.Intn(end - start)
|
|
keys[index] = entries[len(entries)-1].k
|
|
vals[index] = entries[len(entries)-1].v
|
|
case 4:
|
|
// Set random key to nil
|
|
index = mrand.Intn(end - start)
|
|
keys[index] = nil
|
|
case 5:
|
|
// Set random value to nil
|
|
index = mrand.Intn(end - start)
|
|
vals[index] = nil
|
|
}
|
|
err := VerifyRangeProof(trie.Hash(), keys, vals, firstProof, lastProof)
|
|
if err == nil {
|
|
t.Fatalf("%d Case %d index %d range: (%d->%d) expect error, got nil", i, testcase, index, start, end-1)
|
|
}
|
|
}
|
|
}
|
|
|
|
// TestGappedRangeProof focuses on the small trie with embedded nodes.
|
|
// If the gapped node is embedded in the trie, it should be detected too.
|
|
func TestGappedRangeProof(t *testing.T) {
|
|
trie := new(Trie)
|
|
var entries []*kv // Sorted entries
|
|
for i := byte(0); i < 10; i++ {
|
|
value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
|
|
trie.Update(value.k, value.v)
|
|
entries = append(entries, value)
|
|
}
|
|
first, last := 2, 8
|
|
firstProof, lastProof := memorydb.New(), memorydb.New()
|
|
if err := trie.Prove(entries[first].k, 0, firstProof); err != nil {
|
|
t.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(entries[last-1].k, 0, lastProof); err != nil {
|
|
t.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
var keys [][]byte
|
|
var vals [][]byte
|
|
for i := first; i < last; i++ {
|
|
if i == (first+last)/2 {
|
|
continue
|
|
}
|
|
keys = append(keys, entries[i].k)
|
|
vals = append(vals, entries[i].v)
|
|
}
|
|
err := VerifyRangeProof(trie.Hash(), keys, vals, firstProof, lastProof)
|
|
if err == nil {
|
|
t.Fatal("expect error, got nil")
|
|
}
|
|
}
|
|
|
|
func TestBadProof(t *testing.T) {
|
|
trie, vals := randomTrie(800)
|
|
root := trie.Hash()
|
|
for i, prover := range makeProvers(trie) {
|
|
for _, kv := range vals {
|
|
proof := prover(kv.k)
|
|
if proof == nil {
|
|
t.Fatalf("prover %d: nil proof", i)
|
|
}
|
|
it := proof.NewIterator(nil, nil)
|
|
for i, d := 0, mrand.Intn(proof.Len()); i <= d; i++ {
|
|
it.Next()
|
|
}
|
|
key := it.Key()
|
|
val, _ := proof.Get(key)
|
|
proof.Delete(key)
|
|
it.Release()
|
|
|
|
mutateByte(val)
|
|
proof.Put(crypto.Keccak256(val), val)
|
|
|
|
if _, err := VerifyProof(root, kv.k, proof); err == nil {
|
|
t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Tests that missing keys can also be proven. The test explicitly uses a single
|
|
// entry trie and checks for missing keys both before and after the single entry.
|
|
func TestMissingKeyProof(t *testing.T) {
|
|
trie := new(Trie)
|
|
updateString(trie, "k", "v")
|
|
|
|
for i, key := range []string{"a", "j", "l", "z"} {
|
|
proof := memorydb.New()
|
|
trie.Prove([]byte(key), 0, proof)
|
|
|
|
if proof.Len() != 1 {
|
|
t.Errorf("test %d: proof should have one element", i)
|
|
}
|
|
val, err := VerifyProof(trie.Hash(), []byte(key), proof)
|
|
if err != nil {
|
|
t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
|
|
}
|
|
if val != nil {
|
|
t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val)
|
|
}
|
|
}
|
|
}
|
|
|
|
// mutateByte changes one byte in b.
|
|
func mutateByte(b []byte) {
|
|
for r := mrand.Intn(len(b)); ; {
|
|
new := byte(mrand.Intn(255))
|
|
if new != b[r] {
|
|
b[r] = new
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
func BenchmarkProve(b *testing.B) {
|
|
trie, vals := randomTrie(100)
|
|
var keys []string
|
|
for k := range vals {
|
|
keys = append(keys, k)
|
|
}
|
|
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
kv := vals[keys[i%len(keys)]]
|
|
proofs := memorydb.New()
|
|
if trie.Prove(kv.k, 0, proofs); proofs.Len() == 0 {
|
|
b.Fatalf("zero length proof for %x", kv.k)
|
|
}
|
|
}
|
|
}
|
|
|
|
func BenchmarkVerifyProof(b *testing.B) {
|
|
trie, vals := randomTrie(100)
|
|
root := trie.Hash()
|
|
var keys []string
|
|
var proofs []*memorydb.Database
|
|
for k := range vals {
|
|
keys = append(keys, k)
|
|
proof := memorydb.New()
|
|
trie.Prove([]byte(k), 0, proof)
|
|
proofs = append(proofs, proof)
|
|
}
|
|
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
im := i % len(keys)
|
|
if _, err := VerifyProof(root, []byte(keys[im]), proofs[im]); err != nil {
|
|
b.Fatalf("key %x: %v", keys[im], err)
|
|
}
|
|
}
|
|
}
|
|
|
|
func BenchmarkVerifyRangeProof10(b *testing.B) { benchmarkVerifyRangeProof(b, 10) }
|
|
func BenchmarkVerifyRangeProof100(b *testing.B) { benchmarkVerifyRangeProof(b, 100) }
|
|
func BenchmarkVerifyRangeProof1000(b *testing.B) { benchmarkVerifyRangeProof(b, 1000) }
|
|
func BenchmarkVerifyRangeProof5000(b *testing.B) { benchmarkVerifyRangeProof(b, 5000) }
|
|
|
|
func benchmarkVerifyRangeProof(b *testing.B, size int) {
|
|
trie, vals := randomTrie(8192)
|
|
var entries entrySlice
|
|
for _, kv := range vals {
|
|
entries = append(entries, kv)
|
|
}
|
|
sort.Sort(entries)
|
|
|
|
start := 2
|
|
end := start + size
|
|
firstProof, lastProof := memorydb.New(), memorydb.New()
|
|
if err := trie.Prove(entries[start].k, 0, firstProof); err != nil {
|
|
b.Fatalf("Failed to prove the first node %v", err)
|
|
}
|
|
if err := trie.Prove(entries[end-1].k, 0, lastProof); err != nil {
|
|
b.Fatalf("Failed to prove the last node %v", err)
|
|
}
|
|
var keys [][]byte
|
|
var values [][]byte
|
|
for i := start; i < end; i++ {
|
|
keys = append(keys, entries[i].k)
|
|
values = append(values, entries[i].v)
|
|
}
|
|
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
err := VerifyRangeProof(trie.Hash(), keys, values, firstProof, lastProof)
|
|
if err != nil {
|
|
b.Fatalf("Case %d(%d->%d) expect no error, got %v", i, start, end-1, err)
|
|
}
|
|
}
|
|
}
|
|
|
|
func randomTrie(n int) (*Trie, map[string]*kv) {
|
|
trie := new(Trie)
|
|
vals := make(map[string]*kv)
|
|
for i := byte(0); i < 100; i++ {
|
|
value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
|
|
value2 := &kv{common.LeftPadBytes([]byte{i + 10}, 32), []byte{i}, false}
|
|
trie.Update(value.k, value.v)
|
|
trie.Update(value2.k, value2.v)
|
|
vals[string(value.k)] = value
|
|
vals[string(value2.k)] = value2
|
|
}
|
|
for i := 0; i < n; i++ {
|
|
value := &kv{randBytes(32), randBytes(20), false}
|
|
trie.Update(value.k, value.v)
|
|
vals[string(value.k)] = value
|
|
}
|
|
return trie, vals
|
|
}
|
|
|
|
func randBytes(n int) []byte {
|
|
r := make([]byte, n)
|
|
crand.Read(r)
|
|
return r
|
|
}
|