plugeth/eth/protocols/snap/handler.go
Felix Lange b8040a430e
cmd/utils: use eth DNS tree for snap discovery (#22808)
This removes auto-configuration of the snap.*.ethdisco.net DNS discovery tree.
Since measurements have shown that > 75% of nodes in all.*.ethdisco.net support
snap, we have decided to retire the dedicated index for snap and just use the eth
tree instead.

The dial iterators of eth and snap now use the same DNS tree in the default configuration,
so both iterators should use the same DNS discovery client instance. This ensures that
the record cache and rate limit are shared. Records will not be requested multiple times.

While testing the change, I noticed that duplicate DNS requests do happen even
when the client instance is shared. This is because the two iterators request the tree
root, link tree root, and first levels of the tree in lockstep. To avoid this problem, the
change also adds a singleflight.Group instance in the client. When one iterator
attempts to resolve an entry which is already being resolved, the singleflight object
waits for the existing resolve call to finish and returns the entry to both places.
2021-05-04 11:29:32 +02:00

529 lines
18 KiB
Go

// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package snap
import (
"bytes"
"fmt"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/light"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/enr"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
)
const (
// softResponseLimit is the target maximum size of replies to data retrievals.
softResponseLimit = 2 * 1024 * 1024
// maxCodeLookups is the maximum number of bytecodes to serve. This number is
// there to limit the number of disk lookups.
maxCodeLookups = 1024
// stateLookupSlack defines the ratio by how much a state response can exceed
// the requested limit in order to try and avoid breaking up contracts into
// multiple packages and proving them.
stateLookupSlack = 0.1
// maxTrieNodeLookups is the maximum number of state trie nodes to serve. This
// number is there to limit the number of disk lookups.
maxTrieNodeLookups = 1024
// maxTrieNodeTimeSpent is the maximum time we should spend on looking up trie nodes.
// If we spend too much time, then it's a fairly high chance of timing out
// at the remote side, which means all the work is in vain.
maxTrieNodeTimeSpent = 5 * time.Second
)
// Handler is a callback to invoke from an outside runner after the boilerplate
// exchanges have passed.
type Handler func(peer *Peer) error
// Backend defines the data retrieval methods to serve remote requests and the
// callback methods to invoke on remote deliveries.
type Backend interface {
// Chain retrieves the blockchain object to serve data.
Chain() *core.BlockChain
// RunPeer is invoked when a peer joins on the `eth` protocol. The handler
// should do any peer maintenance work, handshakes and validations. If all
// is passed, control should be given back to the `handler` to process the
// inbound messages going forward.
RunPeer(peer *Peer, handler Handler) error
// PeerInfo retrieves all known `snap` information about a peer.
PeerInfo(id enode.ID) interface{}
// Handle is a callback to be invoked when a data packet is received from
// the remote peer. Only packets not consumed by the protocol handler will
// be forwarded to the backend.
Handle(peer *Peer, packet Packet) error
}
// MakeProtocols constructs the P2P protocol definitions for `snap`.
func MakeProtocols(backend Backend, dnsdisc enode.Iterator) []p2p.Protocol {
// Filter the discovery iterator for nodes advertising snap support.
dnsdisc = enode.Filter(dnsdisc, func(n *enode.Node) bool {
var snap enrEntry
return n.Load(&snap) == nil
})
protocols := make([]p2p.Protocol, len(ProtocolVersions))
for i, version := range ProtocolVersions {
version := version // Closure
protocols[i] = p2p.Protocol{
Name: ProtocolName,
Version: version,
Length: protocolLengths[version],
Run: func(p *p2p.Peer, rw p2p.MsgReadWriter) error {
return backend.RunPeer(newPeer(version, p, rw), func(peer *Peer) error {
return handle(backend, peer)
})
},
NodeInfo: func() interface{} {
return nodeInfo(backend.Chain())
},
PeerInfo: func(id enode.ID) interface{} {
return backend.PeerInfo(id)
},
Attributes: []enr.Entry{&enrEntry{}},
DialCandidates: dnsdisc,
}
}
return protocols
}
// handle is the callback invoked to manage the life cycle of a `snap` peer.
// When this function terminates, the peer is disconnected.
func handle(backend Backend, peer *Peer) error {
for {
if err := handleMessage(backend, peer); err != nil {
peer.Log().Debug("Message handling failed in `snap`", "err", err)
return err
}
}
}
// handleMessage is invoked whenever an inbound message is received from a
// remote peer on the `snap` protocol. The remote connection is torn down upon
// returning any error.
func handleMessage(backend Backend, peer *Peer) error {
// Read the next message from the remote peer, and ensure it's fully consumed
msg, err := peer.rw.ReadMsg()
if err != nil {
return err
}
if msg.Size > maxMessageSize {
return fmt.Errorf("%w: %v > %v", errMsgTooLarge, msg.Size, maxMessageSize)
}
defer msg.Discard()
start := time.Now()
// Track the emount of time it takes to serve the request and run the handler
if metrics.Enabled {
h := fmt.Sprintf("%s/%s/%d/%#02x", p2p.HandleHistName, ProtocolName, peer.Version(), msg.Code)
defer func(start time.Time) {
sampler := func() metrics.Sample {
return metrics.ResettingSample(
metrics.NewExpDecaySample(1028, 0.015),
)
}
metrics.GetOrRegisterHistogramLazy(h, nil, sampler).Update(time.Since(start).Microseconds())
}(start)
}
// Handle the message depending on its contents
switch {
case msg.Code == GetAccountRangeMsg:
// Decode the account retrieval request
var req GetAccountRangePacket
if err := msg.Decode(&req); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
if req.Bytes > softResponseLimit {
req.Bytes = softResponseLimit
}
// Retrieve the requested state and bail out if non existent
tr, err := trie.New(req.Root, backend.Chain().StateCache().TrieDB())
if err != nil {
return p2p.Send(peer.rw, AccountRangeMsg, &AccountRangePacket{ID: req.ID})
}
it, err := backend.Chain().Snapshots().AccountIterator(req.Root, req.Origin)
if err != nil {
return p2p.Send(peer.rw, AccountRangeMsg, &AccountRangePacket{ID: req.ID})
}
// Iterate over the requested range and pile accounts up
var (
accounts []*AccountData
size uint64
last common.Hash
)
for it.Next() && size < req.Bytes {
hash, account := it.Hash(), common.CopyBytes(it.Account())
// Track the returned interval for the Merkle proofs
last = hash
// Assemble the reply item
size += uint64(common.HashLength + len(account))
accounts = append(accounts, &AccountData{
Hash: hash,
Body: account,
})
// If we've exceeded the request threshold, abort
if bytes.Compare(hash[:], req.Limit[:]) >= 0 {
break
}
}
it.Release()
// Generate the Merkle proofs for the first and last account
proof := light.NewNodeSet()
if err := tr.Prove(req.Origin[:], 0, proof); err != nil {
log.Warn("Failed to prove account range", "origin", req.Origin, "err", err)
return p2p.Send(peer.rw, AccountRangeMsg, &AccountRangePacket{ID: req.ID})
}
if last != (common.Hash{}) {
if err := tr.Prove(last[:], 0, proof); err != nil {
log.Warn("Failed to prove account range", "last", last, "err", err)
return p2p.Send(peer.rw, AccountRangeMsg, &AccountRangePacket{ID: req.ID})
}
}
var proofs [][]byte
for _, blob := range proof.NodeList() {
proofs = append(proofs, blob)
}
// Send back anything accumulated
return p2p.Send(peer.rw, AccountRangeMsg, &AccountRangePacket{
ID: req.ID,
Accounts: accounts,
Proof: proofs,
})
case msg.Code == AccountRangeMsg:
// A range of accounts arrived to one of our previous requests
res := new(AccountRangePacket)
if err := msg.Decode(res); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
// Ensure the range is monotonically increasing
for i := 1; i < len(res.Accounts); i++ {
if bytes.Compare(res.Accounts[i-1].Hash[:], res.Accounts[i].Hash[:]) >= 0 {
return fmt.Errorf("accounts not monotonically increasing: #%d [%x] vs #%d [%x]", i-1, res.Accounts[i-1].Hash[:], i, res.Accounts[i].Hash[:])
}
}
requestTracker.Fulfil(peer.id, peer.version, AccountRangeMsg, res.ID)
return backend.Handle(peer, res)
case msg.Code == GetStorageRangesMsg:
// Decode the storage retrieval request
var req GetStorageRangesPacket
if err := msg.Decode(&req); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
if req.Bytes > softResponseLimit {
req.Bytes = softResponseLimit
}
// TODO(karalabe): Do we want to enforce > 0 accounts and 1 account if origin is set?
// TODO(karalabe): - Logging locally is not ideal as remote faulst annoy the local user
// TODO(karalabe): - Dropping the remote peer is less flexible wrt client bugs (slow is better than non-functional)
// Calculate the hard limit at which to abort, even if mid storage trie
hardLimit := uint64(float64(req.Bytes) * (1 + stateLookupSlack))
// Retrieve storage ranges until the packet limit is reached
var (
slots [][]*StorageData
proofs [][]byte
size uint64
)
for _, account := range req.Accounts {
// If we've exceeded the requested data limit, abort without opening
// a new storage range (that we'd need to prove due to exceeded size)
if size >= req.Bytes {
break
}
// The first account might start from a different origin and end sooner
var origin common.Hash
if len(req.Origin) > 0 {
origin, req.Origin = common.BytesToHash(req.Origin), nil
}
var limit = common.HexToHash("0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
if len(req.Limit) > 0 {
limit, req.Limit = common.BytesToHash(req.Limit), nil
}
// Retrieve the requested state and bail out if non existent
it, err := backend.Chain().Snapshots().StorageIterator(req.Root, account, origin)
if err != nil {
return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{ID: req.ID})
}
// Iterate over the requested range and pile slots up
var (
storage []*StorageData
last common.Hash
abort bool
)
for it.Next() {
if size >= hardLimit {
abort = true
break
}
hash, slot := it.Hash(), common.CopyBytes(it.Slot())
// Track the returned interval for the Merkle proofs
last = hash
// Assemble the reply item
size += uint64(common.HashLength + len(slot))
storage = append(storage, &StorageData{
Hash: hash,
Body: slot,
})
// If we've exceeded the request threshold, abort
if bytes.Compare(hash[:], limit[:]) >= 0 {
break
}
}
slots = append(slots, storage)
it.Release()
// Generate the Merkle proofs for the first and last storage slot, but
// only if the response was capped. If the entire storage trie included
// in the response, no need for any proofs.
if origin != (common.Hash{}) || abort {
// Request started at a non-zero hash or was capped prematurely, add
// the endpoint Merkle proofs
accTrie, err := trie.New(req.Root, backend.Chain().StateCache().TrieDB())
if err != nil {
return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{ID: req.ID})
}
var acc state.Account
if err := rlp.DecodeBytes(accTrie.Get(account[:]), &acc); err != nil {
return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{ID: req.ID})
}
stTrie, err := trie.New(acc.Root, backend.Chain().StateCache().TrieDB())
if err != nil {
return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{ID: req.ID})
}
proof := light.NewNodeSet()
if err := stTrie.Prove(origin[:], 0, proof); err != nil {
log.Warn("Failed to prove storage range", "origin", req.Origin, "err", err)
return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{ID: req.ID})
}
if last != (common.Hash{}) {
if err := stTrie.Prove(last[:], 0, proof); err != nil {
log.Warn("Failed to prove storage range", "last", last, "err", err)
return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{ID: req.ID})
}
}
for _, blob := range proof.NodeList() {
proofs = append(proofs, blob)
}
// Proof terminates the reply as proofs are only added if a node
// refuses to serve more data (exception when a contract fetch is
// finishing, but that's that).
break
}
}
// Send back anything accumulated
return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{
ID: req.ID,
Slots: slots,
Proof: proofs,
})
case msg.Code == StorageRangesMsg:
// A range of storage slots arrived to one of our previous requests
res := new(StorageRangesPacket)
if err := msg.Decode(res); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
// Ensure the ranges are monotonically increasing
for i, slots := range res.Slots {
for j := 1; j < len(slots); j++ {
if bytes.Compare(slots[j-1].Hash[:], slots[j].Hash[:]) >= 0 {
return fmt.Errorf("storage slots not monotonically increasing for account #%d: #%d [%x] vs #%d [%x]", i, j-1, slots[j-1].Hash[:], j, slots[j].Hash[:])
}
}
}
requestTracker.Fulfil(peer.id, peer.version, StorageRangesMsg, res.ID)
return backend.Handle(peer, res)
case msg.Code == GetByteCodesMsg:
// Decode bytecode retrieval request
var req GetByteCodesPacket
if err := msg.Decode(&req); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
if req.Bytes > softResponseLimit {
req.Bytes = softResponseLimit
}
if len(req.Hashes) > maxCodeLookups {
req.Hashes = req.Hashes[:maxCodeLookups]
}
// Retrieve bytecodes until the packet size limit is reached
var (
codes [][]byte
bytes uint64
)
for _, hash := range req.Hashes {
if hash == emptyCode {
// Peers should not request the empty code, but if they do, at
// least sent them back a correct response without db lookups
codes = append(codes, []byte{})
} else if blob, err := backend.Chain().ContractCode(hash); err == nil {
codes = append(codes, blob)
bytes += uint64(len(blob))
}
if bytes > req.Bytes {
break
}
}
// Send back anything accumulated
return p2p.Send(peer.rw, ByteCodesMsg, &ByteCodesPacket{
ID: req.ID,
Codes: codes,
})
case msg.Code == ByteCodesMsg:
// A batch of byte codes arrived to one of our previous requests
res := new(ByteCodesPacket)
if err := msg.Decode(res); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
requestTracker.Fulfil(peer.id, peer.version, ByteCodesMsg, res.ID)
return backend.Handle(peer, res)
case msg.Code == GetTrieNodesMsg:
// Decode trie node retrieval request
var req GetTrieNodesPacket
if err := msg.Decode(&req); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
if req.Bytes > softResponseLimit {
req.Bytes = softResponseLimit
}
// Make sure we have the state associated with the request
triedb := backend.Chain().StateCache().TrieDB()
accTrie, err := trie.NewSecure(req.Root, triedb)
if err != nil {
// We don't have the requested state available, bail out
return p2p.Send(peer.rw, TrieNodesMsg, &TrieNodesPacket{ID: req.ID})
}
snap := backend.Chain().Snapshots().Snapshot(req.Root)
if snap == nil {
// We don't have the requested state snapshotted yet, bail out.
// In reality we could still serve using the account and storage
// tries only, but let's protect the node a bit while it's doing
// snapshot generation.
return p2p.Send(peer.rw, TrieNodesMsg, &TrieNodesPacket{ID: req.ID})
}
// Retrieve trie nodes until the packet size limit is reached
var (
nodes [][]byte
bytes uint64
loads int // Trie hash expansions to cound database reads
)
for _, pathset := range req.Paths {
switch len(pathset) {
case 0:
// Ensure we penalize invalid requests
return fmt.Errorf("%w: zero-item pathset requested", errBadRequest)
case 1:
// If we're only retrieving an account trie node, fetch it directly
blob, resolved, err := accTrie.TryGetNode(pathset[0])
loads += resolved // always account database reads, even for failures
if err != nil {
break
}
nodes = append(nodes, blob)
bytes += uint64(len(blob))
default:
// Storage slots requested, open the storage trie and retrieve from there
account, err := snap.Account(common.BytesToHash(pathset[0]))
loads++ // always account database reads, even for failures
if err != nil {
break
}
stTrie, err := trie.NewSecure(common.BytesToHash(account.Root), triedb)
loads++ // always account database reads, even for failures
if err != nil {
break
}
for _, path := range pathset[1:] {
blob, resolved, err := stTrie.TryGetNode(path)
loads += resolved // always account database reads, even for failures
if err != nil {
break
}
nodes = append(nodes, blob)
bytes += uint64(len(blob))
// Sanity check limits to avoid DoS on the store trie loads
if bytes > req.Bytes || loads > maxTrieNodeLookups || time.Since(start) > maxTrieNodeTimeSpent {
break
}
}
}
// Abort request processing if we've exceeded our limits
if bytes > req.Bytes || loads > maxTrieNodeLookups || time.Since(start) > maxTrieNodeTimeSpent {
break
}
}
// Send back anything accumulated
return p2p.Send(peer.rw, TrieNodesMsg, &TrieNodesPacket{
ID: req.ID,
Nodes: nodes,
})
case msg.Code == TrieNodesMsg:
// A batch of trie nodes arrived to one of our previous requests
res := new(TrieNodesPacket)
if err := msg.Decode(res); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
requestTracker.Fulfil(peer.id, peer.version, TrieNodesMsg, res.ID)
return backend.Handle(peer, res)
default:
return fmt.Errorf("%w: %v", errInvalidMsgCode, msg.Code)
}
}
// NodeInfo represents a short summary of the `snap` sub-protocol metadata
// known about the host peer.
type NodeInfo struct{}
// nodeInfo retrieves some `snap` protocol metadata about the running host node.
func nodeInfo(chain *core.BlockChain) *NodeInfo {
return &NodeInfo{}
}