plugeth/whisper/whisperv5/message_test.go
gluk256 2dcf75a722 whisper/shhapi, whisper/whisperv5: refactoring (#3364)
* Filter refactoring
* API tests added + bugfix
* fixed the error logs
* FilterID fixed
* test cases fixed
* key generation updated
* POW updated
* got rid of redundant stuff
2016-12-01 20:09:22 +01:00

277 lines
7.1 KiB
Go

// Copyright 2016 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package whisperv5
import (
"bytes"
"math/rand"
"testing"
"github.com/ethereum/go-ethereum/crypto"
)
func copyFromBuf(dst []byte, src []byte, beg int) int {
copy(dst, src[beg:])
return beg + len(dst)
}
func generateMessageParams() (*MessageParams, error) {
buf := make([]byte, 1024)
randomize(buf)
sz := rand.Intn(400)
var p MessageParams
p.TTL = uint32(rand.Intn(1024))
p.Payload = make([]byte, sz)
p.Padding = make([]byte, padSizeLimitUpper)
p.KeySym = make([]byte, aesKeyLength)
var b int
b = copyFromBuf(p.Payload, buf, b)
b = copyFromBuf(p.Padding, buf, b)
b = copyFromBuf(p.KeySym, buf, b)
p.Topic = BytesToTopic(buf[b:])
var err error
p.Src, err = crypto.GenerateKey()
if err != nil {
return nil, err
}
// p.Dst, p.PoW, p.WorkTime are not set
p.PoW = 0.01
return &p, nil
}
func singleMessageTest(t *testing.T, symmetric bool) {
params, err := generateMessageParams()
if err != nil {
t.Fatalf("failed generateMessageParams with seed %d: %s.", seed, err)
}
key, err := crypto.GenerateKey()
if err != nil {
t.Fatalf("failed GenerateKey with seed %d: %s.", seed, err)
}
if !symmetric {
params.KeySym = nil
params.Dst = &key.PublicKey
}
text := make([]byte, 0, 512)
steg := make([]byte, 0, 512)
raw := make([]byte, 0, 1024)
text = append(text, params.Payload...)
steg = append(steg, params.Padding...)
raw = append(raw, params.Padding...)
msg := NewSentMessage(params)
env, err := msg.Wrap(params)
if err != nil {
t.Fatalf("failed Wrap with seed %d: %s.", seed, err)
}
var decrypted *ReceivedMessage
if symmetric {
decrypted, err = env.OpenSymmetric(params.KeySym)
} else {
decrypted, err = env.OpenAsymmetric(key)
}
if err != nil {
t.Fatalf("failed to encrypt with seed %d: %s.", seed, err)
}
if !decrypted.Validate() {
t.Fatalf("failed to validate with seed %d.", seed)
}
padsz := len(decrypted.Padding)
if bytes.Compare(steg[:padsz], decrypted.Padding) != 0 {
t.Fatalf("failed with seed %d: compare padding.", seed)
}
if bytes.Compare(text, decrypted.Payload) != 0 {
t.Fatalf("failed with seed %d: compare payload.", seed)
}
if !isMessageSigned(decrypted.Raw[0]) {
t.Fatalf("failed with seed %d: unsigned.", seed)
}
if len(decrypted.Signature) != signatureLength {
t.Fatalf("failed with seed %d: signature len %d.", seed, len(decrypted.Signature))
}
if !isPubKeyEqual(decrypted.Src, &params.Src.PublicKey) {
t.Fatalf("failed with seed %d: signature mismatch.", seed)
}
}
func TestMessageEncryption(t *testing.T) {
InitSingleTest()
var symmetric bool
for i := 0; i < 256; i++ {
singleMessageTest(t, symmetric)
symmetric = !symmetric
}
}
func TestMessageWrap(t *testing.T) {
seed = int64(1777444222)
rand.Seed(seed)
target := 128.0
params, err := generateMessageParams()
if err != nil {
t.Fatalf("failed generateMessageParams with seed %d: %s.", seed, err)
}
msg := NewSentMessage(params)
params.TTL = 1
params.WorkTime = 12
params.PoW = target
env, err := msg.Wrap(params)
if err != nil {
t.Fatalf("failed Wrap with seed %d: %s.", seed, err)
}
pow := env.PoW()
if pow < target {
t.Fatalf("failed Wrap with seed %d: pow < target (%f vs. %f).", seed, pow, target)
}
}
func TestMessageSeal(t *testing.T) {
// this test depends on deterministic choice of seed (1976726903)
seed = int64(1976726903)
rand.Seed(seed)
params, err := generateMessageParams()
if err != nil {
t.Fatalf("failed generateMessageParams with seed %d: %s.", seed, err)
}
msg := NewSentMessage(params)
params.TTL = 1
aesnonce := make([]byte, 12)
salt := make([]byte, 12)
randomize(aesnonce)
randomize(salt)
env := NewEnvelope(params.TTL, params.Topic, salt, aesnonce, msg)
if err != nil {
t.Fatalf("failed Wrap with seed %d: %s.", seed, err)
}
env.Expiry = uint32(seed) // make it deterministic
target := 32.0
params.WorkTime = 4
params.PoW = target
env.Seal(params)
env.calculatePoW(0)
pow := env.PoW()
if pow < target {
t.Fatalf("failed Wrap with seed %d: pow < target (%f vs. %f).", seed, pow, target)
}
params.WorkTime = 1
params.PoW = 1000000000.0
env.Seal(params)
env.calculatePoW(0)
pow = env.PoW()
if pow < 2*target {
t.Fatalf("failed Wrap with seed %d: pow too small %f.", seed, pow)
}
}
func TestEnvelopeOpen(t *testing.T) {
InitSingleTest()
var symmetric bool
for i := 0; i < 256; i++ {
singleEnvelopeOpenTest(t, symmetric)
symmetric = !symmetric
}
}
func singleEnvelopeOpenTest(t *testing.T, symmetric bool) {
params, err := generateMessageParams()
if err != nil {
t.Fatalf("failed generateMessageParams with seed %d: %s.", seed, err)
}
key, err := crypto.GenerateKey()
if err != nil {
t.Fatalf("failed GenerateKey with seed %d: %s.", seed, err)
}
if !symmetric {
params.KeySym = nil
params.Dst = &key.PublicKey
}
text := make([]byte, 0, 512)
steg := make([]byte, 0, 512)
raw := make([]byte, 0, 1024)
text = append(text, params.Payload...)
steg = append(steg, params.Padding...)
raw = append(raw, params.Padding...)
msg := NewSentMessage(params)
env, err := msg.Wrap(params)
if err != nil {
t.Fatalf("failed Wrap with seed %d: %s.", seed, err)
}
f := Filter{KeyAsym: key, KeySym: params.KeySym}
decrypted := env.Open(&f)
if decrypted == nil {
t.Fatalf("failed to open with seed %d.", seed)
}
padsz := len(decrypted.Padding)
if bytes.Compare(steg[:padsz], decrypted.Padding) != 0 {
t.Fatalf("failed with seed %d: compare padding.", seed)
}
if bytes.Compare(text, decrypted.Payload) != 0 {
t.Fatalf("failed with seed %d: compare payload.", seed)
}
if !isMessageSigned(decrypted.Raw[0]) {
t.Fatalf("failed with seed %d: unsigned.", seed)
}
if len(decrypted.Signature) != signatureLength {
t.Fatalf("failed with seed %d: signature len %d.", seed, len(decrypted.Signature))
}
if !isPubKeyEqual(decrypted.Src, &params.Src.PublicKey) {
t.Fatalf("failed with seed %d: signature mismatch.", seed)
}
if decrypted.isAsymmetricEncryption() == symmetric {
t.Fatalf("failed with seed %d: asymmetric %v vs. %v.", seed, decrypted.isAsymmetricEncryption(), symmetric)
}
if decrypted.isSymmetricEncryption() != symmetric {
t.Fatalf("failed with seed %d: symmetric %v vs. %v.", seed, decrypted.isSymmetricEncryption(), symmetric)
}
if !symmetric {
if decrypted.Dst == nil {
t.Fatalf("failed with seed %d: dst is nil.", seed)
}
if !isPubKeyEqual(decrypted.Dst, &key.PublicKey) {
t.Fatalf("failed with seed %d: Dst.", seed)
}
}
}