plugeth/crypto/ecies/ecies_test.go
Luke Champine 462ddce5b2
crypto/ecies: improve concatKDF (#20836)
This removes a bunch of weird code around the counter overflow check in
concatKDF and makes it actually work for different hash output sizes.

The overflow check worked as follows: concatKDF applies the hash function N
times, where N is roundup(kdLen, hashsize) / hashsize. N should not
overflow 32 bits because that would lead to a repetition in the KDF output.

A couple issues with the overflow check:

- It used the hash.BlockSize, which is wrong because the
  block size is about the input of the hash function. Luckily, all standard
  hash functions have a block size that's greater than the output size, so
  concatKDF didn't crash, it just generated too much key material.
- The check used big.Int to compare against 2^32-1.
- The calculation could still overflow before reaching the check.

The new code in concatKDF doesn't check for overflow. Instead, there is a
new check on ECIESParams which ensures that params.KeyLen is < 512. This
removes any possibility of overflow.

There are a couple of miscellaneous improvements bundled in with this
change:

- The key buffer is pre-allocated instead of appending the hash output
  to an initially empty slice.
- The code that uses concatKDF to derive keys is now shared between Encrypt
  and Decrypt.
- There was a redundant invocation of IsOnCurve in Decrypt. This is now removed
  because elliptic.Unmarshal already checks whether the input is a valid curve
  point since Go 1.5.

Co-authored-by: Felix Lange <fjl@twurst.com>
2020-04-03 11:57:24 +02:00

431 lines
12 KiB
Go

// Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is>
// Copyright (c) 2012 The Go Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package ecies
import (
"bytes"
"crypto/elliptic"
"crypto/rand"
"crypto/sha256"
"encoding/hex"
"fmt"
"math/big"
"testing"
"github.com/ethereum/go-ethereum/crypto"
)
func TestKDF(t *testing.T) {
tests := []struct {
length int
output []byte
}{
{6, decode("858b192fa2ed")},
{32, decode("858b192fa2ed4395e2bf88dd8d5770d67dc284ee539f12da8bceaa45d06ebae0")},
{48, decode("858b192fa2ed4395e2bf88dd8d5770d67dc284ee539f12da8bceaa45d06ebae0700f1ab918a5f0413b8140f9940d6955")},
{64, decode("858b192fa2ed4395e2bf88dd8d5770d67dc284ee539f12da8bceaa45d06ebae0700f1ab918a5f0413b8140f9940d6955f3467fd6672cce1024c5b1effccc0f61")},
}
for _, test := range tests {
h := sha256.New()
k := concatKDF(h, []byte("input"), nil, test.length)
if !bytes.Equal(k, test.output) {
t.Fatalf("KDF: generated key %x does not match expected output %x", k, test.output)
}
}
}
var ErrBadSharedKeys = fmt.Errorf("ecies: shared keys don't match")
// cmpParams compares a set of ECIES parameters. We assume, as per the
// docs, that AES is the only supported symmetric encryption algorithm.
func cmpParams(p1, p2 *ECIESParams) bool {
return p1.hashAlgo == p2.hashAlgo &&
p1.KeyLen == p2.KeyLen &&
p1.BlockSize == p2.BlockSize
}
// Validate the ECDH component.
func TestSharedKey(t *testing.T) {
prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
if err != nil {
t.Fatal(err)
}
skLen := MaxSharedKeyLength(&prv1.PublicKey) / 2
prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
if err != nil {
t.Fatal(err)
}
sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen)
if err != nil {
t.Fatal(err)
}
sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(sk1, sk2) {
t.Fatal(ErrBadSharedKeys)
}
}
func TestSharedKeyPadding(t *testing.T) {
// sanity checks
prv0 := hexKey("1adf5c18167d96a1f9a0b1ef63be8aa27eaf6032c233b2b38f7850cf5b859fd9")
prv1 := hexKey("0097a076fc7fcd9208240668e31c9abee952cbb6e375d1b8febc7499d6e16f1a")
x0, _ := new(big.Int).SetString("1a8ed022ff7aec59dc1b440446bdda5ff6bcb3509a8b109077282b361efffbd8", 16)
x1, _ := new(big.Int).SetString("6ab3ac374251f638d0abb3ef596d1dc67955b507c104e5f2009724812dc027b8", 16)
y0, _ := new(big.Int).SetString("e040bd480b1deccc3bc40bd5b1fdcb7bfd352500b477cb9471366dbd4493f923", 16)
y1, _ := new(big.Int).SetString("8ad915f2b503a8be6facab6588731fefeb584fd2dfa9a77a5e0bba1ec439e4fa", 16)
if prv0.PublicKey.X.Cmp(x0) != 0 {
t.Errorf("mismatched prv0.X:\nhave: %x\nwant: %x\n", prv0.PublicKey.X.Bytes(), x0.Bytes())
}
if prv0.PublicKey.Y.Cmp(y0) != 0 {
t.Errorf("mismatched prv0.Y:\nhave: %x\nwant: %x\n", prv0.PublicKey.Y.Bytes(), y0.Bytes())
}
if prv1.PublicKey.X.Cmp(x1) != 0 {
t.Errorf("mismatched prv1.X:\nhave: %x\nwant: %x\n", prv1.PublicKey.X.Bytes(), x1.Bytes())
}
if prv1.PublicKey.Y.Cmp(y1) != 0 {
t.Errorf("mismatched prv1.Y:\nhave: %x\nwant: %x\n", prv1.PublicKey.Y.Bytes(), y1.Bytes())
}
// test shared secret generation
sk1, err := prv0.GenerateShared(&prv1.PublicKey, 16, 16)
if err != nil {
t.Log(err.Error())
}
sk2, err := prv1.GenerateShared(&prv0.PublicKey, 16, 16)
if err != nil {
t.Fatal(err.Error())
}
if !bytes.Equal(sk1, sk2) {
t.Fatal(ErrBadSharedKeys.Error())
}
}
// Verify that the key generation code fails when too much key data is
// requested.
func TestTooBigSharedKey(t *testing.T) {
prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
if err != nil {
t.Fatal(err)
}
prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
if err != nil {
t.Fatal(err)
}
_, err = prv1.GenerateShared(&prv2.PublicKey, 32, 32)
if err != ErrSharedKeyTooBig {
t.Fatal("ecdh: shared key should be too large for curve")
}
_, err = prv2.GenerateShared(&prv1.PublicKey, 32, 32)
if err != ErrSharedKeyTooBig {
t.Fatal("ecdh: shared key should be too large for curve")
}
}
// Benchmark the generation of P256 keys.
func BenchmarkGenerateKeyP256(b *testing.B) {
for i := 0; i < b.N; i++ {
if _, err := GenerateKey(rand.Reader, elliptic.P256(), nil); err != nil {
b.Fatal(err)
}
}
}
// Benchmark the generation of P256 shared keys.
func BenchmarkGenSharedKeyP256(b *testing.B) {
prv, err := GenerateKey(rand.Reader, elliptic.P256(), nil)
if err != nil {
b.Fatal(err)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, err := prv.GenerateShared(&prv.PublicKey, 16, 16)
if err != nil {
b.Fatal(err)
}
}
}
// Benchmark the generation of S256 shared keys.
func BenchmarkGenSharedKeyS256(b *testing.B) {
prv, err := GenerateKey(rand.Reader, crypto.S256(), nil)
if err != nil {
b.Fatal(err)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, err := prv.GenerateShared(&prv.PublicKey, 16, 16)
if err != nil {
b.Fatal(err)
}
}
}
// Verify that an encrypted message can be successfully decrypted.
func TestEncryptDecrypt(t *testing.T) {
prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
if err != nil {
t.Fatal(err)
}
prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
if err != nil {
t.Fatal(err)
}
message := []byte("Hello, world.")
ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
if err != nil {
t.Fatal(err)
}
pt, err := prv2.Decrypt(ct, nil, nil)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(pt, message) {
t.Fatal("ecies: plaintext doesn't match message")
}
_, err = prv1.Decrypt(ct, nil, nil)
if err == nil {
t.Fatal("ecies: encryption should not have succeeded")
}
}
func TestDecryptShared2(t *testing.T) {
prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
if err != nil {
t.Fatal(err)
}
message := []byte("Hello, world.")
shared2 := []byte("shared data 2")
ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, shared2)
if err != nil {
t.Fatal(err)
}
// Check that decrypting with correct shared data works.
pt, err := prv.Decrypt(ct, nil, shared2)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(pt, message) {
t.Fatal("ecies: plaintext doesn't match message")
}
// Decrypting without shared data or incorrect shared data fails.
if _, err = prv.Decrypt(ct, nil, nil); err == nil {
t.Fatal("ecies: decrypting without shared data didn't fail")
}
if _, err = prv.Decrypt(ct, nil, []byte("garbage")); err == nil {
t.Fatal("ecies: decrypting with incorrect shared data didn't fail")
}
}
type testCase struct {
Curve elliptic.Curve
Name string
Expected *ECIESParams
}
var testCases = []testCase{
{
Curve: elliptic.P256(),
Name: "P256",
Expected: ECIES_AES128_SHA256,
},
{
Curve: elliptic.P384(),
Name: "P384",
Expected: ECIES_AES256_SHA384,
},
{
Curve: elliptic.P521(),
Name: "P521",
Expected: ECIES_AES256_SHA512,
},
}
// Test parameter selection for each curve, and that P224 fails automatic
// parameter selection (see README for a discussion of P224). Ensures that
// selecting a set of parameters automatically for the given curve works.
func TestParamSelection(t *testing.T) {
for _, c := range testCases {
testParamSelection(t, c)
}
}
func testParamSelection(t *testing.T, c testCase) {
params := ParamsFromCurve(c.Curve)
if params == nil {
t.Fatal("ParamsFromCurve returned nil")
} else if params != nil && !cmpParams(params, c.Expected) {
t.Fatalf("ecies: parameters should be invalid (%s)\n", c.Name)
}
prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil)
if err != nil {
t.Fatalf("%s (%s)\n", err.Error(), c.Name)
}
prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil)
if err != nil {
t.Fatalf("%s (%s)\n", err.Error(), c.Name)
}
message := []byte("Hello, world.")
ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil)
if err != nil {
t.Fatalf("%s (%s)\n", err.Error(), c.Name)
}
pt, err := prv2.Decrypt(ct, nil, nil)
if err != nil {
t.Fatalf("%s (%s)\n", err.Error(), c.Name)
}
if !bytes.Equal(pt, message) {
t.Fatalf("ecies: plaintext doesn't match message (%s)\n", c.Name)
}
_, err = prv1.Decrypt(ct, nil, nil)
if err == nil {
t.Fatalf("ecies: encryption should not have succeeded (%s)\n", c.Name)
}
}
// Ensure that the basic public key validation in the decryption operation
// works.
func TestBasicKeyValidation(t *testing.T) {
badBytes := []byte{0, 1, 5, 6, 7, 8, 9}
prv, err := GenerateKey(rand.Reader, DefaultCurve, nil)
if err != nil {
t.Fatal(err)
}
message := []byte("Hello, world.")
ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, nil)
if err != nil {
t.Fatal(err)
}
for _, b := range badBytes {
ct[0] = b
_, err := prv.Decrypt(ct, nil, nil)
if err != ErrInvalidPublicKey {
t.Fatal("ecies: validated an invalid key")
}
}
}
func TestBox(t *testing.T) {
prv1 := hexKey("4b50fa71f5c3eeb8fdc452224b2395af2fcc3d125e06c32c82e048c0559db03f")
prv2 := hexKey("d0b043b4c5d657670778242d82d68a29d25d7d711127d17b8e299f156dad361a")
pub2 := &prv2.PublicKey
message := []byte("Hello, world.")
ct, err := Encrypt(rand.Reader, pub2, message, nil, nil)
if err != nil {
t.Fatal(err)
}
pt, err := prv2.Decrypt(ct, nil, nil)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(pt, message) {
t.Fatal("ecies: plaintext doesn't match message")
}
if _, err = prv1.Decrypt(ct, nil, nil); err == nil {
t.Fatal("ecies: encryption should not have succeeded")
}
}
// Verify GenerateShared against static values - useful when
// debugging changes in underlying libs
func TestSharedKeyStatic(t *testing.T) {
prv1 := hexKey("7ebbc6a8358bc76dd73ebc557056702c8cfc34e5cfcd90eb83af0347575fd2ad")
prv2 := hexKey("6a3d6396903245bba5837752b9e0348874e72db0c4e11e9c485a81b4ea4353b9")
skLen := MaxSharedKeyLength(&prv1.PublicKey) / 2
sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen)
if err != nil {
t.Fatal(err)
}
sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(sk1, sk2) {
t.Fatal(ErrBadSharedKeys)
}
sk := decode("167ccc13ac5e8a26b131c3446030c60fbfac6aa8e31149d0869f93626a4cdf62")
if !bytes.Equal(sk1, sk) {
t.Fatalf("shared secret mismatch: want: %x have: %x", sk, sk1)
}
}
func hexKey(prv string) *PrivateKey {
key, err := crypto.HexToECDSA(prv)
if err != nil {
panic(err)
}
return ImportECDSA(key)
}
func decode(s string) []byte {
bytes, err := hex.DecodeString(s)
if err != nil {
panic(err)
}
return bytes
}