plugeth/signer/core/signed_data.go
Martin Holst Swende 295bc35ecf
signer/core: move API JSON types to separate package ()
This PR moves (some) account types into a standalone package, to avoid
depending on signer/core from accounts/external.
2021-07-29 16:06:44 +02:00

1045 lines
31 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"bytes"
"context"
"errors"
"fmt"
"math/big"
"mime"
"reflect"
"regexp"
"sort"
"strconv"
"strings"
"unicode"
"github.com/ethereum/go-ethereum/accounts"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/hexutil"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/consensus/clique"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/signer/core/apitypes"
)
type SigFormat struct {
Mime string
ByteVersion byte
}
var (
IntendedValidator = SigFormat{
accounts.MimetypeDataWithValidator,
0x00,
}
DataTyped = SigFormat{
accounts.MimetypeTypedData,
0x01,
}
ApplicationClique = SigFormat{
accounts.MimetypeClique,
0x02,
}
TextPlain = SigFormat{
accounts.MimetypeTextPlain,
0x45,
}
)
type ValidatorData struct {
Address common.Address
Message hexutil.Bytes
}
type TypedData struct {
Types Types `json:"types"`
PrimaryType string `json:"primaryType"`
Domain TypedDataDomain `json:"domain"`
Message TypedDataMessage `json:"message"`
}
type Type struct {
Name string `json:"name"`
Type string `json:"type"`
}
func (t *Type) isArray() bool {
return strings.HasSuffix(t.Type, "[]")
}
// typeName returns the canonical name of the type. If the type is 'Person[]', then
// this method returns 'Person'
func (t *Type) typeName() string {
if strings.HasSuffix(t.Type, "[]") {
return strings.TrimSuffix(t.Type, "[]")
}
return t.Type
}
func (t *Type) isReferenceType() bool {
if len(t.Type) == 0 {
return false
}
// Reference types must have a leading uppercase character
return unicode.IsUpper([]rune(t.Type)[0])
}
type Types map[string][]Type
type TypePriority struct {
Type string
Value uint
}
type TypedDataMessage = map[string]interface{}
type TypedDataDomain struct {
Name string `json:"name"`
Version string `json:"version"`
ChainId *math.HexOrDecimal256 `json:"chainId"`
VerifyingContract string `json:"verifyingContract"`
Salt string `json:"salt"`
}
var typedDataReferenceTypeRegexp = regexp.MustCompile(`^[A-Z](\w*)(\[\])?$`)
// sign receives a request and produces a signature
//
// Note, the produced signature conforms to the secp256k1 curve R, S and V values,
// where the V value will be 27 or 28 for legacy reasons, if legacyV==true.
func (api *SignerAPI) sign(req *SignDataRequest, legacyV bool) (hexutil.Bytes, error) {
// We make the request prior to looking up if we actually have the account, to prevent
// account-enumeration via the API
res, err := api.UI.ApproveSignData(req)
if err != nil {
return nil, err
}
if !res.Approved {
return nil, ErrRequestDenied
}
// Look up the wallet containing the requested signer
account := accounts.Account{Address: req.Address.Address()}
wallet, err := api.am.Find(account)
if err != nil {
return nil, err
}
pw, err := api.lookupOrQueryPassword(account.Address,
"Password for signing",
fmt.Sprintf("Please enter password for signing data with account %s", account.Address.Hex()))
if err != nil {
return nil, err
}
// Sign the data with the wallet
signature, err := wallet.SignDataWithPassphrase(account, pw, req.ContentType, req.Rawdata)
if err != nil {
return nil, err
}
if legacyV {
signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
}
return signature, nil
}
// SignData signs the hash of the provided data, but does so differently
// depending on the content-type specified.
//
// Different types of validation occur.
func (api *SignerAPI) SignData(ctx context.Context, contentType string, addr common.MixedcaseAddress, data interface{}) (hexutil.Bytes, error) {
var req, transformV, err = api.determineSignatureFormat(ctx, contentType, addr, data)
if err != nil {
return nil, err
}
signature, err := api.sign(req, transformV)
if err != nil {
api.UI.ShowError(err.Error())
return nil, err
}
return signature, nil
}
// determineSignatureFormat determines which signature method should be used based upon the mime type
// In the cases where it matters ensure that the charset is handled. The charset
// resides in the 'params' returned as the second returnvalue from mime.ParseMediaType
// charset, ok := params["charset"]
// As it is now, we accept any charset and just treat it as 'raw'.
// This method returns the mimetype for signing along with the request
func (api *SignerAPI) determineSignatureFormat(ctx context.Context, contentType string, addr common.MixedcaseAddress, data interface{}) (*SignDataRequest, bool, error) {
var (
req *SignDataRequest
useEthereumV = true // Default to use V = 27 or 28, the legacy Ethereum format
)
mediaType, _, err := mime.ParseMediaType(contentType)
if err != nil {
return nil, useEthereumV, err
}
switch mediaType {
case IntendedValidator.Mime:
// Data with an intended validator
validatorData, err := UnmarshalValidatorData(data)
if err != nil {
return nil, useEthereumV, err
}
sighash, msg := SignTextValidator(validatorData)
messages := []*NameValueType{
{
Name: "This is a request to sign data intended for a particular validator (see EIP 191 version 0)",
Typ: "description",
Value: "",
},
{
Name: "Intended validator address",
Typ: "address",
Value: validatorData.Address.String(),
},
{
Name: "Application-specific data",
Typ: "hexdata",
Value: validatorData.Message,
},
{
Name: "Full message for signing",
Typ: "hexdata",
Value: fmt.Sprintf("0x%x", msg),
},
}
req = &SignDataRequest{ContentType: mediaType, Rawdata: []byte(msg), Messages: messages, Hash: sighash}
case ApplicationClique.Mime:
// Clique is the Ethereum PoA standard
stringData, ok := data.(string)
if !ok {
return nil, useEthereumV, fmt.Errorf("input for %v must be an hex-encoded string", ApplicationClique.Mime)
}
cliqueData, err := hexutil.Decode(stringData)
if err != nil {
return nil, useEthereumV, err
}
header := &types.Header{}
if err := rlp.DecodeBytes(cliqueData, header); err != nil {
return nil, useEthereumV, err
}
// The incoming clique header is already truncated, sent to us with a extradata already shortened
if len(header.Extra) < 65 {
// Need to add it back, to get a suitable length for hashing
newExtra := make([]byte, len(header.Extra)+65)
copy(newExtra, header.Extra)
header.Extra = newExtra
}
// Get back the rlp data, encoded by us
sighash, cliqueRlp, err := cliqueHeaderHashAndRlp(header)
if err != nil {
return nil, useEthereumV, err
}
messages := []*NameValueType{
{
Name: "Clique header",
Typ: "clique",
Value: fmt.Sprintf("clique header %d [0x%x]", header.Number, header.Hash()),
},
}
// Clique uses V on the form 0 or 1
useEthereumV = false
req = &SignDataRequest{ContentType: mediaType, Rawdata: cliqueRlp, Messages: messages, Hash: sighash}
default: // also case TextPlain.Mime:
// Calculates an Ethereum ECDSA signature for:
// hash = keccak256("\x19${byteVersion}Ethereum Signed Message:\n${message length}${message}")
// We expect it to be a string
if stringData, ok := data.(string); !ok {
return nil, useEthereumV, fmt.Errorf("input for text/plain must be an hex-encoded string")
} else {
if textData, err := hexutil.Decode(stringData); err != nil {
return nil, useEthereumV, err
} else {
sighash, msg := accounts.TextAndHash(textData)
messages := []*NameValueType{
{
Name: "message",
Typ: accounts.MimetypeTextPlain,
Value: msg,
},
}
req = &SignDataRequest{ContentType: mediaType, Rawdata: []byte(msg), Messages: messages, Hash: sighash}
}
}
}
req.Address = addr
req.Meta = MetadataFromContext(ctx)
return req, useEthereumV, nil
}
// SignTextWithValidator signs the given message which can be further recovered
// with the given validator.
// hash = keccak256("\x19\x00"${address}${data}).
func SignTextValidator(validatorData ValidatorData) (hexutil.Bytes, string) {
msg := fmt.Sprintf("\x19\x00%s%s", string(validatorData.Address.Bytes()), string(validatorData.Message))
return crypto.Keccak256([]byte(msg)), msg
}
// cliqueHeaderHashAndRlp returns the hash which is used as input for the proof-of-authority
// signing. It is the hash of the entire header apart from the 65 byte signature
// contained at the end of the extra data.
//
// The method requires the extra data to be at least 65 bytes -- the original implementation
// in clique.go panics if this is the case, thus it's been reimplemented here to avoid the panic
// and simply return an error instead
func cliqueHeaderHashAndRlp(header *types.Header) (hash, rlp []byte, err error) {
if len(header.Extra) < 65 {
err = fmt.Errorf("clique header extradata too short, %d < 65", len(header.Extra))
return
}
rlp = clique.CliqueRLP(header)
hash = clique.SealHash(header).Bytes()
return hash, rlp, err
}
// SignTypedData signs EIP-712 conformant typed data
// hash = keccak256("\x19${byteVersion}${domainSeparator}${hashStruct(message)}")
// It returns
// - the signature,
// - and/or any error
func (api *SignerAPI) SignTypedData(ctx context.Context, addr common.MixedcaseAddress, typedData TypedData) (hexutil.Bytes, error) {
signature, _, err := api.signTypedData(ctx, addr, typedData, nil)
return signature, err
}
// signTypedData is identical to the capitalized version, except that it also returns the hash (preimage)
// - the signature preimage (hash)
func (api *SignerAPI) signTypedData(ctx context.Context, addr common.MixedcaseAddress,
typedData TypedData, validationMessages *apitypes.ValidationMessages) (hexutil.Bytes, hexutil.Bytes, error) {
domainSeparator, err := typedData.HashStruct("EIP712Domain", typedData.Domain.Map())
if err != nil {
return nil, nil, err
}
typedDataHash, err := typedData.HashStruct(typedData.PrimaryType, typedData.Message)
if err != nil {
return nil, nil, err
}
rawData := []byte(fmt.Sprintf("\x19\x01%s%s", string(domainSeparator), string(typedDataHash)))
sighash := crypto.Keccak256(rawData)
messages, err := typedData.Format()
if err != nil {
return nil, nil, err
}
req := &SignDataRequest{
ContentType: DataTyped.Mime,
Rawdata: rawData,
Messages: messages,
Hash: sighash,
Address: addr}
if validationMessages != nil {
req.Callinfo = validationMessages.Messages
}
signature, err := api.sign(req, true)
if err != nil {
api.UI.ShowError(err.Error())
return nil, nil, err
}
return signature, sighash, nil
}
// HashStruct generates a keccak256 hash of the encoding of the provided data
func (typedData *TypedData) HashStruct(primaryType string, data TypedDataMessage) (hexutil.Bytes, error) {
encodedData, err := typedData.EncodeData(primaryType, data, 1)
if err != nil {
return nil, err
}
return crypto.Keccak256(encodedData), nil
}
// Dependencies returns an array of custom types ordered by their hierarchical reference tree
func (typedData *TypedData) Dependencies(primaryType string, found []string) []string {
includes := func(arr []string, str string) bool {
for _, obj := range arr {
if obj == str {
return true
}
}
return false
}
if includes(found, primaryType) {
return found
}
if typedData.Types[primaryType] == nil {
return found
}
found = append(found, primaryType)
for _, field := range typedData.Types[primaryType] {
for _, dep := range typedData.Dependencies(field.Type, found) {
if !includes(found, dep) {
found = append(found, dep)
}
}
}
return found
}
// EncodeType generates the following encoding:
// `name ‖ "(" ‖ member₁ ‖ "," ‖ member₂ ‖ "," ‖ … ‖ memberₙ ")"`
//
// each member is written as `type ‖ " " ‖ name` encodings cascade down and are sorted by name
func (typedData *TypedData) EncodeType(primaryType string) hexutil.Bytes {
// Get dependencies primary first, then alphabetical
deps := typedData.Dependencies(primaryType, []string{})
if len(deps) > 0 {
slicedDeps := deps[1:]
sort.Strings(slicedDeps)
deps = append([]string{primaryType}, slicedDeps...)
}
// Format as a string with fields
var buffer bytes.Buffer
for _, dep := range deps {
buffer.WriteString(dep)
buffer.WriteString("(")
for _, obj := range typedData.Types[dep] {
buffer.WriteString(obj.Type)
buffer.WriteString(" ")
buffer.WriteString(obj.Name)
buffer.WriteString(",")
}
buffer.Truncate(buffer.Len() - 1)
buffer.WriteString(")")
}
return buffer.Bytes()
}
// TypeHash creates the keccak256 hash of the data
func (typedData *TypedData) TypeHash(primaryType string) hexutil.Bytes {
return crypto.Keccak256(typedData.EncodeType(primaryType))
}
// EncodeData generates the following encoding:
// `enc(value₁) ‖ enc(value₂) ‖ … ‖ enc(valueₙ)`
//
// each encoded member is 32-byte long
func (typedData *TypedData) EncodeData(primaryType string, data map[string]interface{}, depth int) (hexutil.Bytes, error) {
if err := typedData.validate(); err != nil {
return nil, err
}
buffer := bytes.Buffer{}
// Verify extra data
if exp, got := len(typedData.Types[primaryType]), len(data); exp < got {
return nil, fmt.Errorf("there is extra data provided in the message (%d < %d)", exp, got)
}
// Add typehash
buffer.Write(typedData.TypeHash(primaryType))
// Add field contents. Structs and arrays have special handlers.
for _, field := range typedData.Types[primaryType] {
encType := field.Type
encValue := data[field.Name]
if encType[len(encType)-1:] == "]" {
arrayValue, ok := encValue.([]interface{})
if !ok {
return nil, dataMismatchError(encType, encValue)
}
arrayBuffer := bytes.Buffer{}
parsedType := strings.Split(encType, "[")[0]
for _, item := range arrayValue {
if typedData.Types[parsedType] != nil {
mapValue, ok := item.(map[string]interface{})
if !ok {
return nil, dataMismatchError(parsedType, item)
}
encodedData, err := typedData.EncodeData(parsedType, mapValue, depth+1)
if err != nil {
return nil, err
}
arrayBuffer.Write(encodedData)
} else {
bytesValue, err := typedData.EncodePrimitiveValue(parsedType, item, depth)
if err != nil {
return nil, err
}
arrayBuffer.Write(bytesValue)
}
}
buffer.Write(crypto.Keccak256(arrayBuffer.Bytes()))
} else if typedData.Types[field.Type] != nil {
mapValue, ok := encValue.(map[string]interface{})
if !ok {
return nil, dataMismatchError(encType, encValue)
}
encodedData, err := typedData.EncodeData(field.Type, mapValue, depth+1)
if err != nil {
return nil, err
}
buffer.Write(crypto.Keccak256(encodedData))
} else {
byteValue, err := typedData.EncodePrimitiveValue(encType, encValue, depth)
if err != nil {
return nil, err
}
buffer.Write(byteValue)
}
}
return buffer.Bytes(), nil
}
// Attempt to parse bytes in different formats: byte array, hex string, hexutil.Bytes.
func parseBytes(encType interface{}) ([]byte, bool) {
switch v := encType.(type) {
case []byte:
return v, true
case hexutil.Bytes:
return v, true
case string:
bytes, err := hexutil.Decode(v)
if err != nil {
return nil, false
}
return bytes, true
default:
return nil, false
}
}
func parseInteger(encType string, encValue interface{}) (*big.Int, error) {
var (
length int
signed = strings.HasPrefix(encType, "int")
b *big.Int
)
if encType == "int" || encType == "uint" {
length = 256
} else {
lengthStr := ""
if strings.HasPrefix(encType, "uint") {
lengthStr = strings.TrimPrefix(encType, "uint")
} else {
lengthStr = strings.TrimPrefix(encType, "int")
}
atoiSize, err := strconv.Atoi(lengthStr)
if err != nil {
return nil, fmt.Errorf("invalid size on integer: %v", lengthStr)
}
length = atoiSize
}
switch v := encValue.(type) {
case *math.HexOrDecimal256:
b = (*big.Int)(v)
case string:
var hexIntValue math.HexOrDecimal256
if err := hexIntValue.UnmarshalText([]byte(v)); err != nil {
return nil, err
}
b = (*big.Int)(&hexIntValue)
case float64:
// JSON parses non-strings as float64. Fail if we cannot
// convert it losslessly
if float64(int64(v)) == v {
b = big.NewInt(int64(v))
} else {
return nil, fmt.Errorf("invalid float value %v for type %v", v, encType)
}
}
if b == nil {
return nil, fmt.Errorf("invalid integer value %v/%v for type %v", encValue, reflect.TypeOf(encValue), encType)
}
if b.BitLen() > length {
return nil, fmt.Errorf("integer larger than '%v'", encType)
}
if !signed && b.Sign() == -1 {
return nil, fmt.Errorf("invalid negative value for unsigned type %v", encType)
}
return b, nil
}
// EncodePrimitiveValue deals with the primitive values found
// while searching through the typed data
func (typedData *TypedData) EncodePrimitiveValue(encType string, encValue interface{}, depth int) ([]byte, error) {
switch encType {
case "address":
stringValue, ok := encValue.(string)
if !ok || !common.IsHexAddress(stringValue) {
return nil, dataMismatchError(encType, encValue)
}
retval := make([]byte, 32)
copy(retval[12:], common.HexToAddress(stringValue).Bytes())
return retval, nil
case "bool":
boolValue, ok := encValue.(bool)
if !ok {
return nil, dataMismatchError(encType, encValue)
}
if boolValue {
return math.PaddedBigBytes(common.Big1, 32), nil
}
return math.PaddedBigBytes(common.Big0, 32), nil
case "string":
strVal, ok := encValue.(string)
if !ok {
return nil, dataMismatchError(encType, encValue)
}
return crypto.Keccak256([]byte(strVal)), nil
case "bytes":
bytesValue, ok := parseBytes(encValue)
if !ok {
return nil, dataMismatchError(encType, encValue)
}
return crypto.Keccak256(bytesValue), nil
}
if strings.HasPrefix(encType, "bytes") {
lengthStr := strings.TrimPrefix(encType, "bytes")
length, err := strconv.Atoi(lengthStr)
if err != nil {
return nil, fmt.Errorf("invalid size on bytes: %v", lengthStr)
}
if length < 0 || length > 32 {
return nil, fmt.Errorf("invalid size on bytes: %d", length)
}
if byteValue, ok := parseBytes(encValue); !ok || len(byteValue) != length {
return nil, dataMismatchError(encType, encValue)
} else {
// Right-pad the bits
dst := make([]byte, 32)
copy(dst, byteValue)
return dst, nil
}
}
if strings.HasPrefix(encType, "int") || strings.HasPrefix(encType, "uint") {
b, err := parseInteger(encType, encValue)
if err != nil {
return nil, err
}
return math.U256Bytes(b), nil
}
return nil, fmt.Errorf("unrecognized type '%s'", encType)
}
// dataMismatchError generates an error for a mismatch between
// the provided type and data
func dataMismatchError(encType string, encValue interface{}) error {
return fmt.Errorf("provided data '%v' doesn't match type '%s'", encValue, encType)
}
// EcRecover recovers the address associated with the given sig.
// Only compatible with `text/plain`
func (api *SignerAPI) EcRecover(ctx context.Context, data hexutil.Bytes, sig hexutil.Bytes) (common.Address, error) {
// Returns the address for the Account that was used to create the signature.
//
// Note, this function is compatible with eth_sign and personal_sign. As such it recovers
// the address of:
// hash = keccak256("\x19${byteVersion}Ethereum Signed Message:\n${message length}${message}")
// addr = ecrecover(hash, signature)
//
// Note, the signature must conform to the secp256k1 curve R, S and V values, where
// the V value must be be 27 or 28 for legacy reasons.
//
// https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_ecRecover
if len(sig) != 65 {
return common.Address{}, fmt.Errorf("signature must be 65 bytes long")
}
if sig[64] != 27 && sig[64] != 28 {
return common.Address{}, fmt.Errorf("invalid Ethereum signature (V is not 27 or 28)")
}
sig[64] -= 27 // Transform yellow paper V from 27/28 to 0/1
hash := accounts.TextHash(data)
rpk, err := crypto.SigToPub(hash, sig)
if err != nil {
return common.Address{}, err
}
return crypto.PubkeyToAddress(*rpk), nil
}
// UnmarshalValidatorData converts the bytes input to typed data
func UnmarshalValidatorData(data interface{}) (ValidatorData, error) {
raw, ok := data.(map[string]interface{})
if !ok {
return ValidatorData{}, errors.New("validator input is not a map[string]interface{}")
}
addr, ok := raw["address"].(string)
if !ok {
return ValidatorData{}, errors.New("validator address is not sent as a string")
}
addrBytes, err := hexutil.Decode(addr)
if err != nil {
return ValidatorData{}, err
}
if !ok || len(addrBytes) == 0 {
return ValidatorData{}, errors.New("validator address is undefined")
}
message, ok := raw["message"].(string)
if !ok {
return ValidatorData{}, errors.New("message is not sent as a string")
}
messageBytes, err := hexutil.Decode(message)
if err != nil {
return ValidatorData{}, err
}
if !ok || len(messageBytes) == 0 {
return ValidatorData{}, errors.New("message is undefined")
}
return ValidatorData{
Address: common.BytesToAddress(addrBytes),
Message: messageBytes,
}, nil
}
// validate makes sure the types are sound
func (typedData *TypedData) validate() error {
if err := typedData.Types.validate(); err != nil {
return err
}
if err := typedData.Domain.validate(); err != nil {
return err
}
return nil
}
// Map generates a map version of the typed data
func (typedData *TypedData) Map() map[string]interface{} {
dataMap := map[string]interface{}{
"types": typedData.Types,
"domain": typedData.Domain.Map(),
"primaryType": typedData.PrimaryType,
"message": typedData.Message,
}
return dataMap
}
// Format returns a representation of typedData, which can be easily displayed by a user-interface
// without in-depth knowledge about 712 rules
func (typedData *TypedData) Format() ([]*NameValueType, error) {
domain, err := typedData.formatData("EIP712Domain", typedData.Domain.Map())
if err != nil {
return nil, err
}
ptype, err := typedData.formatData(typedData.PrimaryType, typedData.Message)
if err != nil {
return nil, err
}
var nvts []*NameValueType
nvts = append(nvts, &NameValueType{
Name: "EIP712Domain",
Value: domain,
Typ: "domain",
})
nvts = append(nvts, &NameValueType{
Name: typedData.PrimaryType,
Value: ptype,
Typ: "primary type",
})
return nvts, nil
}
func (typedData *TypedData) formatData(primaryType string, data map[string]interface{}) ([]*NameValueType, error) {
var output []*NameValueType
// Add field contents. Structs and arrays have special handlers.
for _, field := range typedData.Types[primaryType] {
encName := field.Name
encValue := data[encName]
item := &NameValueType{
Name: encName,
Typ: field.Type,
}
if field.isArray() {
arrayValue, _ := encValue.([]interface{})
parsedType := field.typeName()
for _, v := range arrayValue {
if typedData.Types[parsedType] != nil {
mapValue, _ := v.(map[string]interface{})
mapOutput, err := typedData.formatData(parsedType, mapValue)
if err != nil {
return nil, err
}
item.Value = mapOutput
} else {
primitiveOutput, err := formatPrimitiveValue(field.Type, encValue)
if err != nil {
return nil, err
}
item.Value = primitiveOutput
}
}
} else if typedData.Types[field.Type] != nil {
if mapValue, ok := encValue.(map[string]interface{}); ok {
mapOutput, err := typedData.formatData(field.Type, mapValue)
if err != nil {
return nil, err
}
item.Value = mapOutput
} else {
item.Value = "<nil>"
}
} else {
primitiveOutput, err := formatPrimitiveValue(field.Type, encValue)
if err != nil {
return nil, err
}
item.Value = primitiveOutput
}
output = append(output, item)
}
return output, nil
}
func formatPrimitiveValue(encType string, encValue interface{}) (string, error) {
switch encType {
case "address":
if stringValue, ok := encValue.(string); !ok {
return "", fmt.Errorf("could not format value %v as address", encValue)
} else {
return common.HexToAddress(stringValue).String(), nil
}
case "bool":
if boolValue, ok := encValue.(bool); !ok {
return "", fmt.Errorf("could not format value %v as bool", encValue)
} else {
return fmt.Sprintf("%t", boolValue), nil
}
case "bytes", "string":
return fmt.Sprintf("%s", encValue), nil
}
if strings.HasPrefix(encType, "bytes") {
return fmt.Sprintf("%s", encValue), nil
}
if strings.HasPrefix(encType, "uint") || strings.HasPrefix(encType, "int") {
if b, err := parseInteger(encType, encValue); err != nil {
return "", err
} else {
return fmt.Sprintf("%d (0x%x)", b, b), nil
}
}
return "", fmt.Errorf("unhandled type %v", encType)
}
// NameValueType is a very simple struct with Name, Value and Type. It's meant for simple
// json structures used to communicate signing-info about typed data with the UI
type NameValueType struct {
Name string `json:"name"`
Value interface{} `json:"value"`
Typ string `json:"type"`
}
// Pprint returns a pretty-printed version of nvt
func (nvt *NameValueType) Pprint(depth int) string {
output := bytes.Buffer{}
output.WriteString(strings.Repeat("\u00a0", depth*2))
output.WriteString(fmt.Sprintf("%s [%s]: ", nvt.Name, nvt.Typ))
if nvts, ok := nvt.Value.([]*NameValueType); ok {
output.WriteString("\n")
for _, next := range nvts {
sublevel := next.Pprint(depth + 1)
output.WriteString(sublevel)
}
} else {
if nvt.Value != nil {
output.WriteString(fmt.Sprintf("%q\n", nvt.Value))
} else {
output.WriteString("\n")
}
}
return output.String()
}
// Validate checks if the types object is conformant to the specs
func (t Types) validate() error {
for typeKey, typeArr := range t {
if len(typeKey) == 0 {
return fmt.Errorf("empty type key")
}
for i, typeObj := range typeArr {
if len(typeObj.Type) == 0 {
return fmt.Errorf("type %q:%d: empty Type", typeKey, i)
}
if len(typeObj.Name) == 0 {
return fmt.Errorf("type %q:%d: empty Name", typeKey, i)
}
if typeKey == typeObj.Type {
return fmt.Errorf("type %q cannot reference itself", typeObj.Type)
}
if typeObj.isReferenceType() {
if _, exist := t[typeObj.typeName()]; !exist {
return fmt.Errorf("reference type %q is undefined", typeObj.Type)
}
if !typedDataReferenceTypeRegexp.MatchString(typeObj.Type) {
return fmt.Errorf("unknown reference type %q", typeObj.Type)
}
} else if !isPrimitiveTypeValid(typeObj.Type) {
return fmt.Errorf("unknown type %q", typeObj.Type)
}
}
}
return nil
}
// Checks if the primitive value is valid
func isPrimitiveTypeValid(primitiveType string) bool {
if primitiveType == "address" ||
primitiveType == "address[]" ||
primitiveType == "bool" ||
primitiveType == "bool[]" ||
primitiveType == "string" ||
primitiveType == "string[]" {
return true
}
if primitiveType == "bytes" ||
primitiveType == "bytes[]" ||
primitiveType == "bytes1" ||
primitiveType == "bytes1[]" ||
primitiveType == "bytes2" ||
primitiveType == "bytes2[]" ||
primitiveType == "bytes3" ||
primitiveType == "bytes3[]" ||
primitiveType == "bytes4" ||
primitiveType == "bytes4[]" ||
primitiveType == "bytes5" ||
primitiveType == "bytes5[]" ||
primitiveType == "bytes6" ||
primitiveType == "bytes6[]" ||
primitiveType == "bytes7" ||
primitiveType == "bytes7[]" ||
primitiveType == "bytes8" ||
primitiveType == "bytes8[]" ||
primitiveType == "bytes9" ||
primitiveType == "bytes9[]" ||
primitiveType == "bytes10" ||
primitiveType == "bytes10[]" ||
primitiveType == "bytes11" ||
primitiveType == "bytes11[]" ||
primitiveType == "bytes12" ||
primitiveType == "bytes12[]" ||
primitiveType == "bytes13" ||
primitiveType == "bytes13[]" ||
primitiveType == "bytes14" ||
primitiveType == "bytes14[]" ||
primitiveType == "bytes15" ||
primitiveType == "bytes15[]" ||
primitiveType == "bytes16" ||
primitiveType == "bytes16[]" ||
primitiveType == "bytes17" ||
primitiveType == "bytes17[]" ||
primitiveType == "bytes18" ||
primitiveType == "bytes18[]" ||
primitiveType == "bytes19" ||
primitiveType == "bytes19[]" ||
primitiveType == "bytes20" ||
primitiveType == "bytes20[]" ||
primitiveType == "bytes21" ||
primitiveType == "bytes21[]" ||
primitiveType == "bytes22" ||
primitiveType == "bytes22[]" ||
primitiveType == "bytes23" ||
primitiveType == "bytes23[]" ||
primitiveType == "bytes24" ||
primitiveType == "bytes24[]" ||
primitiveType == "bytes25" ||
primitiveType == "bytes25[]" ||
primitiveType == "bytes26" ||
primitiveType == "bytes26[]" ||
primitiveType == "bytes27" ||
primitiveType == "bytes27[]" ||
primitiveType == "bytes28" ||
primitiveType == "bytes28[]" ||
primitiveType == "bytes29" ||
primitiveType == "bytes29[]" ||
primitiveType == "bytes30" ||
primitiveType == "bytes30[]" ||
primitiveType == "bytes31" ||
primitiveType == "bytes31[]" ||
primitiveType == "bytes32" ||
primitiveType == "bytes32[]" {
return true
}
if primitiveType == "int" ||
primitiveType == "int[]" ||
primitiveType == "int8" ||
primitiveType == "int8[]" ||
primitiveType == "int16" ||
primitiveType == "int16[]" ||
primitiveType == "int32" ||
primitiveType == "int32[]" ||
primitiveType == "int64" ||
primitiveType == "int64[]" ||
primitiveType == "int128" ||
primitiveType == "int128[]" ||
primitiveType == "int256" ||
primitiveType == "int256[]" {
return true
}
if primitiveType == "uint" ||
primitiveType == "uint[]" ||
primitiveType == "uint8" ||
primitiveType == "uint8[]" ||
primitiveType == "uint16" ||
primitiveType == "uint16[]" ||
primitiveType == "uint32" ||
primitiveType == "uint32[]" ||
primitiveType == "uint64" ||
primitiveType == "uint64[]" ||
primitiveType == "uint128" ||
primitiveType == "uint128[]" ||
primitiveType == "uint256" ||
primitiveType == "uint256[]" {
return true
}
return false
}
// validate checks if the given domain is valid, i.e. contains at least
// the minimum viable keys and values
func (domain *TypedDataDomain) validate() error {
if domain.ChainId == nil && len(domain.Name) == 0 && len(domain.Version) == 0 && len(domain.VerifyingContract) == 0 && len(domain.Salt) == 0 {
return errors.New("domain is undefined")
}
return nil
}
// Map is a helper function to generate a map version of the domain
func (domain *TypedDataDomain) Map() map[string]interface{} {
dataMap := map[string]interface{}{}
if domain.ChainId != nil {
dataMap["chainId"] = domain.ChainId
}
if len(domain.Name) > 0 {
dataMap["name"] = domain.Name
}
if len(domain.Version) > 0 {
dataMap["version"] = domain.Version
}
if len(domain.VerifyingContract) > 0 {
dataMap["verifyingContract"] = domain.VerifyingContract
}
if len(domain.Salt) > 0 {
dataMap["salt"] = domain.Salt
}
return dataMap
}