06632da2bb
This changes the Pop method to assign the zero value before reducing slice size. Doing so ensures the backing array does not reference removed item values.
637 lines
22 KiB
Go
637 lines
22 KiB
Go
// Copyright 2016 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
package txpool
|
|
|
|
import (
|
|
"container/heap"
|
|
"math"
|
|
"math/big"
|
|
"sort"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/ethereum/go-ethereum/common"
|
|
"github.com/ethereum/go-ethereum/core/types"
|
|
)
|
|
|
|
// nonceHeap is a heap.Interface implementation over 64bit unsigned integers for
|
|
// retrieving sorted transactions from the possibly gapped future queue.
|
|
type nonceHeap []uint64
|
|
|
|
func (h nonceHeap) Len() int { return len(h) }
|
|
func (h nonceHeap) Less(i, j int) bool { return h[i] < h[j] }
|
|
func (h nonceHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
|
|
|
|
func (h *nonceHeap) Push(x interface{}) {
|
|
*h = append(*h, x.(uint64))
|
|
}
|
|
|
|
func (h *nonceHeap) Pop() interface{} {
|
|
old := *h
|
|
n := len(old)
|
|
x := old[n-1]
|
|
old[n-1] = 0
|
|
*h = old[0 : n-1]
|
|
return x
|
|
}
|
|
|
|
// sortedMap is a nonce->transaction hash map with a heap based index to allow
|
|
// iterating over the contents in a nonce-incrementing way.
|
|
type sortedMap struct {
|
|
items map[uint64]*types.Transaction // Hash map storing the transaction data
|
|
index *nonceHeap // Heap of nonces of all the stored transactions (non-strict mode)
|
|
cache types.Transactions // Cache of the transactions already sorted
|
|
}
|
|
|
|
// newSortedMap creates a new nonce-sorted transaction map.
|
|
func newSortedMap() *sortedMap {
|
|
return &sortedMap{
|
|
items: make(map[uint64]*types.Transaction),
|
|
index: new(nonceHeap),
|
|
}
|
|
}
|
|
|
|
// Get retrieves the current transactions associated with the given nonce.
|
|
func (m *sortedMap) Get(nonce uint64) *types.Transaction {
|
|
return m.items[nonce]
|
|
}
|
|
|
|
// Put inserts a new transaction into the map, also updating the map's nonce
|
|
// index. If a transaction already exists with the same nonce, it's overwritten.
|
|
func (m *sortedMap) Put(tx *types.Transaction) {
|
|
nonce := tx.Nonce()
|
|
if m.items[nonce] == nil {
|
|
heap.Push(m.index, nonce)
|
|
}
|
|
m.items[nonce], m.cache = tx, nil
|
|
}
|
|
|
|
// Forward removes all transactions from the map with a nonce lower than the
|
|
// provided threshold. Every removed transaction is returned for any post-removal
|
|
// maintenance.
|
|
func (m *sortedMap) Forward(threshold uint64) types.Transactions {
|
|
var removed types.Transactions
|
|
|
|
// Pop off heap items until the threshold is reached
|
|
for m.index.Len() > 0 && (*m.index)[0] < threshold {
|
|
nonce := heap.Pop(m.index).(uint64)
|
|
removed = append(removed, m.items[nonce])
|
|
delete(m.items, nonce)
|
|
}
|
|
// If we had a cached order, shift the front
|
|
if m.cache != nil {
|
|
m.cache = m.cache[len(removed):]
|
|
}
|
|
return removed
|
|
}
|
|
|
|
// Filter iterates over the list of transactions and removes all of them for which
|
|
// the specified function evaluates to true.
|
|
// Filter, as opposed to 'filter', re-initialises the heap after the operation is done.
|
|
// If you want to do several consecutive filterings, it's therefore better to first
|
|
// do a .filter(func1) followed by .Filter(func2) or reheap()
|
|
func (m *sortedMap) Filter(filter func(*types.Transaction) bool) types.Transactions {
|
|
removed := m.filter(filter)
|
|
// If transactions were removed, the heap and cache are ruined
|
|
if len(removed) > 0 {
|
|
m.reheap()
|
|
}
|
|
return removed
|
|
}
|
|
|
|
func (m *sortedMap) reheap() {
|
|
*m.index = make([]uint64, 0, len(m.items))
|
|
for nonce := range m.items {
|
|
*m.index = append(*m.index, nonce)
|
|
}
|
|
heap.Init(m.index)
|
|
m.cache = nil
|
|
}
|
|
|
|
// filter is identical to Filter, but **does not** regenerate the heap. This method
|
|
// should only be used if followed immediately by a call to Filter or reheap()
|
|
func (m *sortedMap) filter(filter func(*types.Transaction) bool) types.Transactions {
|
|
var removed types.Transactions
|
|
|
|
// Collect all the transactions to filter out
|
|
for nonce, tx := range m.items {
|
|
if filter(tx) {
|
|
removed = append(removed, tx)
|
|
delete(m.items, nonce)
|
|
}
|
|
}
|
|
if len(removed) > 0 {
|
|
m.cache = nil
|
|
}
|
|
return removed
|
|
}
|
|
|
|
// Cap places a hard limit on the number of items, returning all transactions
|
|
// exceeding that limit.
|
|
func (m *sortedMap) Cap(threshold int) types.Transactions {
|
|
// Short circuit if the number of items is under the limit
|
|
if len(m.items) <= threshold {
|
|
return nil
|
|
}
|
|
// Otherwise gather and drop the highest nonce'd transactions
|
|
var drops types.Transactions
|
|
|
|
sort.Sort(*m.index)
|
|
for size := len(m.items); size > threshold; size-- {
|
|
drops = append(drops, m.items[(*m.index)[size-1]])
|
|
delete(m.items, (*m.index)[size-1])
|
|
}
|
|
*m.index = (*m.index)[:threshold]
|
|
heap.Init(m.index)
|
|
|
|
// If we had a cache, shift the back
|
|
if m.cache != nil {
|
|
m.cache = m.cache[:len(m.cache)-len(drops)]
|
|
}
|
|
return drops
|
|
}
|
|
|
|
// Remove deletes a transaction from the maintained map, returning whether the
|
|
// transaction was found.
|
|
func (m *sortedMap) Remove(nonce uint64) bool {
|
|
// Short circuit if no transaction is present
|
|
_, ok := m.items[nonce]
|
|
if !ok {
|
|
return false
|
|
}
|
|
// Otherwise delete the transaction and fix the heap index
|
|
for i := 0; i < m.index.Len(); i++ {
|
|
if (*m.index)[i] == nonce {
|
|
heap.Remove(m.index, i)
|
|
break
|
|
}
|
|
}
|
|
delete(m.items, nonce)
|
|
m.cache = nil
|
|
|
|
return true
|
|
}
|
|
|
|
// Ready retrieves a sequentially increasing list of transactions starting at the
|
|
// provided nonce that is ready for processing. The returned transactions will be
|
|
// removed from the list.
|
|
//
|
|
// Note, all transactions with nonces lower than start will also be returned to
|
|
// prevent getting into and invalid state. This is not something that should ever
|
|
// happen but better to be self correcting than failing!
|
|
func (m *sortedMap) Ready(start uint64) types.Transactions {
|
|
// Short circuit if no transactions are available
|
|
if m.index.Len() == 0 || (*m.index)[0] > start {
|
|
return nil
|
|
}
|
|
// Otherwise start accumulating incremental transactions
|
|
var ready types.Transactions
|
|
for next := (*m.index)[0]; m.index.Len() > 0 && (*m.index)[0] == next; next++ {
|
|
ready = append(ready, m.items[next])
|
|
delete(m.items, next)
|
|
heap.Pop(m.index)
|
|
}
|
|
m.cache = nil
|
|
|
|
return ready
|
|
}
|
|
|
|
// Len returns the length of the transaction map.
|
|
func (m *sortedMap) Len() int {
|
|
return len(m.items)
|
|
}
|
|
|
|
func (m *sortedMap) flatten() types.Transactions {
|
|
// If the sorting was not cached yet, create and cache it
|
|
if m.cache == nil {
|
|
m.cache = make(types.Transactions, 0, len(m.items))
|
|
for _, tx := range m.items {
|
|
m.cache = append(m.cache, tx)
|
|
}
|
|
sort.Sort(types.TxByNonce(m.cache))
|
|
}
|
|
return m.cache
|
|
}
|
|
|
|
// Flatten creates a nonce-sorted slice of transactions based on the loosely
|
|
// sorted internal representation. The result of the sorting is cached in case
|
|
// it's requested again before any modifications are made to the contents.
|
|
func (m *sortedMap) Flatten() types.Transactions {
|
|
// Copy the cache to prevent accidental modifications
|
|
cache := m.flatten()
|
|
txs := make(types.Transactions, len(cache))
|
|
copy(txs, cache)
|
|
return txs
|
|
}
|
|
|
|
// LastElement returns the last element of a flattened list, thus, the
|
|
// transaction with the highest nonce
|
|
func (m *sortedMap) LastElement() *types.Transaction {
|
|
cache := m.flatten()
|
|
return cache[len(cache)-1]
|
|
}
|
|
|
|
// list is a "list" of transactions belonging to an account, sorted by account
|
|
// nonce. The same type can be used both for storing contiguous transactions for
|
|
// the executable/pending queue; and for storing gapped transactions for the non-
|
|
// executable/future queue, with minor behavioral changes.
|
|
type list struct {
|
|
strict bool // Whether nonces are strictly continuous or not
|
|
txs *sortedMap // Heap indexed sorted hash map of the transactions
|
|
|
|
costcap *big.Int // Price of the highest costing transaction (reset only if exceeds balance)
|
|
gascap uint64 // Gas limit of the highest spending transaction (reset only if exceeds block limit)
|
|
}
|
|
|
|
// newList create a new transaction list for maintaining nonce-indexable fast,
|
|
// gapped, sortable transaction lists.
|
|
func newList(strict bool) *list {
|
|
return &list{
|
|
strict: strict,
|
|
txs: newSortedMap(),
|
|
costcap: new(big.Int),
|
|
}
|
|
}
|
|
|
|
// Overlaps returns whether the transaction specified has the same nonce as one
|
|
// already contained within the list.
|
|
func (l *list) Overlaps(tx *types.Transaction) bool {
|
|
return l.txs.Get(tx.Nonce()) != nil
|
|
}
|
|
|
|
// Add tries to insert a new transaction into the list, returning whether the
|
|
// transaction was accepted, and if yes, any previous transaction it replaced.
|
|
//
|
|
// If the new transaction is accepted into the list, the lists' cost and gas
|
|
// thresholds are also potentially updated.
|
|
func (l *list) Add(tx *types.Transaction, priceBump uint64) (bool, *types.Transaction) {
|
|
// If there's an older better transaction, abort
|
|
old := l.txs.Get(tx.Nonce())
|
|
if old != nil {
|
|
if old.GasFeeCapCmp(tx) >= 0 || old.GasTipCapCmp(tx) >= 0 {
|
|
return false, nil
|
|
}
|
|
// thresholdFeeCap = oldFC * (100 + priceBump) / 100
|
|
a := big.NewInt(100 + int64(priceBump))
|
|
aFeeCap := new(big.Int).Mul(a, old.GasFeeCap())
|
|
aTip := a.Mul(a, old.GasTipCap())
|
|
|
|
// thresholdTip = oldTip * (100 + priceBump) / 100
|
|
b := big.NewInt(100)
|
|
thresholdFeeCap := aFeeCap.Div(aFeeCap, b)
|
|
thresholdTip := aTip.Div(aTip, b)
|
|
|
|
// We have to ensure that both the new fee cap and tip are higher than the
|
|
// old ones as well as checking the percentage threshold to ensure that
|
|
// this is accurate for low (Wei-level) gas price replacements.
|
|
if tx.GasFeeCapIntCmp(thresholdFeeCap) < 0 || tx.GasTipCapIntCmp(thresholdTip) < 0 {
|
|
return false, nil
|
|
}
|
|
}
|
|
// Otherwise overwrite the old transaction with the current one
|
|
l.txs.Put(tx)
|
|
if cost := tx.Cost(); l.costcap.Cmp(cost) < 0 {
|
|
l.costcap = cost
|
|
}
|
|
if gas := tx.Gas(); l.gascap < gas {
|
|
l.gascap = gas
|
|
}
|
|
return true, old
|
|
}
|
|
|
|
// Forward removes all transactions from the list with a nonce lower than the
|
|
// provided threshold. Every removed transaction is returned for any post-removal
|
|
// maintenance.
|
|
func (l *list) Forward(threshold uint64) types.Transactions {
|
|
return l.txs.Forward(threshold)
|
|
}
|
|
|
|
// Filter removes all transactions from the list with a cost or gas limit higher
|
|
// than the provided thresholds. Every removed transaction is returned for any
|
|
// post-removal maintenance. Strict-mode invalidated transactions are also
|
|
// returned.
|
|
//
|
|
// This method uses the cached costcap and gascap to quickly decide if there's even
|
|
// a point in calculating all the costs or if the balance covers all. If the threshold
|
|
// is lower than the costgas cap, the caps will be reset to a new high after removing
|
|
// the newly invalidated transactions.
|
|
func (l *list) Filter(costLimit *big.Int, gasLimit uint64) (types.Transactions, types.Transactions) {
|
|
// If all transactions are below the threshold, short circuit
|
|
if l.costcap.Cmp(costLimit) <= 0 && l.gascap <= gasLimit {
|
|
return nil, nil
|
|
}
|
|
l.costcap = new(big.Int).Set(costLimit) // Lower the caps to the thresholds
|
|
l.gascap = gasLimit
|
|
|
|
// Filter out all the transactions above the account's funds
|
|
removed := l.txs.Filter(func(tx *types.Transaction) bool {
|
|
return tx.Gas() > gasLimit || tx.Cost().Cmp(costLimit) > 0
|
|
})
|
|
|
|
if len(removed) == 0 {
|
|
return nil, nil
|
|
}
|
|
var invalids types.Transactions
|
|
// If the list was strict, filter anything above the lowest nonce
|
|
if l.strict {
|
|
lowest := uint64(math.MaxUint64)
|
|
for _, tx := range removed {
|
|
if nonce := tx.Nonce(); lowest > nonce {
|
|
lowest = nonce
|
|
}
|
|
}
|
|
invalids = l.txs.filter(func(tx *types.Transaction) bool { return tx.Nonce() > lowest })
|
|
}
|
|
l.txs.reheap()
|
|
return removed, invalids
|
|
}
|
|
|
|
// Cap places a hard limit on the number of items, returning all transactions
|
|
// exceeding that limit.
|
|
func (l *list) Cap(threshold int) types.Transactions {
|
|
return l.txs.Cap(threshold)
|
|
}
|
|
|
|
// Remove deletes a transaction from the maintained list, returning whether the
|
|
// transaction was found, and also returning any transaction invalidated due to
|
|
// the deletion (strict mode only).
|
|
func (l *list) Remove(tx *types.Transaction) (bool, types.Transactions) {
|
|
// Remove the transaction from the set
|
|
nonce := tx.Nonce()
|
|
if removed := l.txs.Remove(nonce); !removed {
|
|
return false, nil
|
|
}
|
|
// In strict mode, filter out non-executable transactions
|
|
if l.strict {
|
|
return true, l.txs.Filter(func(tx *types.Transaction) bool { return tx.Nonce() > nonce })
|
|
}
|
|
return true, nil
|
|
}
|
|
|
|
// Ready retrieves a sequentially increasing list of transactions starting at the
|
|
// provided nonce that is ready for processing. The returned transactions will be
|
|
// removed from the list.
|
|
//
|
|
// Note, all transactions with nonces lower than start will also be returned to
|
|
// prevent getting into and invalid state. This is not something that should ever
|
|
// happen but better to be self correcting than failing!
|
|
func (l *list) Ready(start uint64) types.Transactions {
|
|
return l.txs.Ready(start)
|
|
}
|
|
|
|
// Len returns the length of the transaction list.
|
|
func (l *list) Len() int {
|
|
return l.txs.Len()
|
|
}
|
|
|
|
// Empty returns whether the list of transactions is empty or not.
|
|
func (l *list) Empty() bool {
|
|
return l.Len() == 0
|
|
}
|
|
|
|
// Flatten creates a nonce-sorted slice of transactions based on the loosely
|
|
// sorted internal representation. The result of the sorting is cached in case
|
|
// it's requested again before any modifications are made to the contents.
|
|
func (l *list) Flatten() types.Transactions {
|
|
return l.txs.Flatten()
|
|
}
|
|
|
|
// LastElement returns the last element of a flattened list, thus, the
|
|
// transaction with the highest nonce
|
|
func (l *list) LastElement() *types.Transaction {
|
|
return l.txs.LastElement()
|
|
}
|
|
|
|
// priceHeap is a heap.Interface implementation over transactions for retrieving
|
|
// price-sorted transactions to discard when the pool fills up. If baseFee is set
|
|
// then the heap is sorted based on the effective tip based on the given base fee.
|
|
// If baseFee is nil then the sorting is based on gasFeeCap.
|
|
type priceHeap struct {
|
|
baseFee *big.Int // heap should always be re-sorted after baseFee is changed
|
|
list []*types.Transaction
|
|
}
|
|
|
|
func (h *priceHeap) Len() int { return len(h.list) }
|
|
func (h *priceHeap) Swap(i, j int) { h.list[i], h.list[j] = h.list[j], h.list[i] }
|
|
|
|
func (h *priceHeap) Less(i, j int) bool {
|
|
switch h.cmp(h.list[i], h.list[j]) {
|
|
case -1:
|
|
return true
|
|
case 1:
|
|
return false
|
|
default:
|
|
return h.list[i].Nonce() > h.list[j].Nonce()
|
|
}
|
|
}
|
|
|
|
func (h *priceHeap) cmp(a, b *types.Transaction) int {
|
|
if h.baseFee != nil {
|
|
// Compare effective tips if baseFee is specified
|
|
if c := a.EffectiveGasTipCmp(b, h.baseFee); c != 0 {
|
|
return c
|
|
}
|
|
}
|
|
// Compare fee caps if baseFee is not specified or effective tips are equal
|
|
if c := a.GasFeeCapCmp(b); c != 0 {
|
|
return c
|
|
}
|
|
// Compare tips if effective tips and fee caps are equal
|
|
return a.GasTipCapCmp(b)
|
|
}
|
|
|
|
func (h *priceHeap) Push(x interface{}) {
|
|
tx := x.(*types.Transaction)
|
|
h.list = append(h.list, tx)
|
|
}
|
|
|
|
func (h *priceHeap) Pop() interface{} {
|
|
old := h.list
|
|
n := len(old)
|
|
x := old[n-1]
|
|
old[n-1] = nil
|
|
h.list = old[0 : n-1]
|
|
return x
|
|
}
|
|
|
|
// pricedList is a price-sorted heap to allow operating on transactions pool
|
|
// contents in a price-incrementing way. It's built upon the all transactions
|
|
// in txpool but only interested in the remote part. It means only remote transactions
|
|
// will be considered for tracking, sorting, eviction, etc.
|
|
//
|
|
// Two heaps are used for sorting: the urgent heap (based on effective tip in the next
|
|
// block) and the floating heap (based on gasFeeCap). Always the bigger heap is chosen for
|
|
// eviction. Transactions evicted from the urgent heap are first demoted into the floating heap.
|
|
// In some cases (during a congestion, when blocks are full) the urgent heap can provide
|
|
// better candidates for inclusion while in other cases (at the top of the baseFee peak)
|
|
// the floating heap is better. When baseFee is decreasing they behave similarly.
|
|
type pricedList struct {
|
|
// Number of stale price points to (re-heap trigger).
|
|
// This field is accessed atomically, and must be the first field
|
|
// to ensure it has correct alignment for atomic.AddInt64.
|
|
// See https://golang.org/pkg/sync/atomic/#pkg-note-BUG.
|
|
stales int64
|
|
|
|
all *lookup // Pointer to the map of all transactions
|
|
urgent, floating priceHeap // Heaps of prices of all the stored **remote** transactions
|
|
reheapMu sync.Mutex // Mutex asserts that only one routine is reheaping the list
|
|
}
|
|
|
|
const (
|
|
// urgentRatio : floatingRatio is the capacity ratio of the two queues
|
|
urgentRatio = 4
|
|
floatingRatio = 1
|
|
)
|
|
|
|
// newPricedList creates a new price-sorted transaction heap.
|
|
func newPricedList(all *lookup) *pricedList {
|
|
return &pricedList{
|
|
all: all,
|
|
}
|
|
}
|
|
|
|
// Put inserts a new transaction into the heap.
|
|
func (l *pricedList) Put(tx *types.Transaction, local bool) {
|
|
if local {
|
|
return
|
|
}
|
|
// Insert every new transaction to the urgent heap first; Discard will balance the heaps
|
|
heap.Push(&l.urgent, tx)
|
|
}
|
|
|
|
// Removed notifies the prices transaction list that an old transaction dropped
|
|
// from the pool. The list will just keep a counter of stale objects and update
|
|
// the heap if a large enough ratio of transactions go stale.
|
|
func (l *pricedList) Removed(count int) {
|
|
// Bump the stale counter, but exit if still too low (< 25%)
|
|
stales := atomic.AddInt64(&l.stales, int64(count))
|
|
if int(stales) <= (len(l.urgent.list)+len(l.floating.list))/4 {
|
|
return
|
|
}
|
|
// Seems we've reached a critical number of stale transactions, reheap
|
|
l.Reheap()
|
|
}
|
|
|
|
// Underpriced checks whether a transaction is cheaper than (or as cheap as) the
|
|
// lowest priced (remote) transaction currently being tracked.
|
|
func (l *pricedList) Underpriced(tx *types.Transaction) bool {
|
|
// Note: with two queues, being underpriced is defined as being worse than the worst item
|
|
// in all non-empty queues if there is any. If both queues are empty then nothing is underpriced.
|
|
return (l.underpricedFor(&l.urgent, tx) || len(l.urgent.list) == 0) &&
|
|
(l.underpricedFor(&l.floating, tx) || len(l.floating.list) == 0) &&
|
|
(len(l.urgent.list) != 0 || len(l.floating.list) != 0)
|
|
}
|
|
|
|
// underpricedFor checks whether a transaction is cheaper than (or as cheap as) the
|
|
// lowest priced (remote) transaction in the given heap.
|
|
func (l *pricedList) underpricedFor(h *priceHeap, tx *types.Transaction) bool {
|
|
// Discard stale price points if found at the heap start
|
|
for len(h.list) > 0 {
|
|
head := h.list[0]
|
|
if l.all.GetRemote(head.Hash()) == nil { // Removed or migrated
|
|
atomic.AddInt64(&l.stales, -1)
|
|
heap.Pop(h)
|
|
continue
|
|
}
|
|
break
|
|
}
|
|
// Check if the transaction is underpriced or not
|
|
if len(h.list) == 0 {
|
|
return false // There is no remote transaction at all.
|
|
}
|
|
// If the remote transaction is even cheaper than the
|
|
// cheapest one tracked locally, reject it.
|
|
return h.cmp(h.list[0], tx) >= 0
|
|
}
|
|
|
|
// Discard finds a number of most underpriced transactions, removes them from the
|
|
// priced list and returns them for further removal from the entire pool.
|
|
//
|
|
// Note local transaction won't be considered for eviction.
|
|
func (l *pricedList) Discard(slots int, force bool) (types.Transactions, bool) {
|
|
drop := make(types.Transactions, 0, slots) // Remote underpriced transactions to drop
|
|
for slots > 0 {
|
|
if len(l.urgent.list)*floatingRatio > len(l.floating.list)*urgentRatio || floatingRatio == 0 {
|
|
// Discard stale transactions if found during cleanup
|
|
tx := heap.Pop(&l.urgent).(*types.Transaction)
|
|
if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated
|
|
atomic.AddInt64(&l.stales, -1)
|
|
continue
|
|
}
|
|
// Non stale transaction found, move to floating heap
|
|
heap.Push(&l.floating, tx)
|
|
} else {
|
|
if len(l.floating.list) == 0 {
|
|
// Stop if both heaps are empty
|
|
break
|
|
}
|
|
// Discard stale transactions if found during cleanup
|
|
tx := heap.Pop(&l.floating).(*types.Transaction)
|
|
if l.all.GetRemote(tx.Hash()) == nil { // Removed or migrated
|
|
atomic.AddInt64(&l.stales, -1)
|
|
continue
|
|
}
|
|
// Non stale transaction found, discard it
|
|
drop = append(drop, tx)
|
|
slots -= numSlots(tx)
|
|
}
|
|
}
|
|
// If we still can't make enough room for the new transaction
|
|
if slots > 0 && !force {
|
|
for _, tx := range drop {
|
|
heap.Push(&l.urgent, tx)
|
|
}
|
|
return nil, false
|
|
}
|
|
return drop, true
|
|
}
|
|
|
|
// Reheap forcibly rebuilds the heap based on the current remote transaction set.
|
|
func (l *pricedList) Reheap() {
|
|
l.reheapMu.Lock()
|
|
defer l.reheapMu.Unlock()
|
|
start := time.Now()
|
|
atomic.StoreInt64(&l.stales, 0)
|
|
l.urgent.list = make([]*types.Transaction, 0, l.all.RemoteCount())
|
|
l.all.Range(func(hash common.Hash, tx *types.Transaction, local bool) bool {
|
|
l.urgent.list = append(l.urgent.list, tx)
|
|
return true
|
|
}, false, true) // Only iterate remotes
|
|
heap.Init(&l.urgent)
|
|
|
|
// balance out the two heaps by moving the worse half of transactions into the
|
|
// floating heap
|
|
// Note: Discard would also do this before the first eviction but Reheap can do
|
|
// is more efficiently. Also, Underpriced would work suboptimally the first time
|
|
// if the floating queue was empty.
|
|
floatingCount := len(l.urgent.list) * floatingRatio / (urgentRatio + floatingRatio)
|
|
l.floating.list = make([]*types.Transaction, floatingCount)
|
|
for i := 0; i < floatingCount; i++ {
|
|
l.floating.list[i] = heap.Pop(&l.urgent).(*types.Transaction)
|
|
}
|
|
heap.Init(&l.floating)
|
|
reheapTimer.Update(time.Since(start))
|
|
}
|
|
|
|
// SetBaseFee updates the base fee and triggers a re-heap. Note that Removed is not
|
|
// necessary to call right before SetBaseFee when processing a new block.
|
|
func (l *pricedList) SetBaseFee(baseFee *big.Int) {
|
|
l.urgent.baseFee = baseFee
|
|
l.Reheap()
|
|
}
|