691 lines
22 KiB
Go
691 lines
22 KiB
Go
// Copyright 2018 The go-ethereum Authors
|
|
// This file is part of the go-ethereum library.
|
|
//
|
|
// The go-ethereum library is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU Lesser General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// The go-ethereum library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public License
|
|
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// Package bmt provides a binary merkle tree implementation used for swarm chunk hash
|
|
package bmt
|
|
|
|
import (
|
|
"fmt"
|
|
"hash"
|
|
"strings"
|
|
"sync"
|
|
"sync/atomic"
|
|
)
|
|
|
|
/*
|
|
Binary Merkle Tree Hash is a hash function over arbitrary datachunks of limited size.
|
|
It is defined as the root hash of the binary merkle tree built over fixed size segments
|
|
of the underlying chunk using any base hash function (e.g., keccak 256 SHA3).
|
|
Chunks with data shorter than the fixed size are hashed as if they had zero padding.
|
|
|
|
BMT hash is used as the chunk hash function in swarm which in turn is the basis for the
|
|
128 branching swarm hash http://swarm-guide.readthedocs.io/en/latest/architecture.html#swarm-hash
|
|
|
|
The BMT is optimal for providing compact inclusion proofs, i.e. prove that a
|
|
segment is a substring of a chunk starting at a particular offset.
|
|
The size of the underlying segments is fixed to the size of the base hash (called the resolution
|
|
of the BMT hash), Using Keccak256 SHA3 hash is 32 bytes, the EVM word size to optimize for on-chain BMT verification
|
|
as well as the hash size optimal for inclusion proofs in the merkle tree of the swarm hash.
|
|
|
|
Two implementations are provided:
|
|
|
|
* RefHasher is optimized for code simplicity and meant as a reference implementation
|
|
that is simple to understand
|
|
* Hasher is optimized for speed taking advantage of concurrency with minimalistic
|
|
control structure to coordinate the concurrent routines
|
|
|
|
BMT Hasher implements the following interfaces
|
|
* standard golang hash.Hash - synchronous, reusable
|
|
* SwarmHash - SumWithSpan provided
|
|
* io.Writer - synchronous left-to-right datawriter
|
|
* AsyncWriter - concurrent section writes and asynchronous Sum call
|
|
*/
|
|
|
|
const (
|
|
// PoolSize is the maximum number of bmt trees used by the hashers, i.e,
|
|
// the maximum number of concurrent BMT hashing operations performed by the same hasher
|
|
PoolSize = 8
|
|
)
|
|
|
|
// BaseHasherFunc is a hash.Hash constructor function used for the base hash of the BMT.
|
|
// implemented by Keccak256 SHA3 sha3.NewLegacyKeccak256
|
|
type BaseHasherFunc func() hash.Hash
|
|
|
|
// Hasher a reusable hasher for fixed maximum size chunks representing a BMT
|
|
// - implements the hash.Hash interface
|
|
// - reuses a pool of trees for amortised memory allocation and resource control
|
|
// - supports order-agnostic concurrent segment writes and section (double segment) writes
|
|
// as well as sequential read and write
|
|
// - the same hasher instance must not be called concurrently on more than one chunk
|
|
// - the same hasher instance is synchronously reuseable
|
|
// - Sum gives back the tree to the pool and guaranteed to leave
|
|
// the tree and itself in a state reusable for hashing a new chunk
|
|
// - generates and verifies segment inclusion proofs (TODO:)
|
|
type Hasher struct {
|
|
pool *TreePool // BMT resource pool
|
|
bmt *tree // prebuilt BMT resource for flowcontrol and proofs
|
|
}
|
|
|
|
// New creates a reusable BMT Hasher that
|
|
// pulls a new tree from a resource pool for hashing each chunk
|
|
func New(p *TreePool) *Hasher {
|
|
return &Hasher{
|
|
pool: p,
|
|
}
|
|
}
|
|
|
|
// TreePool provides a pool of trees used as resources by the BMT Hasher.
|
|
// A tree popped from the pool is guaranteed to have a clean state ready
|
|
// for hashing a new chunk.
|
|
type TreePool struct {
|
|
lock sync.Mutex
|
|
c chan *tree // the channel to obtain a resource from the pool
|
|
hasher BaseHasherFunc // base hasher to use for the BMT levels
|
|
SegmentSize int // size of leaf segments, stipulated to be = hash size
|
|
SegmentCount int // the number of segments on the base level of the BMT
|
|
Capacity int // pool capacity, controls concurrency
|
|
Depth int // depth of the bmt trees = int(log2(segmentCount))+1
|
|
Size int // the total length of the data (count * size)
|
|
count int // current count of (ever) allocated resources
|
|
zerohashes [][]byte // lookup table for predictable padding subtrees for all levels
|
|
}
|
|
|
|
// NewTreePool creates a tree pool with hasher, segment size, segment count and capacity
|
|
// on Hasher.getTree it reuses free trees or creates a new one if capacity is not reached
|
|
func NewTreePool(hasher BaseHasherFunc, segmentCount, capacity int) *TreePool {
|
|
// initialises the zerohashes lookup table
|
|
depth := calculateDepthFor(segmentCount)
|
|
segmentSize := hasher().Size()
|
|
zerohashes := make([][]byte, depth+1)
|
|
zeros := make([]byte, segmentSize)
|
|
zerohashes[0] = zeros
|
|
h := hasher()
|
|
for i := 1; i < depth+1; i++ {
|
|
zeros = doSum(h, nil, zeros, zeros)
|
|
zerohashes[i] = zeros
|
|
}
|
|
return &TreePool{
|
|
c: make(chan *tree, capacity),
|
|
hasher: hasher,
|
|
SegmentSize: segmentSize,
|
|
SegmentCount: segmentCount,
|
|
Capacity: capacity,
|
|
Size: segmentCount * segmentSize,
|
|
Depth: depth,
|
|
zerohashes: zerohashes,
|
|
}
|
|
}
|
|
|
|
// Drain drains the pool until it has no more than n resources
|
|
func (p *TreePool) Drain(n int) {
|
|
p.lock.Lock()
|
|
defer p.lock.Unlock()
|
|
for len(p.c) > n {
|
|
<-p.c
|
|
p.count--
|
|
}
|
|
}
|
|
|
|
// Reserve is blocking until it returns an available tree
|
|
// it reuses free trees or creates a new one if size is not reached
|
|
// TODO: should use a context here
|
|
func (p *TreePool) reserve() *tree {
|
|
p.lock.Lock()
|
|
defer p.lock.Unlock()
|
|
var t *tree
|
|
if p.count == p.Capacity {
|
|
return <-p.c
|
|
}
|
|
select {
|
|
case t = <-p.c:
|
|
default:
|
|
t = newTree(p.SegmentSize, p.Depth, p.hasher)
|
|
p.count++
|
|
}
|
|
return t
|
|
}
|
|
|
|
// release gives back a tree to the pool.
|
|
// this tree is guaranteed to be in reusable state
|
|
func (p *TreePool) release(t *tree) {
|
|
p.c <- t // can never fail ...
|
|
}
|
|
|
|
// tree is a reusable control structure representing a BMT
|
|
// organised in a binary tree
|
|
// Hasher uses a TreePool to obtain a tree for each chunk hash
|
|
// the tree is 'locked' while not in the pool
|
|
type tree struct {
|
|
leaves []*node // leaf nodes of the tree, other nodes accessible via parent links
|
|
cursor int // index of rightmost currently open segment
|
|
offset int // offset (cursor position) within currently open segment
|
|
section []byte // the rightmost open section (double segment)
|
|
result chan []byte // result channel
|
|
span []byte // The span of the data subsumed under the chunk
|
|
}
|
|
|
|
// node is a reuseable segment hasher representing a node in a BMT
|
|
type node struct {
|
|
isLeft bool // whether it is left side of the parent double segment
|
|
parent *node // pointer to parent node in the BMT
|
|
state int32 // atomic increment impl concurrent boolean toggle
|
|
left, right []byte // this is where the two children sections are written
|
|
hasher hash.Hash // preconstructed hasher on nodes
|
|
}
|
|
|
|
// newNode constructs a segment hasher node in the BMT (used by newTree)
|
|
func newNode(index int, parent *node, hasher hash.Hash) *node {
|
|
return &node{
|
|
parent: parent,
|
|
isLeft: index%2 == 0,
|
|
hasher: hasher,
|
|
}
|
|
}
|
|
|
|
// Draw draws the BMT (badly)
|
|
func (t *tree) draw(hash []byte) string {
|
|
var left, right []string
|
|
var anc []*node
|
|
for i, n := range t.leaves {
|
|
left = append(left, fmt.Sprintf("%v", hashstr(n.left)))
|
|
if i%2 == 0 {
|
|
anc = append(anc, n.parent)
|
|
}
|
|
right = append(right, fmt.Sprintf("%v", hashstr(n.right)))
|
|
}
|
|
anc = t.leaves
|
|
var hashes [][]string
|
|
for l := 0; len(anc) > 0; l++ {
|
|
var nodes []*node
|
|
hash := []string{""}
|
|
for i, n := range anc {
|
|
hash = append(hash, fmt.Sprintf("%v|%v", hashstr(n.left), hashstr(n.right)))
|
|
if i%2 == 0 && n.parent != nil {
|
|
nodes = append(nodes, n.parent)
|
|
}
|
|
}
|
|
hash = append(hash, "")
|
|
hashes = append(hashes, hash)
|
|
anc = nodes
|
|
}
|
|
hashes = append(hashes, []string{"", fmt.Sprintf("%v", hashstr(hash)), ""})
|
|
total := 60
|
|
del := " "
|
|
var rows []string
|
|
for i := len(hashes) - 1; i >= 0; i-- {
|
|
var textlen int
|
|
hash := hashes[i]
|
|
for _, s := range hash {
|
|
textlen += len(s)
|
|
}
|
|
if total < textlen {
|
|
total = textlen + len(hash)
|
|
}
|
|
delsize := (total - textlen) / (len(hash) - 1)
|
|
if delsize > len(del) {
|
|
delsize = len(del)
|
|
}
|
|
row := fmt.Sprintf("%v: %v", len(hashes)-i-1, strings.Join(hash, del[:delsize]))
|
|
rows = append(rows, row)
|
|
|
|
}
|
|
rows = append(rows, strings.Join(left, " "))
|
|
rows = append(rows, strings.Join(right, " "))
|
|
return strings.Join(rows, "\n") + "\n"
|
|
}
|
|
|
|
// newTree initialises a tree by building up the nodes of a BMT
|
|
// - segment size is stipulated to be the size of the hash
|
|
func newTree(segmentSize, depth int, hashfunc func() hash.Hash) *tree {
|
|
n := newNode(0, nil, hashfunc())
|
|
prevlevel := []*node{n}
|
|
// iterate over levels and creates 2^(depth-level) nodes
|
|
// the 0 level is on double segment sections so we start at depth - 2 since
|
|
count := 2
|
|
for level := depth - 2; level >= 0; level-- {
|
|
nodes := make([]*node, count)
|
|
for i := 0; i < count; i++ {
|
|
parent := prevlevel[i/2]
|
|
var hasher hash.Hash
|
|
if level == 0 {
|
|
hasher = hashfunc()
|
|
}
|
|
nodes[i] = newNode(i, parent, hasher)
|
|
}
|
|
prevlevel = nodes
|
|
count *= 2
|
|
}
|
|
// the datanode level is the nodes on the last level
|
|
return &tree{
|
|
leaves: prevlevel,
|
|
result: make(chan []byte),
|
|
section: make([]byte, 2*segmentSize),
|
|
}
|
|
}
|
|
|
|
// methods needed to implement hash.Hash
|
|
|
|
// Size returns the size
|
|
func (h *Hasher) Size() int {
|
|
return h.pool.SegmentSize
|
|
}
|
|
|
|
// BlockSize returns the block size
|
|
func (h *Hasher) BlockSize() int {
|
|
return 2 * h.pool.SegmentSize
|
|
}
|
|
|
|
// Sum returns the BMT root hash of the buffer
|
|
// using Sum presupposes sequential synchronous writes (io.Writer interface)
|
|
// hash.Hash interface Sum method appends the byte slice to the underlying
|
|
// data before it calculates and returns the hash of the chunk
|
|
// caller must make sure Sum is not called concurrently with Write, writeSection
|
|
func (h *Hasher) Sum(b []byte) (s []byte) {
|
|
t := h.getTree()
|
|
// write the last section with final flag set to true
|
|
go h.writeSection(t.cursor, t.section, true, true)
|
|
// wait for the result
|
|
s = <-t.result
|
|
span := t.span
|
|
// release the tree resource back to the pool
|
|
h.releaseTree()
|
|
// b + sha3(span + BMT(pure_chunk))
|
|
if len(span) == 0 {
|
|
return append(b, s...)
|
|
}
|
|
return doSum(h.pool.hasher(), b, span, s)
|
|
}
|
|
|
|
// methods needed to implement the SwarmHash and the io.Writer interfaces
|
|
|
|
// Write calls sequentially add to the buffer to be hashed,
|
|
// with every full segment calls writeSection in a go routine
|
|
func (h *Hasher) Write(b []byte) (int, error) {
|
|
l := len(b)
|
|
if l == 0 || l > h.pool.Size {
|
|
return 0, nil
|
|
}
|
|
t := h.getTree()
|
|
secsize := 2 * h.pool.SegmentSize
|
|
// calculate length of missing bit to complete current open section
|
|
smax := secsize - t.offset
|
|
// if at the beginning of chunk or middle of the section
|
|
if t.offset < secsize {
|
|
// fill up current segment from buffer
|
|
copy(t.section[t.offset:], b)
|
|
// if input buffer consumed and open section not complete, then
|
|
// advance offset and return
|
|
if smax == 0 {
|
|
smax = secsize
|
|
}
|
|
if l <= smax {
|
|
t.offset += l
|
|
return l, nil
|
|
}
|
|
} else {
|
|
// if end of a section
|
|
if t.cursor == h.pool.SegmentCount*2 {
|
|
return 0, nil
|
|
}
|
|
}
|
|
// read full sections and the last possibly partial section from the input buffer
|
|
for smax < l {
|
|
// section complete; push to tree asynchronously
|
|
go h.writeSection(t.cursor, t.section, true, false)
|
|
// reset section
|
|
t.section = make([]byte, secsize)
|
|
// copy from input buffer at smax to right half of section
|
|
copy(t.section, b[smax:])
|
|
// advance cursor
|
|
t.cursor++
|
|
// smax here represents successive offsets in the input buffer
|
|
smax += secsize
|
|
}
|
|
t.offset = l - smax + secsize
|
|
return l, nil
|
|
}
|
|
|
|
// Reset needs to be called before writing to the hasher
|
|
func (h *Hasher) Reset() {
|
|
h.releaseTree()
|
|
}
|
|
|
|
// methods needed to implement the SwarmHash interface
|
|
|
|
// ResetWithLength needs to be called before writing to the hasher
|
|
// the argument is supposed to be the byte slice binary representation of
|
|
// the length of the data subsumed under the hash, i.e., span
|
|
func (h *Hasher) ResetWithLength(span []byte) {
|
|
h.Reset()
|
|
h.getTree().span = span
|
|
}
|
|
|
|
// releaseTree gives back the Tree to the pool whereby it unlocks
|
|
// it resets tree, segment and index
|
|
func (h *Hasher) releaseTree() {
|
|
t := h.bmt
|
|
if t == nil {
|
|
return
|
|
}
|
|
h.bmt = nil
|
|
go func() {
|
|
t.cursor = 0
|
|
t.offset = 0
|
|
t.span = nil
|
|
t.section = make([]byte, h.pool.SegmentSize*2)
|
|
select {
|
|
case <-t.result:
|
|
default:
|
|
}
|
|
h.pool.release(t)
|
|
}()
|
|
}
|
|
|
|
// NewAsyncWriter extends Hasher with an interface for concurrent segment/section writes
|
|
func (h *Hasher) NewAsyncWriter(double bool) *AsyncHasher {
|
|
secsize := h.pool.SegmentSize
|
|
if double {
|
|
secsize *= 2
|
|
}
|
|
write := func(i int, section []byte, final bool) {
|
|
h.writeSection(i, section, double, final)
|
|
}
|
|
return &AsyncHasher{
|
|
Hasher: h,
|
|
double: double,
|
|
secsize: secsize,
|
|
write: write,
|
|
}
|
|
}
|
|
|
|
// SectionWriter is an asynchronous segment/section writer interface
|
|
type SectionWriter interface {
|
|
Reset() // standard init to be called before reuse
|
|
Write(index int, data []byte) // write into section of index
|
|
Sum(b []byte, length int, span []byte) []byte // returns the hash of the buffer
|
|
SectionSize() int // size of the async section unit to use
|
|
}
|
|
|
|
// AsyncHasher extends BMT Hasher with an asynchronous segment/section writer interface
|
|
// AsyncHasher is unsafe and does not check indexes and section data lengths
|
|
// it must be used with the right indexes and length and the right number of sections
|
|
//
|
|
// behaviour is undefined if
|
|
// * non-final sections are shorter or longer than secsize
|
|
// * if final section does not match length
|
|
// * write a section with index that is higher than length/secsize
|
|
// * set length in Sum call when length/secsize < maxsec
|
|
//
|
|
// * if Sum() is not called on a Hasher that is fully written
|
|
// a process will block, can be terminated with Reset
|
|
// * it will not leak processes if not all sections are written but it blocks
|
|
// and keeps the resource which can be released calling Reset()
|
|
type AsyncHasher struct {
|
|
*Hasher // extends the Hasher
|
|
mtx sync.Mutex // to lock the cursor access
|
|
double bool // whether to use double segments (call Hasher.writeSection)
|
|
secsize int // size of base section (size of hash or double)
|
|
write func(i int, section []byte, final bool)
|
|
}
|
|
|
|
// methods needed to implement AsyncWriter
|
|
|
|
// SectionSize returns the size of async section unit to use
|
|
func (sw *AsyncHasher) SectionSize() int {
|
|
return sw.secsize
|
|
}
|
|
|
|
// Write writes the i-th section of the BMT base
|
|
// this function can and is meant to be called concurrently
|
|
// it sets max segment threadsafely
|
|
func (sw *AsyncHasher) Write(i int, section []byte) {
|
|
sw.mtx.Lock()
|
|
defer sw.mtx.Unlock()
|
|
t := sw.getTree()
|
|
// cursor keeps track of the rightmost section written so far
|
|
// if index is lower than cursor then just write non-final section as is
|
|
if i < t.cursor {
|
|
// if index is not the rightmost, safe to write section
|
|
go sw.write(i, section, false)
|
|
return
|
|
}
|
|
// if there is a previous rightmost section safe to write section
|
|
if t.offset > 0 {
|
|
if i == t.cursor {
|
|
// i==cursor implies cursor was set by Hash call so we can write section as final one
|
|
// since it can be shorter, first we copy it to the padded buffer
|
|
t.section = make([]byte, sw.secsize)
|
|
copy(t.section, section)
|
|
go sw.write(i, t.section, true)
|
|
return
|
|
}
|
|
// the rightmost section just changed, so we write the previous one as non-final
|
|
go sw.write(t.cursor, t.section, false)
|
|
}
|
|
// set i as the index of the righmost section written so far
|
|
// set t.offset to cursor*secsize+1
|
|
t.cursor = i
|
|
t.offset = i*sw.secsize + 1
|
|
t.section = make([]byte, sw.secsize)
|
|
copy(t.section, section)
|
|
}
|
|
|
|
// Sum can be called any time once the length and the span is known
|
|
// potentially even before all segments have been written
|
|
// in such cases Sum will block until all segments are present and
|
|
// the hash for the length can be calculated.
|
|
//
|
|
// b: digest is appended to b
|
|
// length: known length of the input (unsafe; undefined if out of range)
|
|
// meta: metadata to hash together with BMT root for the final digest
|
|
// e.g., span for protection against existential forgery
|
|
func (sw *AsyncHasher) Sum(b []byte, length int, meta []byte) (s []byte) {
|
|
sw.mtx.Lock()
|
|
t := sw.getTree()
|
|
if length == 0 {
|
|
sw.mtx.Unlock()
|
|
s = sw.pool.zerohashes[sw.pool.Depth]
|
|
} else {
|
|
// for non-zero input the rightmost section is written to the tree asynchronously
|
|
// if the actual last section has been written (t.cursor == length/t.secsize)
|
|
maxsec := (length - 1) / sw.secsize
|
|
if t.offset > 0 {
|
|
go sw.write(t.cursor, t.section, maxsec == t.cursor)
|
|
}
|
|
// set cursor to maxsec so final section is written when it arrives
|
|
t.cursor = maxsec
|
|
t.offset = length
|
|
result := t.result
|
|
sw.mtx.Unlock()
|
|
// wait for the result or reset
|
|
s = <-result
|
|
}
|
|
// relesase the tree back to the pool
|
|
sw.releaseTree()
|
|
// if no meta is given just append digest to b
|
|
if len(meta) == 0 {
|
|
return append(b, s...)
|
|
}
|
|
// hash together meta and BMT root hash using the pools
|
|
return doSum(sw.pool.hasher(), b, meta, s)
|
|
}
|
|
|
|
// writeSection writes the hash of i-th section into level 1 node of the BMT tree
|
|
func (h *Hasher) writeSection(i int, section []byte, double bool, final bool) {
|
|
// select the leaf node for the section
|
|
var n *node
|
|
var isLeft bool
|
|
var hasher hash.Hash
|
|
var level int
|
|
t := h.getTree()
|
|
if double {
|
|
level++
|
|
n = t.leaves[i]
|
|
hasher = n.hasher
|
|
isLeft = n.isLeft
|
|
n = n.parent
|
|
// hash the section
|
|
section = doSum(hasher, nil, section)
|
|
} else {
|
|
n = t.leaves[i/2]
|
|
hasher = n.hasher
|
|
isLeft = i%2 == 0
|
|
}
|
|
// write hash into parent node
|
|
if final {
|
|
// for the last segment use writeFinalNode
|
|
h.writeFinalNode(level, n, hasher, isLeft, section)
|
|
} else {
|
|
h.writeNode(n, hasher, isLeft, section)
|
|
}
|
|
}
|
|
|
|
// writeNode pushes the data to the node
|
|
// if it is the first of 2 sisters written, the routine terminates
|
|
// if it is the second, it calculates the hash and writes it
|
|
// to the parent node recursively
|
|
// since hashing the parent is synchronous the same hasher can be used
|
|
func (h *Hasher) writeNode(n *node, bh hash.Hash, isLeft bool, s []byte) {
|
|
level := 1
|
|
for {
|
|
// at the root of the bmt just write the result to the result channel
|
|
if n == nil {
|
|
h.getTree().result <- s
|
|
return
|
|
}
|
|
// otherwise assign child hash to left or right segment
|
|
if isLeft {
|
|
n.left = s
|
|
} else {
|
|
n.right = s
|
|
}
|
|
// the child-thread first arriving will terminate
|
|
if n.toggle() {
|
|
return
|
|
}
|
|
// the thread coming second now can be sure both left and right children are written
|
|
// so it calculates the hash of left|right and pushes it to the parent
|
|
s = doSum(bh, nil, n.left, n.right)
|
|
isLeft = n.isLeft
|
|
n = n.parent
|
|
level++
|
|
}
|
|
}
|
|
|
|
// writeFinalNode is following the path starting from the final datasegment to the
|
|
// BMT root via parents
|
|
// for unbalanced trees it fills in the missing right sister nodes using
|
|
// the pool's lookup table for BMT subtree root hashes for all-zero sections
|
|
// otherwise behaves like `writeNode`
|
|
func (h *Hasher) writeFinalNode(level int, n *node, bh hash.Hash, isLeft bool, s []byte) {
|
|
|
|
for {
|
|
// at the root of the bmt just write the result to the result channel
|
|
if n == nil {
|
|
if s != nil {
|
|
h.getTree().result <- s
|
|
}
|
|
return
|
|
}
|
|
var noHash bool
|
|
if isLeft {
|
|
// coming from left sister branch
|
|
// when the final section's path is going via left child node
|
|
// we include an all-zero subtree hash for the right level and toggle the node.
|
|
n.right = h.pool.zerohashes[level]
|
|
if s != nil {
|
|
n.left = s
|
|
// if a left final node carries a hash, it must be the first (and only thread)
|
|
// so the toggle is already in passive state no need no call
|
|
// yet thread needs to carry on pushing hash to parent
|
|
noHash = false
|
|
} else {
|
|
// if again first thread then propagate nil and calculate no hash
|
|
noHash = n.toggle()
|
|
}
|
|
} else {
|
|
// right sister branch
|
|
if s != nil {
|
|
// if hash was pushed from right child node, write right segment change state
|
|
n.right = s
|
|
// if toggle is true, we arrived first so no hashing just push nil to parent
|
|
noHash = n.toggle()
|
|
|
|
} else {
|
|
// if s is nil, then thread arrived first at previous node and here there will be two,
|
|
// so no need to do anything and keep s = nil for parent
|
|
noHash = true
|
|
}
|
|
}
|
|
// the child-thread first arriving will just continue resetting s to nil
|
|
// the second thread now can be sure both left and right children are written
|
|
// it calculates the hash of left|right and pushes it to the parent
|
|
if noHash {
|
|
s = nil
|
|
} else {
|
|
s = doSum(bh, nil, n.left, n.right)
|
|
}
|
|
// iterate to parent
|
|
isLeft = n.isLeft
|
|
n = n.parent
|
|
level++
|
|
}
|
|
}
|
|
|
|
// getTree obtains a BMT resource by reserving one from the pool and assigns it to the bmt field
|
|
func (h *Hasher) getTree() *tree {
|
|
if h.bmt != nil {
|
|
return h.bmt
|
|
}
|
|
t := h.pool.reserve()
|
|
h.bmt = t
|
|
return t
|
|
}
|
|
|
|
// atomic bool toggle implementing a concurrent reusable 2-state object
|
|
// atomic addint with %2 implements atomic bool toggle
|
|
// it returns true if the toggler just put it in the active/waiting state
|
|
func (n *node) toggle() bool {
|
|
return atomic.AddInt32(&n.state, 1)%2 == 1
|
|
}
|
|
|
|
// calculates the hash of the data using hash.Hash
|
|
func doSum(h hash.Hash, b []byte, data ...[]byte) []byte {
|
|
h.Reset()
|
|
for _, v := range data {
|
|
h.Write(v)
|
|
}
|
|
return h.Sum(b)
|
|
}
|
|
|
|
// hashstr is a pretty printer for bytes used in tree.draw
|
|
func hashstr(b []byte) string {
|
|
end := len(b)
|
|
if end > 4 {
|
|
end = 4
|
|
}
|
|
return fmt.Sprintf("%x", b[:end])
|
|
}
|
|
|
|
// calculateDepthFor calculates the depth (number of levels) in the BMT tree
|
|
func calculateDepthFor(n int) (d int) {
|
|
c := 2
|
|
for ; c < n; c *= 2 {
|
|
d++
|
|
}
|
|
return d + 1
|
|
}
|