plugeth/core/state/snapshot/snapshot.go
Martin Holst Swende c1d5a012ea
core/state, tests: fix memory leak via fastcache (#28387)
This change fixes a memory leak, when running either state-tests or blockchain-tests, we allocate a `1MB` fastcache during snapshot generation. `fastcache` is a bit special, and requires a `Reset()` (it has it's own memory allocator). 

The `1MB` was hidden [here](https://github.com/ethereum/go-ethereum/blob/master/tests/state_test_util.go#L333) and [here](https://github.com/ethereum/go-ethereum/blob/master/tests/block_test_util.go#L146) respectively.
2023-10-20 13:35:49 +02:00

880 lines
31 KiB
Go

// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
// Package snapshot implements a journalled, dynamic state dump.
package snapshot
import (
"bytes"
"errors"
"fmt"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie"
)
var (
snapshotCleanAccountHitMeter = metrics.NewRegisteredMeter("state/snapshot/clean/account/hit", nil)
snapshotCleanAccountMissMeter = metrics.NewRegisteredMeter("state/snapshot/clean/account/miss", nil)
snapshotCleanAccountInexMeter = metrics.NewRegisteredMeter("state/snapshot/clean/account/inex", nil)
snapshotCleanAccountReadMeter = metrics.NewRegisteredMeter("state/snapshot/clean/account/read", nil)
snapshotCleanAccountWriteMeter = metrics.NewRegisteredMeter("state/snapshot/clean/account/write", nil)
snapshotCleanStorageHitMeter = metrics.NewRegisteredMeter("state/snapshot/clean/storage/hit", nil)
snapshotCleanStorageMissMeter = metrics.NewRegisteredMeter("state/snapshot/clean/storage/miss", nil)
snapshotCleanStorageInexMeter = metrics.NewRegisteredMeter("state/snapshot/clean/storage/inex", nil)
snapshotCleanStorageReadMeter = metrics.NewRegisteredMeter("state/snapshot/clean/storage/read", nil)
snapshotCleanStorageWriteMeter = metrics.NewRegisteredMeter("state/snapshot/clean/storage/write", nil)
snapshotDirtyAccountHitMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/account/hit", nil)
snapshotDirtyAccountMissMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/account/miss", nil)
snapshotDirtyAccountInexMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/account/inex", nil)
snapshotDirtyAccountReadMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/account/read", nil)
snapshotDirtyAccountWriteMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/account/write", nil)
snapshotDirtyStorageHitMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/storage/hit", nil)
snapshotDirtyStorageMissMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/storage/miss", nil)
snapshotDirtyStorageInexMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/storage/inex", nil)
snapshotDirtyStorageReadMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/storage/read", nil)
snapshotDirtyStorageWriteMeter = metrics.NewRegisteredMeter("state/snapshot/dirty/storage/write", nil)
snapshotDirtyAccountHitDepthHist = metrics.NewRegisteredHistogram("state/snapshot/dirty/account/hit/depth", nil, metrics.NewExpDecaySample(1028, 0.015))
snapshotDirtyStorageHitDepthHist = metrics.NewRegisteredHistogram("state/snapshot/dirty/storage/hit/depth", nil, metrics.NewExpDecaySample(1028, 0.015))
snapshotFlushAccountItemMeter = metrics.NewRegisteredMeter("state/snapshot/flush/account/item", nil)
snapshotFlushAccountSizeMeter = metrics.NewRegisteredMeter("state/snapshot/flush/account/size", nil)
snapshotFlushStorageItemMeter = metrics.NewRegisteredMeter("state/snapshot/flush/storage/item", nil)
snapshotFlushStorageSizeMeter = metrics.NewRegisteredMeter("state/snapshot/flush/storage/size", nil)
snapshotBloomIndexTimer = metrics.NewRegisteredResettingTimer("state/snapshot/bloom/index", nil)
snapshotBloomErrorGauge = metrics.NewRegisteredGaugeFloat64("state/snapshot/bloom/error", nil)
snapshotBloomAccountTrueHitMeter = metrics.NewRegisteredMeter("state/snapshot/bloom/account/truehit", nil)
snapshotBloomAccountFalseHitMeter = metrics.NewRegisteredMeter("state/snapshot/bloom/account/falsehit", nil)
snapshotBloomAccountMissMeter = metrics.NewRegisteredMeter("state/snapshot/bloom/account/miss", nil)
snapshotBloomStorageTrueHitMeter = metrics.NewRegisteredMeter("state/snapshot/bloom/storage/truehit", nil)
snapshotBloomStorageFalseHitMeter = metrics.NewRegisteredMeter("state/snapshot/bloom/storage/falsehit", nil)
snapshotBloomStorageMissMeter = metrics.NewRegisteredMeter("state/snapshot/bloom/storage/miss", nil)
// ErrSnapshotStale is returned from data accessors if the underlying snapshot
// layer had been invalidated due to the chain progressing forward far enough
// to not maintain the layer's original state.
ErrSnapshotStale = errors.New("snapshot stale")
// ErrNotCoveredYet is returned from data accessors if the underlying snapshot
// is being generated currently and the requested data item is not yet in the
// range of accounts covered.
ErrNotCoveredYet = errors.New("not covered yet")
// ErrNotConstructed is returned if the callers want to iterate the snapshot
// while the generation is not finished yet.
ErrNotConstructed = errors.New("snapshot is not constructed")
// errSnapshotCycle is returned if a snapshot is attempted to be inserted
// that forms a cycle in the snapshot tree.
errSnapshotCycle = errors.New("snapshot cycle")
)
// Snapshot represents the functionality supported by a snapshot storage layer.
type Snapshot interface {
// Root returns the root hash for which this snapshot was made.
Root() common.Hash
// Account directly retrieves the account associated with a particular hash in
// the snapshot slim data format.
Account(hash common.Hash) (*types.SlimAccount, error)
// AccountRLP directly retrieves the account RLP associated with a particular
// hash in the snapshot slim data format.
AccountRLP(hash common.Hash) ([]byte, error)
// Storage directly retrieves the storage data associated with a particular hash,
// within a particular account.
Storage(accountHash, storageHash common.Hash) ([]byte, error)
}
// snapshot is the internal version of the snapshot data layer that supports some
// additional methods compared to the public API.
type snapshot interface {
Snapshot
// Parent returns the subsequent layer of a snapshot, or nil if the base was
// reached.
//
// Note, the method is an internal helper to avoid type switching between the
// disk and diff layers. There is no locking involved.
Parent() snapshot
// Update creates a new layer on top of the existing snapshot diff tree with
// the specified data items.
//
// Note, the maps are retained by the method to avoid copying everything.
Update(blockRoot common.Hash, destructs map[common.Hash]struct{}, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte) *diffLayer
// Journal commits an entire diff hierarchy to disk into a single journal entry.
// This is meant to be used during shutdown to persist the snapshot without
// flattening everything down (bad for reorgs).
Journal(buffer *bytes.Buffer) (common.Hash, error)
// Stale return whether this layer has become stale (was flattened across) or
// if it's still live.
Stale() bool
// AccountIterator creates an account iterator over an arbitrary layer.
AccountIterator(seek common.Hash) AccountIterator
// StorageIterator creates a storage iterator over an arbitrary layer.
StorageIterator(account common.Hash, seek common.Hash) (StorageIterator, bool)
}
// Config includes the configurations for snapshots.
type Config struct {
CacheSize int // Megabytes permitted to use for read caches
Recovery bool // Indicator that the snapshots is in the recovery mode
NoBuild bool // Indicator that the snapshots generation is disallowed
AsyncBuild bool // The snapshot generation is allowed to be constructed asynchronously
}
// Tree is an Ethereum state snapshot tree. It consists of one persistent base
// layer backed by a key-value store, on top of which arbitrarily many in-memory
// diff layers are topped. The memory diffs can form a tree with branching, but
// the disk layer is singleton and common to all. If a reorg goes deeper than the
// disk layer, everything needs to be deleted.
//
// The goal of a state snapshot is twofold: to allow direct access to account and
// storage data to avoid expensive multi-level trie lookups; and to allow sorted,
// cheap iteration of the account/storage tries for sync aid.
type Tree struct {
config Config // Snapshots configurations
diskdb ethdb.KeyValueStore // Persistent database to store the snapshot
triedb *trie.Database // In-memory cache to access the trie through
layers map[common.Hash]snapshot // Collection of all known layers
lock sync.RWMutex
// Test hooks
onFlatten func() // Hook invoked when the bottom most diff layers are flattened
}
// New attempts to load an already existing snapshot from a persistent key-value
// store (with a number of memory layers from a journal), ensuring that the head
// of the snapshot matches the expected one.
//
// If the snapshot is missing or the disk layer is broken, the snapshot will be
// reconstructed using both the existing data and the state trie.
// The repair happens on a background thread.
//
// If the memory layers in the journal do not match the disk layer (e.g. there is
// a gap) or the journal is missing, there are two repair cases:
//
// - if the 'recovery' parameter is true, memory diff-layers and the disk-layer
// will all be kept. This case happens when the snapshot is 'ahead' of the
// state trie.
// - otherwise, the entire snapshot is considered invalid and will be recreated on
// a background thread.
func New(config Config, diskdb ethdb.KeyValueStore, triedb *trie.Database, root common.Hash) (*Tree, error) {
// Create a new, empty snapshot tree
snap := &Tree{
config: config,
diskdb: diskdb,
triedb: triedb,
layers: make(map[common.Hash]snapshot),
}
// Attempt to load a previously persisted snapshot and rebuild one if failed
head, disabled, err := loadSnapshot(diskdb, triedb, root, config.CacheSize, config.Recovery, config.NoBuild)
if disabled {
log.Warn("Snapshot maintenance disabled (syncing)")
return snap, nil
}
// Create the building waiter iff the background generation is allowed
if !config.NoBuild && !config.AsyncBuild {
defer snap.waitBuild()
}
if err != nil {
log.Warn("Failed to load snapshot", "err", err)
if !config.NoBuild {
snap.Rebuild(root)
return snap, nil
}
return nil, err // Bail out the error, don't rebuild automatically.
}
// Existing snapshot loaded, seed all the layers
for head != nil {
snap.layers[head.Root()] = head
head = head.Parent()
}
return snap, nil
}
// waitBuild blocks until the snapshot finishes rebuilding. This method is meant
// to be used by tests to ensure we're testing what we believe we are.
func (t *Tree) waitBuild() {
// Find the rebuild termination channel
var done chan struct{}
t.lock.RLock()
for _, layer := range t.layers {
if layer, ok := layer.(*diskLayer); ok {
done = layer.genPending
break
}
}
t.lock.RUnlock()
// Wait until the snapshot is generated
if done != nil {
<-done
}
}
// Disable interrupts any pending snapshot generator, deletes all the snapshot
// layers in memory and marks snapshots disabled globally. In order to resume
// the snapshot functionality, the caller must invoke Rebuild.
func (t *Tree) Disable() {
// Interrupt any live snapshot layers
t.lock.Lock()
defer t.lock.Unlock()
for _, layer := range t.layers {
switch layer := layer.(type) {
case *diskLayer:
// If the base layer is generating, abort it
if layer.genAbort != nil {
abort := make(chan *generatorStats)
layer.genAbort <- abort
<-abort
}
// Layer should be inactive now, mark it as stale
layer.lock.Lock()
layer.stale = true
layer.lock.Unlock()
case *diffLayer:
// If the layer is a simple diff, simply mark as stale
layer.lock.Lock()
layer.stale.Store(true)
layer.lock.Unlock()
default:
panic(fmt.Sprintf("unknown layer type: %T", layer))
}
}
t.layers = map[common.Hash]snapshot{}
// Delete all snapshot liveness information from the database
batch := t.diskdb.NewBatch()
rawdb.WriteSnapshotDisabled(batch)
rawdb.DeleteSnapshotRoot(batch)
rawdb.DeleteSnapshotJournal(batch)
rawdb.DeleteSnapshotGenerator(batch)
rawdb.DeleteSnapshotRecoveryNumber(batch)
// Note, we don't delete the sync progress
if err := batch.Write(); err != nil {
log.Crit("Failed to disable snapshots", "err", err)
}
}
// Snapshot retrieves a snapshot belonging to the given block root, or nil if no
// snapshot is maintained for that block.
func (t *Tree) Snapshot(blockRoot common.Hash) Snapshot {
t.lock.RLock()
defer t.lock.RUnlock()
return t.layers[blockRoot]
}
// Snapshots returns all visited layers from the topmost layer with specific
// root and traverses downward. The layer amount is limited by the given number.
// If nodisk is set, then disk layer is excluded.
func (t *Tree) Snapshots(root common.Hash, limits int, nodisk bool) []Snapshot {
t.lock.RLock()
defer t.lock.RUnlock()
if limits == 0 {
return nil
}
layer := t.layers[root]
if layer == nil {
return nil
}
var ret []Snapshot
for {
if _, isdisk := layer.(*diskLayer); isdisk && nodisk {
break
}
ret = append(ret, layer)
limits -= 1
if limits == 0 {
break
}
parent := layer.Parent()
if parent == nil {
break
}
layer = parent
}
return ret
}
// Update adds a new snapshot into the tree, if that can be linked to an existing
// old parent. It is disallowed to insert a disk layer (the origin of all).
func (t *Tree) Update(blockRoot common.Hash, parentRoot common.Hash, destructs map[common.Hash]struct{}, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte) error {
// Reject noop updates to avoid self-loops in the snapshot tree. This is a
// special case that can only happen for Clique networks where empty blocks
// don't modify the state (0 block subsidy).
//
// Although we could silently ignore this internally, it should be the caller's
// responsibility to avoid even attempting to insert such a snapshot.
if blockRoot == parentRoot {
return errSnapshotCycle
}
// Generate a new snapshot on top of the parent
parent := t.Snapshot(parentRoot)
if parent == nil {
return fmt.Errorf("parent [%#x] snapshot missing", parentRoot)
}
snap := parent.(snapshot).Update(blockRoot, destructs, accounts, storage)
// Save the new snapshot for later
t.lock.Lock()
defer t.lock.Unlock()
t.layers[snap.root] = snap
return nil
}
// Cap traverses downwards the snapshot tree from a head block hash until the
// number of allowed layers are crossed. All layers beyond the permitted number
// are flattened downwards.
//
// Note, the final diff layer count in general will be one more than the amount
// requested. This happens because the bottom-most diff layer is the accumulator
// which may or may not overflow and cascade to disk. Since this last layer's
// survival is only known *after* capping, we need to omit it from the count if
// we want to ensure that *at least* the requested number of diff layers remain.
func (t *Tree) Cap(root common.Hash, layers int) error {
// Retrieve the head snapshot to cap from
snap := t.Snapshot(root)
if snap == nil {
return fmt.Errorf("snapshot [%#x] missing", root)
}
diff, ok := snap.(*diffLayer)
if !ok {
return fmt.Errorf("snapshot [%#x] is disk layer", root)
}
// If the generator is still running, use a more aggressive cap
diff.origin.lock.RLock()
if diff.origin.genMarker != nil && layers > 8 {
layers = 8
}
diff.origin.lock.RUnlock()
// Run the internal capping and discard all stale layers
t.lock.Lock()
defer t.lock.Unlock()
// Flattening the bottom-most diff layer requires special casing since there's
// no child to rewire to the grandparent. In that case we can fake a temporary
// child for the capping and then remove it.
if layers == 0 {
// If full commit was requested, flatten the diffs and merge onto disk
diff.lock.RLock()
base := diffToDisk(diff.flatten().(*diffLayer))
diff.lock.RUnlock()
// Replace the entire snapshot tree with the flat base
t.layers = map[common.Hash]snapshot{base.root: base}
return nil
}
persisted := t.cap(diff, layers)
// Remove any layer that is stale or links into a stale layer
children := make(map[common.Hash][]common.Hash)
for root, snap := range t.layers {
if diff, ok := snap.(*diffLayer); ok {
parent := diff.parent.Root()
children[parent] = append(children[parent], root)
}
}
var remove func(root common.Hash)
remove = func(root common.Hash) {
delete(t.layers, root)
for _, child := range children[root] {
remove(child)
}
delete(children, root)
}
for root, snap := range t.layers {
if snap.Stale() {
remove(root)
}
}
// If the disk layer was modified, regenerate all the cumulative blooms
if persisted != nil {
var rebloom func(root common.Hash)
rebloom = func(root common.Hash) {
if diff, ok := t.layers[root].(*diffLayer); ok {
diff.rebloom(persisted)
}
for _, child := range children[root] {
rebloom(child)
}
}
rebloom(persisted.root)
}
return nil
}
// cap traverses downwards the diff tree until the number of allowed layers are
// crossed. All diffs beyond the permitted number are flattened downwards. If the
// layer limit is reached, memory cap is also enforced (but not before).
//
// The method returns the new disk layer if diffs were persisted into it.
//
// Note, the final diff layer count in general will be one more than the amount
// requested. This happens because the bottom-most diff layer is the accumulator
// which may or may not overflow and cascade to disk. Since this last layer's
// survival is only known *after* capping, we need to omit it from the count if
// we want to ensure that *at least* the requested number of diff layers remain.
func (t *Tree) cap(diff *diffLayer, layers int) *diskLayer {
// Dive until we run out of layers or reach the persistent database
for i := 0; i < layers-1; i++ {
// If we still have diff layers below, continue down
if parent, ok := diff.parent.(*diffLayer); ok {
diff = parent
} else {
// Diff stack too shallow, return without modifications
return nil
}
}
// We're out of layers, flatten anything below, stopping if it's the disk or if
// the memory limit is not yet exceeded.
switch parent := diff.parent.(type) {
case *diskLayer:
return nil
case *diffLayer:
// Hold the write lock until the flattened parent is linked correctly.
// Otherwise, the stale layer may be accessed by external reads in the
// meantime.
diff.lock.Lock()
defer diff.lock.Unlock()
// Flatten the parent into the grandparent. The flattening internally obtains a
// write lock on grandparent.
flattened := parent.flatten().(*diffLayer)
t.layers[flattened.root] = flattened
// Invoke the hook if it's registered. Ugly hack.
if t.onFlatten != nil {
t.onFlatten()
}
diff.parent = flattened
if flattened.memory < aggregatorMemoryLimit {
// Accumulator layer is smaller than the limit, so we can abort, unless
// there's a snapshot being generated currently. In that case, the trie
// will move from underneath the generator so we **must** merge all the
// partial data down into the snapshot and restart the generation.
if flattened.parent.(*diskLayer).genAbort == nil {
return nil
}
}
default:
panic(fmt.Sprintf("unknown data layer: %T", parent))
}
// If the bottom-most layer is larger than our memory cap, persist to disk
bottom := diff.parent.(*diffLayer)
bottom.lock.RLock()
base := diffToDisk(bottom)
bottom.lock.RUnlock()
t.layers[base.root] = base
diff.parent = base
return base
}
// diffToDisk merges a bottom-most diff into the persistent disk layer underneath
// it. The method will panic if called onto a non-bottom-most diff layer.
//
// The disk layer persistence should be operated in an atomic way. All updates should
// be discarded if the whole transition if not finished.
func diffToDisk(bottom *diffLayer) *diskLayer {
var (
base = bottom.parent.(*diskLayer)
batch = base.diskdb.NewBatch()
stats *generatorStats
)
// If the disk layer is running a snapshot generator, abort it
if base.genAbort != nil {
abort := make(chan *generatorStats)
base.genAbort <- abort
stats = <-abort
}
// Put the deletion in the batch writer, flush all updates in the final step.
rawdb.DeleteSnapshotRoot(batch)
// Mark the original base as stale as we're going to create a new wrapper
base.lock.Lock()
if base.stale {
panic("parent disk layer is stale") // we've committed into the same base from two children, boo
}
base.stale = true
base.lock.Unlock()
// Destroy all the destructed accounts from the database
for hash := range bottom.destructSet {
// Skip any account not covered yet by the snapshot
if base.genMarker != nil && bytes.Compare(hash[:], base.genMarker) > 0 {
continue
}
// Remove all storage slots
rawdb.DeleteAccountSnapshot(batch, hash)
base.cache.Set(hash[:], nil)
it := rawdb.IterateStorageSnapshots(base.diskdb, hash)
for it.Next() {
key := it.Key()
batch.Delete(key)
base.cache.Del(key[1:])
snapshotFlushStorageItemMeter.Mark(1)
// Ensure we don't delete too much data blindly (contract can be
// huge). It's ok to flush, the root will go missing in case of a
// crash and we'll detect and regenerate the snapshot.
if batch.ValueSize() > 64*1024*1024 {
if err := batch.Write(); err != nil {
log.Crit("Failed to write storage deletions", "err", err)
}
batch.Reset()
}
}
it.Release()
}
// Push all updated accounts into the database
for hash, data := range bottom.accountData {
// Skip any account not covered yet by the snapshot
if base.genMarker != nil && bytes.Compare(hash[:], base.genMarker) > 0 {
continue
}
// Push the account to disk
rawdb.WriteAccountSnapshot(batch, hash, data)
base.cache.Set(hash[:], data)
snapshotCleanAccountWriteMeter.Mark(int64(len(data)))
snapshotFlushAccountItemMeter.Mark(1)
snapshotFlushAccountSizeMeter.Mark(int64(len(data)))
// Ensure we don't write too much data blindly. It's ok to flush, the
// root will go missing in case of a crash and we'll detect and regen
// the snapshot.
if batch.ValueSize() > 64*1024*1024 {
if err := batch.Write(); err != nil {
log.Crit("Failed to write storage deletions", "err", err)
}
batch.Reset()
}
}
// Push all the storage slots into the database
for accountHash, storage := range bottom.storageData {
// Skip any account not covered yet by the snapshot
if base.genMarker != nil && bytes.Compare(accountHash[:], base.genMarker) > 0 {
continue
}
// Generation might be mid-account, track that case too
midAccount := base.genMarker != nil && bytes.Equal(accountHash[:], base.genMarker[:common.HashLength])
for storageHash, data := range storage {
// Skip any slot not covered yet by the snapshot
if midAccount && bytes.Compare(storageHash[:], base.genMarker[common.HashLength:]) > 0 {
continue
}
if len(data) > 0 {
rawdb.WriteStorageSnapshot(batch, accountHash, storageHash, data)
base.cache.Set(append(accountHash[:], storageHash[:]...), data)
snapshotCleanStorageWriteMeter.Mark(int64(len(data)))
} else {
rawdb.DeleteStorageSnapshot(batch, accountHash, storageHash)
base.cache.Set(append(accountHash[:], storageHash[:]...), nil)
}
snapshotFlushStorageItemMeter.Mark(1)
snapshotFlushStorageSizeMeter.Mark(int64(len(data)))
}
}
// Update the snapshot block marker and write any remainder data
rawdb.WriteSnapshotRoot(batch, bottom.root)
// Write out the generator progress marker and report
journalProgress(batch, base.genMarker, stats)
// Flush all the updates in the single db operation. Ensure the
// disk layer transition is atomic.
if err := batch.Write(); err != nil {
log.Crit("Failed to write leftover snapshot", "err", err)
}
log.Debug("Journalled disk layer", "root", bottom.root, "complete", base.genMarker == nil)
res := &diskLayer{
root: bottom.root,
cache: base.cache,
diskdb: base.diskdb,
triedb: base.triedb,
genMarker: base.genMarker,
genPending: base.genPending,
}
// If snapshot generation hasn't finished yet, port over all the starts and
// continue where the previous round left off.
//
// Note, the `base.genAbort` comparison is not used normally, it's checked
// to allow the tests to play with the marker without triggering this path.
if base.genMarker != nil && base.genAbort != nil {
res.genMarker = base.genMarker
res.genAbort = make(chan chan *generatorStats)
go res.generate(stats)
}
return res
}
// Release releases resources
func (t *Tree) Release() {
if dl := t.disklayer(); dl != nil {
dl.Release()
}
}
// Journal commits an entire diff hierarchy to disk into a single journal entry.
// This is meant to be used during shutdown to persist the snapshot without
// flattening everything down (bad for reorgs).
//
// The method returns the root hash of the base layer that needs to be persisted
// to disk as a trie too to allow continuing any pending generation op.
func (t *Tree) Journal(root common.Hash) (common.Hash, error) {
// Retrieve the head snapshot to journal from var snap snapshot
snap := t.Snapshot(root)
if snap == nil {
return common.Hash{}, fmt.Errorf("snapshot [%#x] missing", root)
}
// Run the journaling
t.lock.Lock()
defer t.lock.Unlock()
// Firstly write out the metadata of journal
journal := new(bytes.Buffer)
if err := rlp.Encode(journal, journalVersion); err != nil {
return common.Hash{}, err
}
diskroot := t.diskRoot()
if diskroot == (common.Hash{}) {
return common.Hash{}, errors.New("invalid disk root")
}
// Secondly write out the disk layer root, ensure the
// diff journal is continuous with disk.
if err := rlp.Encode(journal, diskroot); err != nil {
return common.Hash{}, err
}
// Finally write out the journal of each layer in reverse order.
base, err := snap.(snapshot).Journal(journal)
if err != nil {
return common.Hash{}, err
}
// Store the journal into the database and return
rawdb.WriteSnapshotJournal(t.diskdb, journal.Bytes())
return base, nil
}
// Rebuild wipes all available snapshot data from the persistent database and
// discard all caches and diff layers. Afterwards, it starts a new snapshot
// generator with the given root hash.
func (t *Tree) Rebuild(root common.Hash) {
t.lock.Lock()
defer t.lock.Unlock()
// Firstly delete any recovery flag in the database. Because now we are
// building a brand new snapshot. Also reenable the snapshot feature.
rawdb.DeleteSnapshotRecoveryNumber(t.diskdb)
rawdb.DeleteSnapshotDisabled(t.diskdb)
// Iterate over and mark all layers stale
for _, layer := range t.layers {
switch layer := layer.(type) {
case *diskLayer:
// If the base layer is generating, abort it and save
if layer.genAbort != nil {
abort := make(chan *generatorStats)
layer.genAbort <- abort
<-abort
}
// Layer should be inactive now, mark it as stale
layer.lock.Lock()
layer.stale = true
layer.lock.Unlock()
case *diffLayer:
// If the layer is a simple diff, simply mark as stale
layer.lock.Lock()
layer.stale.Store(true)
layer.lock.Unlock()
default:
panic(fmt.Sprintf("unknown layer type: %T", layer))
}
}
// Start generating a new snapshot from scratch on a background thread. The
// generator will run a wiper first if there's not one running right now.
log.Info("Rebuilding state snapshot")
t.layers = map[common.Hash]snapshot{
root: generateSnapshot(t.diskdb, t.triedb, t.config.CacheSize, root),
}
}
// AccountIterator creates a new account iterator for the specified root hash and
// seeks to a starting account hash.
func (t *Tree) AccountIterator(root common.Hash, seek common.Hash) (AccountIterator, error) {
ok, err := t.generating()
if err != nil {
return nil, err
}
if ok {
return nil, ErrNotConstructed
}
return newFastAccountIterator(t, root, seek)
}
// StorageIterator creates a new storage iterator for the specified root hash and
// account. The iterator will be move to the specific start position.
func (t *Tree) StorageIterator(root common.Hash, account common.Hash, seek common.Hash) (StorageIterator, error) {
ok, err := t.generating()
if err != nil {
return nil, err
}
if ok {
return nil, ErrNotConstructed
}
return newFastStorageIterator(t, root, account, seek)
}
// Verify iterates the whole state(all the accounts as well as the corresponding storages)
// with the specific root and compares the re-computed hash with the original one.
func (t *Tree) Verify(root common.Hash) error {
acctIt, err := t.AccountIterator(root, common.Hash{})
if err != nil {
return err
}
defer acctIt.Release()
got, err := generateTrieRoot(nil, "", acctIt, common.Hash{}, stackTrieGenerate, func(db ethdb.KeyValueWriter, accountHash, codeHash common.Hash, stat *generateStats) (common.Hash, error) {
storageIt, err := t.StorageIterator(root, accountHash, common.Hash{})
if err != nil {
return common.Hash{}, err
}
defer storageIt.Release()
hash, err := generateTrieRoot(nil, "", storageIt, accountHash, stackTrieGenerate, nil, stat, false)
if err != nil {
return common.Hash{}, err
}
return hash, nil
}, newGenerateStats(), true)
if err != nil {
return err
}
if got != root {
return fmt.Errorf("state root hash mismatch: got %x, want %x", got, root)
}
return nil
}
// disklayer is an internal helper function to return the disk layer.
// The lock of snapTree is assumed to be held already.
func (t *Tree) disklayer() *diskLayer {
var snap snapshot
for _, s := range t.layers {
snap = s
break
}
if snap == nil {
return nil
}
switch layer := snap.(type) {
case *diskLayer:
return layer
case *diffLayer:
return layer.origin
default:
panic(fmt.Sprintf("%T: undefined layer", snap))
}
}
// diskRoot is a internal helper function to return the disk layer root.
// The lock of snapTree is assumed to be held already.
func (t *Tree) diskRoot() common.Hash {
disklayer := t.disklayer()
if disklayer == nil {
return common.Hash{}
}
return disklayer.Root()
}
// generating is an internal helper function which reports whether the snapshot
// is still under the construction.
func (t *Tree) generating() (bool, error) {
t.lock.Lock()
defer t.lock.Unlock()
layer := t.disklayer()
if layer == nil {
return false, errors.New("disk layer is missing")
}
layer.lock.RLock()
defer layer.lock.RUnlock()
return layer.genMarker != nil, nil
}
// DiskRoot is a external helper function to return the disk layer root.
func (t *Tree) DiskRoot() common.Hash {
t.lock.Lock()
defer t.lock.Unlock()
return t.diskRoot()
}
// Size returns the memory usage of the diff layers above the disk layer and the
// dirty nodes buffered in the disk layer. Currently, the implementation uses a
// special diff layer (the first) as an aggregator simulating a dirty buffer, so
// the second return will always be 0. However, this will be made consistent with
// the pathdb, which will require a second return.
func (t *Tree) Size() (diffs common.StorageSize, buf common.StorageSize) {
t.lock.RLock()
defer t.lock.RUnlock()
var size common.StorageSize
for _, layer := range t.layers {
if layer, ok := layer.(*diffLayer); ok {
size += common.StorageSize(layer.memory)
}
}
return size, 0
}